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Calcium (Ca2þ) transport by mitochondria is an important component of the

cell Ca2þ homeostasis machinery in metazoans. Ca2þ uptake by mitochondria

is a major determinant of bioenergetics and cell fate. Mitochondrial Ca2þ

uptake occurs via the mitochondrial Ca2þ uniporter (MCU) complex, an

inner mitochondrial membrane protein assembly consisting of the MCU

Ca2þ channel, as its core component, and the MCU complex regulatory/

auxiliary proteins. In this review, we summarize the current knowledge on

the molecular nature of the MCU complex and its regulation by intra- and

extramitochondrial levels of divalent ions and reactive oxygen species

(ROS). Intracellular Ca2þ concentration ([Ca2þ]i), mitochondrial Ca2þ concen-

tration ([Ca2þ]m) and mitochondrial ROS (mROS) are intricately coupled in

regulating MCU activity. Here, we highlight the contribution of MCU

activity to vascular endothelial cell (EC) function. Besides the ionic and oxidant

regulation, ECs are continuously exposed to haemodynamic forces (either

pulsatile or oscillatory fluid mechanical shear stresses, depending on the

precise EC location within the arteries). Thus, we also propose an EC mechano-

transduction-mediated regulation of MCU activity in the context of vascular

physiology and atherosclerotic vascular disease.

1. Introduction
The endothelium is a cellophane-like membrane lining the circulatory system and

its major functions are regulation of vascular tone and vessel wall permeability.

Endothelial cell (EC) dysfunction has been implicated in the early stages of

many cardiovascular diseases, which renders the modulation of EC functions a

key therapeutic target [1–3]. Under normal conditions, EC functions depend

on changes in the intracellular calcium concentration ([Ca2þ]i). The Ca2þ concen-

tration in extracellular biological fluids is in the range of 1.6–2 mM, whereas,

within cells, Ca2þ is bound to phospholipids, proteins and nucleic acids or is

sequestered in organelles, and thus only 0.1% of the total Ca2þ content is free

in the cytosol. Consequently, [Ca2þ]i is kept at approximately 100 nM to regulate

cellular processes that function over a wide dynamic range. In most cells,

increases in [Ca2þ]i are transient and oscillatory [4] and the frequency of oscil-

lation (temporal [Ca2þ]i signature) is differentially decoded as cellular signal

[5]. At any time, the spatio-temporal complexity in the regulation of [Ca2þ]i is

determined by a balance between the interplay of multiple counteracting pro-

cesses divided into ‘on’ and ‘off’ mechanisms. The ‘on’ reaction results in

generation of the [Ca2þ]i rise due to Ca2þ influx from the extracellular medium

and Ca2þ release from intracellular stores, such as the endoplasmic reticulum

(ER) in non-excitable cells. The ‘off’ reaction removes intracellular Ca2þ by the

combined action of pumps, buffers and exchangers. One important intracellular

organelle associated with Ca2þ handling is the mitochondrion [6,7]. Although
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other compartments such as the ER, lysosomes, Golgi appar-

atus and endosomes are recognized as Ca2þ stores [7–9], the

mitochondria remain highly specialized in this context because

of their sponge-like retentive capacity with regard to Ca2þ.

In ECs, the mitochondria account for 25% of the cell’s Ca2þ

storage. It has long been ascertained that mitochondrial content

in ECs is modest (endothelial mitochondria occupy 2–6% of

the cytoplasmic volume) compared with cardiac myocytes

(32% of the cytoplasmic volume) and other cell types, as the

energy requirements in ECs are relatively low and glycolysis

is the major source of ATP production. In vitro and in vivo
studies have shown that, apart from the well-known role of

mitochondria in bioenergetics, they also play a prominent role

in signalling cellular responses to environmental cues [10–12].

Two such important modes of signalling are their regulated

production of mitochondrial reactive oxygen species (mROS)

and their service as Ca2þ sinks. Mitochondrial Ca2þ uptake and

mROS generation are interdependent phenomena and contrib-

ute to cell function in a ‘mutual crosstalk’, with mitochondrial

Ca2þ concentration ([Ca2þ]m) representing the key to deciphering

mROS signals [13].

Mitochondria have a large negative membrane potential of

180 mV that facilitates flooding of mitochondria by Ca2þ from

the cytosolic milieu. During evolution, cells acquired sophisti-

cated mitochondrial Ca2þ transport machineries that control

Ca2þ entry to the mitochondrial matrix and Ca2þ exit/redistri-

bution for proper cell function. The mitochondrial Ca2þ uptake

system is a heterogeneous protein complex with the molecular

identity mixed and matched with the mitochondrial Ca2þ

uniporter (MCU) as the core component [14,15]. The MCU is

regulated by an array of proteins including mitochondrial

Ca2þ uptake 1 (MICU1), 2 (MICU2), 3 (MICU3), essential

MCU regulator (EMRE), MCU regulating protein 1 (MCUR1)

