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In healthy individuals, cerebral blood flow
(CBF) is regulated by different mechanisms
that maintain optimal blood supply to the
brain, responding to changes in O2 demand
(neurovascular coupling, NVC), arterial
partial pressure of CO2 (PaCO2 ) (vasomotor
reactivity, VMR) and arterial blood pressure
(BP) (cerebral autoregulation, CA) (Willie
et al. 2014). Whilst NVC and VMR are
normally performed with some form of
stimulation (e.g. sensorimotor protocols,
CO2 breathing or rebreathing), methods
for CA assessment are still controversial,
particularly regarding the decision to
perturb changes in BP or not (Tzeng &
Ainslie, 2014; Tzeng et al. 2014). On the
one hand, the relationship between BP and
CBF can be characterised at rest based on
spontaneous fluctuations of these variables
(Zhang et al. 1998). On the other hand,
there is the argument that we can get more
robust results using manoeuvres to induce
larger changes in BP than normally observed
at rest (Claassen et al. 2009; Tan, 2012).
In this debate we argue that the former
should be adopted whenever possible. But to
understand how we arrived at these cross-
roads, it is important to review the recent
conceptual and technological developments
in this field.
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Early studies of CA relied on measure-
ments of CBF that required data acquisition
times of the order of several minutes, usually
involving pharmacological BP manipul-
ations (Paulson et al. 1990). The intro-
duction of transcranial Doppler ultrasound
provided adequate temporal resolution to
describe transient changes in CBF velocity
(CBFV), lasting 2–10 s, thus allowing iden-
tification of the dynamic component of CA
(Aaslid et al. 1989). This dynamic approach
led to a paradigm shift and it overcame
many limitations of the traditional static
method (Tiecks et al. 1995; Panerai, 1998).
In its original proposal (Aaslid et al. 1989)
dynamic CA (dCA) was studied in response
to the sudden release of compressed thigh
cuffs. Two main indices derived from this
approach – the rate of regulation (RoR)
and the autoregulation index (ARI) – were
shown to reflect dCA’s dependence on
PaCO2 (Aaslid et al. 1989), good correlation
with static CA (Tiecks et al. 1995), and
to be sensitive to various pathological
conditions (Panerai, 2008). Shortly after
the formulation of the dCA concept
(Aaslid et al. 1989), Giller proposed the
coherence function, derived from transfer
function analysis, as another dCA technique
(Giller, 1990). The idea that dCA could
be characterised as an input (BP)–output
(CBF) linear system spurred two decades
of research that showed the frequency
response could express physiological and
pathological correlates of dCA (Panerai et al.
1996; Panerai, 2008). The demonstration
that the ARI index could also be derived
from spontaneous fluctuations in BP and
CBFV (Panerai et al. 1998) consolidated
the use of spontaneous methods such as
transfer function analysis (TFA) and the
Mx index (Czosnyka et al. 1996) for dCA
characterisation.

Returning to the induced-BP approach,
with time, several alternatives were added to
the original thigh cuff method, such as the

Valsalva manoeuvre, leg raising, hand-grip,
seat/squat-to-stand, tilting, cold stress test,
controlled breathing and others. With this
range of possibilities, the question of which
protocol to adopt became even more
pressing.

We favour the use of spontaneous BP fluc-
tuations as the standard protocol for
dCA assessment for several reasons. On
a practical level, spontaneous fluctuations
are present in all individuals throughout
life and the technology needed for data
acquisition is widely available. This means
that the approach imposes a low burden for
practical application with broad windows of
opportunity for assessment and monitoring
in conditions where knowledge of dCA are
crucial, such as the critically ill patient.
Similar flexibility is not always afforded
by methods that require participant co-
operation and fitness (e.g. sit-to-stand
manoeuvres), use of invasive interventions
(e.g. vasoactive drugs) or special equipment
(e.g. lower body pressure chambers). Also,
manoeuvres to induce changes in BP
often provoke alterations in autonomic
and breathing activity that will alter PaCO2

levels. Due to these interferences, para-
meters reflecting dCA performance will be
distorted and inter-subject as well as inter-
institutional comparisons will be comp-
romised. So, given these highly relevant
advantages of spontaneous fluctuations for
dCA assessment, why is the research comm-
unity divided about which protocol(s) to
adopt?