and MCU dominant negative beta subunit (MCUb) (see §2

for a complete description) [16–24]. Besides protein regulation

(positive by MCUR1 and EMRE [19,23] and negative by

MICU1 [22]), recent studies from our group and others

demonstrated a regulation of mitochondrial Ca2þ uptake by

ions and redox signalling. In this review, we summarize

these regulatory mechanisms of MCU activity and suggest a

potential therapeutic utility in controlling endothelial MCU

activity during vascular (patho)physiology. We also introduce

a novel hypothesis that spatial regulation of MCU activity by

local haemodynamic forces (via their effect on ion and redox

signalling) in human arteries may, at least in part, explain the

focal nature of atherosclerotic vascular disease. Since athero-

sclerotic vascular disease continues to be the major cause of

death in developed nations [25] and EC dysfunction plays a

causative role in disease initiation [26,27], this review aims to

position the MCU as a potential critical target for intervention

against atherosclerosis.
2. Ionic regulation of mitochondrial Ca2þ uptake
The MCU contains two transmembrane (TM) domains with

coiled-coil regions positioned before and after these domains.

Topologically, both the N- and C-terminal regions reside in the

matrix constituting a majority of the protein [28]. The regulation

of the MCU pore is complex as evidenced by the numerous

protein regulators which have been identified. MCUb is a hom-

ologue of MCU sharing 50% sequence similarity, but no ability

to constitute a Ca2þ-permeable channel despite the presence of
similar TM domains to those found in the MCU. These MCUb

TM domains contain two noteworthy amino acid substitutions

(R251Q and D256V) compared with the MCU, which may be

related to the dominant negative inhibition of MCU activity

after interactions with MCUb [20]. MICU1/2/3 proteins play

gating roles promoting a closed MCU at low [Ca2þ]i

[19,21,23,24,29–33]. EMRE is a 10 kDa, single TM protein that

stabilizes and/or bridges MCU and MICU1 interactions [19].

Solute carrier family 25 member 23 (SLC25A23) is found on

the inner mitochondrial membrane (IMM) and functions as an

ATP and phosphate transporter protein, interacting with both

MCU and MICU1 and enhancing mitochondrial Ca2þ uptake

[34]. MCUR1 is a 40 kDa protein containing two putative TM

domains; moreover, it has recently been determined that

MCUR1 is a vital scaffold factor required for assembly of the het-

eromeric MCU complex through interactions with both EMRE

and the MCU [16,23].

The regulation of the MCU via its numerous protein binding

partners has been delineated recently; however, the ability of

[Ca2þ]i to regulate MCU channel activity was reported approxi-

mately 25 years prior to the identification of any of the genes/

proteins involved in this process [35–38]. Furthermore, it is

now clear that some of the protein regulators exert their modu-

latory function via interactions with Ca2þ ions. MICU1 is a

54 kDa protein that has two Ca2þ binding EF-hand domains.

Vertebrates express three homologues, but only the functions

of MICU1 and MICU2 appear non-redundant with respect to

MCU regulation, while MICU3 is predominantly localized to

the central nervous system [39]. Studies are in agreement

about the gatekeeping function of MICUs at low [Ca2þ]i, but

localization within the mitochondria, sites of interaction with

the MCU and function at higher [Ca2þ]i have been debated

[19,21,23,29–32]. Knockdown of MICU1 causes augmented

[Ca2þ]m at basal [Ca2þ]i [23,30] due to destabilization of the

MICU1 homologue, MICU2, which inhibits MCU channel

activity [18]; moreover, MICU1 overexpression in MICU2-

depleted cells also increases [Ca2þ]m, suggesting that MICU1

is a stimulator of MCU uptake [18]. MICU1 has been reported

to be mitochondrial matrix localized, directly interacting with

the MCU [21], or intermembrane space localized, indirectly

interacting with the MCU via an accessory protein [30,40].

Knockout of MICU1 results in unregulated MCU activity,

while knockout of MICU2 only lowers the Ca2þ level threshold

at which MICU1 gates the MCU; moreover, the MICU1 or

MICU2 Ca2þ binding-incompetent mutants constitutively inac-

tivate the MCU irrespective of Ca2þ levels [31]. Recently, it has

been demonstrated that MICU1–MICU2 heterodimer for-

mation establishes a steeply cooperative sub-micromolar Ca2þ

binding affinity; moreover, the sharp Ca2þ-binding cooperativ-

ity conveys a binary-like ON/OFF MCU activation phenotype

over relatively small changes in [Ca2þ]i [36].

A crystal structure of MICU1 revealed that two EF-hand

pairs (i.e. EF1 and EF2) are each preceded by intervening

domains (i.e. ID1 and ID2) (figure 1a). Structural homology

analysis using DALI [41,42] shows that no other currently

known structure arranges EF-hand domains with similar

ID1/2 structures. While EF1/2 show significant homology to

calmodulin (CaM)-like proteins, ID1/2 appear relatively

unique. Each EF-hand pair coordinates a single Ca2þ ion result-

ing in increased interhelical angles [43], yet the clefts do not

show any evidence for intramolecular or homotypic intermol-

ecular protein interactions in the available structures, contrary

to other EF-hand proteins [44–48]. Furthermore, structural
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Figure 1. Structural mechanisms of MCU regulation. (a) Crystal structure of human MICU1 residues 108 – 442 in the Ca2þ-bound state. The conformation and orientation of
the two EF-hand domains (yellow ribbon diagrams; EF1 (residues 219 – 315); EF2 (residues 374 – 442)) are shown relative to the two preceding intervening domains (ID1, green
ribbon diagram (residues 108 – 218); ID2, blue ribbon diagram (residues 316 – 373)). Each EF-hand domain coordinates a single Ca2þ atom (orange spheres). (b) All-atom
structural alignment of the MICU1 ID1 domain in the presence (green ribbon) and absence (grey ribbon) of Ca2þ. (c) All-atom structural alignment of the MICU1 ID2 domain in
the presence (blue ribbon) and absence (grey ribbon) of Ca2þ. ID1 and ID2 adopt similar structures with the EF-hand domains in either an open or a closed conformation.
(d ) NMR- and transmission electron microscopy-driven model of the Caenorhabditis elegans C-terminal domain residues 166 – 318. The inner pore is made up of TM2 (magenta
ribbons; residues 244 – 260) and is surrounded by TM1 (light blue ribbons; residues 215 – 234). The DXXE motif (dashed black circle) links TM1 and TM2. The Asp240 (red space
fill) and Glu243 (orange space fill) residues which bind Mn2þ cooperatively are indicated within the DXXE motif. The outer and inner coiled-coil bundles (CC1, brown ribbons
(residues 180 – 193); CC2, yellow ribbons (293 – 316)) are labelled. The location of the matrix, IMM and IMS are shown relative to the TM domains. (e) Crystal structure of the
human MCU N-terminal domain residues 72 – 189. The twob-sheets (light blue ribbons; residues 76 – 80, 83 – 88, 97 – 100 forb-sheet 1 and 125 – 128, 149 – 153, 156 – 160
for b-sheet 2) grasping the two centrally located helices ( pink ribbons; residues 108 – 118 and 141 – 146 for a1 and a2, respectively) are labelled. The dashed black box
highlights the location of the loop 2. (f ) Zoomed view of the Cys97 and Ser92 residues within loop 2 which are susceptible to post-translational modifications. The close spatial
proximity of the Arg93 and Glu95 side chains which form a salt bridge in some of the crystallized forms and stabilize the loop is shown. (g) First shell ligand coordination of the
Mg2þ atom (yellow sphere) by the Asp147 side chain and five H2O molecules (blue spheres) in an octahedral geometry. The close spatial proximity of the other Asp residues
making MRAP are also indicated (red sticks). (h) Electrostatic surface potential of the human MCU N-terminal domain residues 72– 189. The large MRAP region is indicated by a
dashed black circle, and the individual acidic residues contributing to the region are labelled relative to the Mg2þ atom (yellow sphere). The 22 (red) to þ2 (blue) kT/e
gradient is shown below the protein. In (a – h) amino and carboxy termini are labelled N and C, respectively. The structures were rendered in PyMOL using the 4NSD (Ca2þ-
loaded) and 4NSC (Ca2þ-depleted) coordinates for MICU1, 5ID3 for the C. elegans MCU C-terminal domain and 5KUJ for the human MCU N-terminal domain.
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alignment of ID1/2 domains when EF1/2 are in the Ca2þ-

loaded and -depleted states show only minor structural

differences (figure 1b,c). Thus, the structural mechanisms

underlying MICU1 modulation of MCU activity and how

Ca2þ may affect this regulation remain unclear.

Many Ca2þ channel proteins exhibit Ca2þ-dependent feed-

back mechanisms including the inositol 1,4,5-trisphosphate

receptor (IP3R) [49,50], ryanodine receptor [51] and Ca2þ

release-activated Ca2þ channel [52,53]. In the seminal work

by Kirichok et al. [54], which first characterized the electro-

physiological properties of the MCU channel using mitoplast

patch clamp recordings, no Ca2þ-dependent inactivation was

evident between 0.01 and 10 mM intramitoplast Ca2þ concen-

tration at constant energy potentials of 2160 mV. However,

the same study demonstrated greater than 50% reduction in

the Ca2þ conductance of the MCU in a 0.2 mM Ca2þ/0.5 mM

Mg2þ extramitochondrial divalent cation mixture [54].