The specific reasons in favour of BP per-
turbation are addressed in the companion
paper (Simpson & Claassen, 2018) but in
general they reflect the view that BP chall-
enges yield more accurate dCA measure-
ments. Whilst we acknowledge that there
are circumstances where resting recordings
might provide insufficient BP variability
(and therefore signal-to-noise ratio) to yield
robust dCA estimates, this assumption is
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context dependent. First, in many clinical
conditions such as acute stroke, BP varia-
bility is elevated so accentuating BP var-
iations may be unnecessary or even dan-
gerous. Second, the idea that spontaneous
conditions are associated with low signal-
to-noise ratio depends on the analytical
models you use. So-called ‘noise’ may be
explainable variance that can be factored
using more flexible models that can
accommodate multiple system inputs (Peng
et al. 2010) and account for system
non-linearities (Mitsis et al. 2004). There
is growing evidence that such methods
have greater ability to discriminate intact
from impaired dCA than conventional TFA
(Saleem et al. 2016a,b). Finally, we must
acknowledge that the definition of the
‘cerebral autoregulation’ remains debated.
Are we referring only to active vaso-
motion in response to BP changes? Or do
we include passive buffering secondary to
other biophysical properties like vascular
compliance in the definition? If it is the
former then perturbing BP may yield
inaccurate dCA estimates since passive
processes can dominate pressure–flow
dynamics in the presence of augmented BP
fluctuations (Tzeng et al. 2011, 2014).

In our view the major benefit of a debate
on topics surrounded by controversy is
to identify priorities for research that will
generate the knowledge needed to achieve
consensus (Claassen et al. 2016). Related
to this debate, further work is needed to
understand the interdependence between
levels of spontaneous BP variability and the
reliability of derived dCA parameters, as well
as their diagnostic and/or prognostic value.
We must also tackle the white elephant in
the room – how do we establish reference
values for dCA indices that could guide the
choice of protocols?

In relation to spontaneous BP oscillations
two issues warrant special attention. First,
extant models of dCA all differ in their
underlying construct so derived metrics
may not reflect the same physiological info-
rmation. This is evident in the lack of
convergent validity between most popular
measures of spontaneous dCA (Tzeng et al.
2012). The lack of metric convergence is due
partly to the use of arbitrary banding
definitions in the frequency domain. We
support calls for more rigorous validation of
frequency bands to avoid artefactual trun-
cation of spectral information (Tzeng et al.
2012; Saleem et al. 2016a). Second, most
of the present discourse on dCA charac-
terisation has referenced studies using

transcranial Doppler ultrasound given its
popularity for cerebral haemodynamic
monitoring. However, transcranial Doppler
measures blood velocity (not flow) and
one cannot always assume the insonated
vessel diameter remains constant (Hoiland
& Ainslie, 2016). These technical factors
introduce a great deal of additional
complexity to the debate. In the absence
of the knowledge needed to clearly answer
these questions we hope this dialogue will
stimulate new lines of inquiry and shed light
on this complex vascular process.

Call for comments

Readers are invited to give their views on this
and the accompanying CrossTalk articles in this
issue by submitting a brief (250 word) comment.
Comments may be submitted up to 6 weeks after
publication of the article, at which point the
discussion will close and the CrossTalk authors
will be invited to submit a ‘LastWord’. Please
email your comment, including a title and a
declaration of interest, to jphysiol@physoc.org.
Comments will be moderated and accepted
comments will be published online only as
‘supporting information’ to the original debate
articles once discussion has closed.
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