Additionally, numerous studies have described different

aspects of Ca2þ-dependent MCU inactivation over the past

decades, even prior to the molecular identification of the

MCU complex components (e.g. [38,55–58]). More recently,

however, a report has suggested that the C-terminal domain

of EMRE is responsible for a matrix Ca2þ-dependent inacti-

vation phenomenon at low [Ca2þ]i. Using mitoplast patch

clamp experiments, raising matrix Ca2þ concentrations to

between approximately 0.03 and 0.4 mM markedly inhibited

inward rectifying uniporter currents [59]. Consistent with this

notion, mutations or truncations within the EMRE C-terminal

domain abolished this Ca2þ-dependent inactivation phenom-

enon [59]. However, given that the topology of EMRE

remains controversial with several papers suggesting that the

C-terminal domain lies in the inner membrane space (not the

matrix) [16,60,61], the precise molecular mechanisms behind

Ca2þ-dependent MCU inactivation mediated by low matrix

Ca2þ concentration effects on EMRE remain to be clarified.

Although a high-resolution structure of the pore-forming

and coiled-coil regions of human MCU is currently unavailable,

a nuclear magnetic resonance (NMR) spectroscopy- and trans-

mission electron microscopy-driven pentameric model of

Caenorhabditis elegans MCU with a deleted N-terminal domain

has been constructed [62]. This structure shows that the

second TM domain is positioned to line the pore of the channel

with a short DXXE motif contributed by each subunit lining the

entrance to the pore (figure 1d). The DXXE motif links the first

and second TM domains. While the Glu is positioned deeper

in the pore, the Asp is more solvent exposed, and mutating

either of these acidic residues abrogates MCU channel activity

[14]. NMR titrations showed that this DXXE motif can bind

Mn2þ, a surrogate for Ca2þ-binding in NMR titrations, at both

the Asp and Glu residues in a cooperative manner [63]. This

strongly positive binding cooperativity for Ca2þ (i.e. defined

by surrogate Mn2þ binding experiments) may underlie the ion

selectivity mechanism of the MCU. This same site is involved

in binding ruthenium red MCU channel inhibitors at the more

exposed Asp residues [63], thus blocking the pore entrance.

While the C-terminal region alone can assemble and form an

active channel [62], the significance of the N-terminal domain

for the regulation of the channel is evident from work showing

that self-association of the N-terminal half of the MCU promotes

channel assembly and activation [64], oxidative modification of

C97 within this N-terminal domain alters the channel architec-

ture and function (see §3 for a complete description) [65], and

the S92A mutation in this N-terminal domain dominant
negatively disrupts mitochondrial Ca2þ uptake in cells [66].

Thus, the MCU N-terminal domain appears to serve as an

important sensory hub which regulates MCU channel activity.

Several high-resolution crystal structures of the human MCU

N-terminal domain have been elucidated in the presence of

various ions and concentrations (i.e. see PDB codes 5KUG,

5KUE, 5KUI, 5KUJ, 4XTB, 5BZ6, 4XSJ) [64,66]. The human

MCU N-terminal domain forms a b-grasp-like fold made up

of two three-stranded b-sheets holding two centrally located

a-helices (figure 1e). The shorter a2-helix sits as a cap on the

overall globular fold and is arranged approximately perpen-

dicular to the central a1-helix. Interestingly, the extended loop

2, which connects the b1- and b2-strands and contains the S92

and C97 residues previously found to regulate channel activity

by phosphorylation [66,67] and S-glutathionylation (SSG) [65],

respectively, also contains a salt bridge which stabilizes this

functionally important loop (figure 1f ). The salt bridge is not

present in all crystal forms, suggesting that local environmental

conditions, including ionic strength, can modulate the struc-

ture and stability of the loop and, thus, the post-translational

modifications which regulate channel activity.

The surface electrostatic potential of the MCU N-terminal

domain forms two negatively charged acidic and two posi-

tively charged basic patches. The largest acidic patch is near

the C-terminal region of the domain and is primarily consti-

tuted by D131, D142, D147, D148 and D166 residues

(figure 1g). These acidic residues are conserved among ver-

tebrate MCU homologues, suggesting an important role

affiliated with the surface exposure. Indeed, Mg2þ ion has

been found bound to this acidic patch in one crystal form

[64]. The first shell Mg2þ coordination to the protein occurs

through a D147 side chain oxygen atom, although the D131

and D148 side chains are also located within approximately

6.5 Å of the ion. The octahedral coordination geometry

occurs via ligating of five additional water molecules, two of

which are bridged by D123 side chain oxygens in second

shell coordination (figure 1h). The single-ligand first shell

and double-ligand second shell coordination interactions

with the protein are consistent with the weak Mg2þ binding

(i.e. approx. millimolar affinity) estimated using in vitro exper-

iments with the isolated N-terminal domain in solution [64].

Ca2þ was also found to interact weakly with the N-terminal

domain in solution using a similar assessment.

While the MCU N-terminal domain crystallized as a mono-

mer, solution investigations by analytical ultracentrifugation

and size-exclusion chromatography with inline multi-angle

light scattering showed that the domain self-associates.

Remarkably, inclusion of Ca2þ or Mg2þ divalent cations in

the experimental buffers shifted the self-association equili-

brium towards the monomer and, consistently, destabilized

the fold. Furthermore, D131R or D147R charge swapping

mutations caused a similar shift in the self-association equili-

brium towards the monomer as the divalent cations [64].

Thus, incorporation of a basic residue in the acidic patch by

mutation mimics the effects of basic cation coordination in

this region of the MCU N-terminal domain. To assess the func-

tional significance of this acidic patch, these mutations were

also incorporated into constructs expressing full-length

human MCU. In HeLa cells, expression of full-length human

MCU harbouring D131R or D147R mutations caused a pro-

found dominant negative inhibition of mitochondrial Ca2þ

uptake without altering the IMM potential [64]. Furthermore,

as observed in the isolated MCU N-terminal domain context,
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the mutations perturbed the full-length assembly of the protein

complex. Consistent with the mutational phenotypes, blockade

of Ca2þ extrusion from the matrix using a Naþ/Ca2þ exchange

inhibitor significantly decreased the Ca2þ uptake rates after a

series of [Ca2þ]i pulses. With each successive [Ca2þ]i pulse,

the matrix underwent loading concomitant with decreased

mitochondrial Ca2þ uptake rates. Importantly, the membrane

potential remained intact during this pulse train. Congruently,

incubation with extramitochondrial Mg2þ, which is taken up

into the matrix via the Mrs2p channel, also significantly

decreased mitochondrial Ca2þ uptake rates [64]. Collectively,

these data identified an MCU regulating acidic patch

(MRAP) on the conserved MCU N-terminal domain which

binds Mg2þ and Ca2þ, resulting in a destabilization of the

self-association equilibrium and perturbation of the full-

length MCU complex assembly. Ultimately, this divalent

cation-induced perturbation in functional MCU architecture

represents an autoregulation mechanism for physiologically

vital cellular processes. The weak Mg2þ binding affinity of

the MCU N-terminal domain is in the range of Mg2þ concen-

trations reported in the matrix and, thus, ideally suited as a

sensor of Mg2þ levels which would be affected by Mrs2p

activity as well as the metabolic state of the cell (i.e. ADP,

ATP and PO4
32 levels) [68,69]. On the other hand, the Ca2þ

binding sensitivity of the MCU N-terminal would depend on

a close proximity of the MCU N-terminal domain to the chan-

nel pore, where approximately millimolar levels may be

reached in nanodomains [70–72]. Future high-resolution struc-

tural information of the intact human MCU protein is required

to precisely capture the atomic mechanism for transduction

from the disruption of the N-terminal domain self-association

equilibrium to inhibition of MCU channel activity.
3. Regulation of mitochondrial Ca2þ transport
by redox signalling

In agonist-stimulated non-excitable cells, it is generally

accepted that [Ca2þ]i oscillations are triggered by Ca2þ release

from the ER IP3R and are fine-tuned by repetitive Ca2þ

exchange between ER and the mitochondria, but they also

depend on store-operated Ca2þ entry for long-term sustainabil-

ity [7,73,74]. Specifically, following the binding of a cytokine

to its G protein-coupled receptor (GPCR) on the plasma

membrane, GPCR activates phospholipase C (PLC), which

hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) to

IP3 and diacylglycerol (DAG) (figure 2a) [77]. IP3 activates its

receptor on the ER and promotes Ca2þ release [77]

(figure 2a). In addition to regulation by IP3, IP3R is regulated

by Ca2þ in a biphasic manner; low [Ca2þ]i stimulates IP3R,

whereas high [Ca2þ]i inhibits ER Ca2þ release [78,79]. Store

depletion activates store-operated Ca2þ channels on the

plasma membrane allowing Ca2þ influx from the extracellular

space [77]. The mitochondria release some of their Ca2þ via the

mitochondrial Naþ/Ca2þ exchanger (mNCX), and part of that

Ca2þ is taken up by the ER via the sarco-endoplasmic reticulum

Ca2þ-ATPase (SERCA) (figure 2a) [77,80,81]. Analysis of Ca2þ

dynamics within intracellular stores, ER and mitochondria,

simultaneously with [Ca2þ]i in stimulated HeLa cells, revealed

that the first [Ca2þ]i oscillation is due to ER Ca2þ release with a

fraction of that Ca2þ taken up by mitochondria, whereas sub-

sequent [Ca2þ]i oscillations are initiated by mitochondrial

Ca2þ release, which triggers regenerative Ca2þ release from
the ER [82]. Samanta et al. [83] demonstrated that knocking

down the MCU significantly inhibits the generation of

[Ca2þ]i oscillations in stimulated mast cells, verifying the

important role of the MCU in regenerative ER Ca2þ release.

During an inflammatory/activated cell state, increases in

[Ca2þ]i, due to Ca2þ release from the ER and/or Ca2þ influx

from the extracellular space, result in increased [Ca2þ]m

which, by stimulating enzymes of the Krebs cycle and oxi-

dative phosphorylation and promoting ATP synthesis,

enhances the mitochondrial electron transport chain (ETC)

activity/mitochondrial O2
�2 production (provided there are

no shortages in the supply of O2 and electron donors [84])

and increases the mROS levels (figure 2a) [13,85]. Mitochon-

drial O2
�2 production takes place at ETC complexes I, II and

III (mainly I and III; figure 2a) [86,87]. Complexes I and II

release O2
�2 into the matrix, whereas complex III releases O2

�2

into both the matrix and the intermembrane space [88]. O2
�2

is converted to hydrogen peroxide (H2O2) by manganese

superoxide dismutase (MnSOD) in the mitochondrial matrix

and by copper zinc SOD (CuZnSOD) in the intermembrane

space (cytosolic side) [89]. Any H2O2 that escapes the mito-

chondrial antioxidant mechanisms diffuses out and increases

the cytosolic ROS levels (especially in the region between

ER/mitochondria called mitochondria-associated membranes,

MAMs [90]), and can cause oxidative modifications to the IP3R,

SERCA and even the stromal interaction molecule 1 (STIM1)-

Orai1 on the plasma membrane, generally resulting in further

increase in [Ca2þ]i (due to activation of IP3R and/or inacti-

vation of SERCA) (figure 2a) [13,91–93]. However, the

functional consequences of ion channel regulation by the

redox state are divergent. For example, a reactive Cys in

STIM1 undergoes SSG that promotes Orai1/2 channel opening

for Ca2þ entry without affecting intracellular store depletion

[92], whereas reactive Cys oxidation in Orai1/2 channels inhi-

bits Ca2þ entry [94,95]. mROS are involved in a plethora of

signalling pathways, such as nuclear factor-kB (NF-kB)- and

tumour necrosis factor-a (TNF-a)-induced signalling, leading

to expression of cell adhesion molecules and cell dysfunction,

but also activation of survival mechanisms [96–102]. ROS

were found to exert their effect via SSG of regulatory Cys

within NF-kB (inhibited by SSG) and the TNF receptor

Fas (activated by SSG) [103–105]. However, the role of SSG

of proteins within the mitochondrial compartment in the

pathogenesis of cardiovascular disease has not been defined.

Although [Ca2þ]m elevation typically stimulates bioener-

getics, under pathological stimuli (endotoxin insult), excessive

and persistent [Ca2þ]m elevation causes [Ca2þ]m overload, lead-

ing to aberrant electron leak that promotes mROS production

and cellular oxidative damage [92,106–108]. Since the mito-

chondria are one of the main endotoxin-sensitive ROS sources

in ECs, it is to be expected that the MCU-mediated mito-

chondrial Ca2þ uptake will be the primary signal for mROS

production. [Ca2þ]m and mitochondrial redox balance are

generally accepted as both critical and interdependent determi-

nants for EC survival and barrier function [2]. Although

[Ca2þ]m and mROS go hand in hand, until recently, it was

unknown whether the mROS can oxidatively modify any com-

ponents of the MCU complex. Our group provided the first

evidence that MCU activity is positively modulated via MCU

protein oxidation by the luminal mROS [65]. Priming of ECs

with endotoxin (oxidative stress) results in thrombin-induced

[Ca2þ]m elevation that leads to a further increase in mROS,

reduction in ATP production and mitochondrial respiration,
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upregulation of pro-inflammatory genes, and an increase in

apoptosis [65]. mROS appear to only oxidize the core com-

ponent of the uniporter complex, the MCU itself; other MCU

complex components are not susceptible to oxidation under

similar conditions [65]. The conserved Cys at position 97 of

the human MCU, located in the N-terminal domain of the

MCU facing the matrix, is the only reactive thiol within the

MCU that undergoes redox modification (SSG) under con-

ditions of high mROS, leading to enhanced MCU activity

(figure 2b) [65,76]. Although oxidation of the MCU does not

alter the interactions of the MCU with its regulators, oxidation

induces a conformational change within the N-terminalb-grasp

fold, redistributing the MCU complex to form higher order

oligomers and increased channel activity. One of the mitochon-

drial intermembrane space (IMS) proteins, Mia40, both

undergoes oxidative folding and mediates protein import to

the IMS [109]; however, it is unknown whether it senses

mROS. In summary, the MCU has a moonlighting function as

a mitochondrial luminal redox sensor that enables mitochon-

dria to decode mROS pathophysiological signals to metabolic
or cell death responses. Overall, a better understanding of the

Ca2þ and ROS crosstalk at the (sub)cellular level is critical,

because disruption of mitochondrial Ca2þ and mROS (and, as

a consequence, of cytosolic Ca2þ and ROS) homeostasis has

been implicated as the underlying cause in almost every cardi-

ovascular and neurodegenerative disease, as well as in different

stages of cancer development [110–113]. It is noteworthy that

the interplay between Ca2þ and ROS is not limited to the mito-

chondria. In most pathological conditions, decreases in ER Ca2þ

levels lead to ER stress/activation of the unfolded protein

response (UPR), which, via ER ROS, contributes to the redox

regulation of local Ca2þ transport [7,13,114].
4. Regulation of mitochondrial Ca2þ transport
by mechanical forces

Mechanical forces are known factors in regulating every organ

system in the human body, but are crucial in the development

and physiology of the circulatory system [115,116]. Fluid
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mechanical (haemodynamic) forces exerted on the vessel wall

are particularly important in vessel structure/remodelling

and in vascular pathology, such as atherosclerosis, aneurysms

and arteriovenous malformations [117–122]. Atherosclerotic

vascular disease continues to be the major cause of death in

developed nations [25]. Though influenced by systemic risk

factors (hyperlipidaemia, hypertension, diabetes, smoking),

atherosclerotic plaques develop preferentially at the outer

walls of bifurcations, the inner walls of curvatures and down-

stream of a stenosis in the carotid, coronary, aortic, renal,

iliac, femoral and other arteries [123,124]. It is well accepted

that modulation of the vascular EC phenotype by the local

haemodynamic forces in those regions contributes to the geo-

metrically focal nature of the disease [26,125–127]. ECs in

arteries and arterioles are continuously exposed to three

types of haemodynamic stress (force/surface area): normal

stress (due to hydrostatic pressure), tensile stress (due to trans-

mural pressure difference) and shear stress (the frictional force

exerted by blood flowing over the EC luminal surface)

[128,129]. As EC dysfunction is a key and early factor in ather-

ogenesis, and ECs, due to their unique location, experience

complex blood flow/shear stress profiles, a lot of research

has focused on the effects of shear stress on EC physiology

and pathology.

Wall shear stress is the product of blood viscosity and the

velocity gradient (slope of the velocity vector in a direction

normal to the wall) on the EC luminal surface. For most of

the arterial circulation, local wall shear stress can be considered

proportional to the volumetric flow rate and inversely pro-

portional to the cube power of the internal radius at each

axial position along the blood vessel [130–132]. Using different

imaging modalities to measure flow rates and internal diam-

eters, the wall shear stress in straight portions of the arterial

vascular network was estimated to vary between 1 and 7 Pa

(10–70 dynes cm22). Those regions, which include locations

preceding and following arterial bifurcations as well as the

inner walls of flow dividers, are spared from atherosclerotic

disease. Flow in those regions is undisturbed (characterized

by parallel streamlines), laminar (Reynolds number less than

2100), unsteady (due to the cardiac cycle) and unidirectional;

the wall shear stress is called pulsatile (PS) and has a relatively

high mean value (figure 3a) [119,125,133]. In regions suscep-

tible to disease, such as the outer walls of bifurcations, the

local flow is disturbed and reverses during the systole phase

of the cardiac cycle (within a flow recirculation zone with

high temporal and spatial shear stress gradients), but it is still

laminar; the wall shear stress is called oscillatory (OS), has a

mean close to zero and varies between+0.6 Pa (6 dynes cm22)

(figure 3a) [119,125,133]. Histology and digital image analysis

of microparticle flow in post-mortem arteries, non-invasive

(magnetic resonance phase velocity mapping) and invasive

imaging modalities (coronary angiography, intravascular

ultrasound), together with computational fluid dynamics,

have verified the spatial correlation between OS and athero-

sclerosis initiation and progression in animals and humans

[120,124,134,135].

In order to understand the EC phenotypes due to exposure

to different shear stress profiles, many groups have subjected

cultured ECs from different species and vascular beds (or ex
vivo arteries) to controlled flow conditions using perfusion

chambers/systems or cone-and-plate viscometers followed by

biochemical analysis at both the gene and protein levels

[126,136–140]. With few exceptions, most of those studies
approximated PS and OS profiles as sinusoidal waves of

fixed amplitude and period (figure 3b). For corresponding con-

trols, cultured ECs were either exposed to undisturbed laminar

steady shear stress (SS) at a value equal to the PS time-average

or were left static (figure 3b). For verification of findings in vivo,

the endothelium was isolated from regions in animal arteries

known to be exposed to either PS or OS, and analysed for differ-

ential gene expression (mRNA, miRNA), and these databases

drove further in vitro experimentation on upstream intracellular

signalling pathways and downstream cell behaviour

[127,141,142]. Changing arterial flow in animals by creating a

stenosis through partial ligation (OS develops downstream)

established the causal relationship between OS and atherogen-

esis [143]. In vitro studies showed the existence of metrics of PS

and OS, besides the main ones (mean value, amplitude and

period), such as shear stress angular direction, harmonic fre-

quencies and oscillatory shear index, that are also sensed by

ECs [144–146]; in this review, we will refer to PS and OS

based solely on their main metrics. Overall, both in vivo and

in vitro studies verified that OS induces EC inflammation and

dysfunction, which, in the presence of additional systemic

risk factors, primes the OS-exposed arterial regions for disease

initiation. It is noteworthy that the detrimental effect of OS is

not purely mechanical; prolonged residence time of cytokines

and other chemicals released by ECs and trapped blood cells

in the flow recirculation zone contributes to the EC dysfunction.

PS (or SS) is known to decrease the EC proliferation rate and

extent of apoptosis (the latter, following EC exposure to a stimu-

lus that causes oxidative stress), rendering the endothelium

‘atheroresistant’, whereas OS does the opposite (‘atherosuscep-

tible’ endothelium) [147–150]. The atheroprotective effect of PS

(or SS) is, to a large extent, due to shear-induced expression and

activation of endothelial nitric oxide synthase (eNOS) that pro-

duces the vasodilator NO (figure 3c) [151–154]. By contrast,

eNOS expression was decreased under OS in vivo, compared

with PS, and in vitro, compared with static controls

(figure 3d) [153,155,156]. In agreement with that, isolated arter-

ioles from animals/humans showed NO-dependent dilation

under PS or SS; OS did not induce dilation [157,158]. PS (or

SS) was found to trigger EC secretion of ATP causing auto-

crine/paracrine activation of surface purinergic receptors

(Gq/G11 protein-coupled P2Y2Rs), activation of PLC, gener-

ation of IP3, release of Ca2þ from the ER IP3R, and [Ca2þ]i

transients, which led to sequential phosphorylation of plate-

let/endothelial cell adhesion molecule-1 (PECAM-1), vascular

endothelial growth factor receptor 2 (VEGFR2), Akt and

eNOS [159–161]. [Ca2þ]i signalling is necessary for eNOS

activation, because P2Y2R deficiency blocked both the shear-

induced [Ca2þ]i transients and PECAM-1/VEGFR2/Akt/

eNOS activation [161]. [Ca2þ]i signalling is also important for

PS (or SS)-induced eNOS expression, which occurs due to

Ca2þ/CaM-mediated phosphorylation/nuclear export of his-

tone deacetylase 5 (HDAC5) and resultant expression of

Krüppel-like factors 2 and 4 (KLF2/4), both of which are tran-

scription factors for eNOS [162]. eNOS is transcriptionally

repressed under OS due to miR-92a targeting of KLF2/4

[156,163] and probably also due to increased expression/

activation of the tumour suppressor p53 [164,165].

Several groups measured SS-induced EC [Ca2þ]i changes,

but reported conflicting data regarding the type of the res-

ponse (single transient versus oscillations) and the relative

contribution of Ca2þ release from the ER versus Ca2þ entry

from the extracellular space [166–172]. Most of them spatially
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averaged fluorescence signals from Ca2þ-sensitive probes

over ECs in a microscope field of view and reported an

initial peak followed by a slow decline to baseline in

response to SS. By monitoring [Ca2þ]i changes versus time

in individual cells, our group concluded that a significant

percentage of ECs respond to SS with [Ca2þ]i oscillations

(repetitive transients), and [Ca2þ]i peak amplitudes and oscil-

lation frequencies depend on the SS level [75]. Importantly,

the SS-induced [Ca2þ]i response was due to release of Ca2þ

from the ER and required [Ca2þ]m uptake via the MCU and

release via the mNCX [75]. As Ca2þ is known to regulate the

IP3R in a biphasic manner (§3), these data suggested that mito-

chondrial Ca2þ uptake via the MCU within the MAMs may

suppress the Ca2þ-inhibitory effect on IP3R (following prior
ER Ca2þ release), causing continuation of ER Ca2þ release

and recurrence of [Ca2þ]i oscillations [75]. Not only is [Ca2þ]i

regulated by mitochondrial Ca2þ transport, but also [Ca2þ]m

is controlled by [Ca2þ]i via Ca2þ-mediated activation of

CREB, the transcription factor that induces MCU expression

[173]. A group that measured [Ca2þ]i under PS versus OS

reported [Ca2þ]i oscillations in ECs exposed to either flow, an

initial peak in spatially averaged [Ca2þ]i in PS-exposed ECs,

and maintenance of spatially averaged [Ca2þ]i at baseline in

OS-exposed ECs [174,175]. Prendergast et al. [176] showed

enhanced [Ca2þ]i signals in ECs from thoracic aorta (PS-

exposed) compared with ECs from aortic arch (OS-exposed)

in isolated tissues from either wild-type (WT) or ApoE2/2

mice (prior to lesion development) following exposure to
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carbachol, suggesting that [Ca2þ]i responses in OS-conditioned

ECs may be blunted compared with those in PS-conditioned

ECs. This agrees with recent findings by Taylor et al. [177],

who showed that acetylcholine (ACh)-induced EC [Ca2þ]i

dynamics were diminished in carotid arterial regions proximal

to a partial ligation (OS-exposed), compared with PS-exposed

control regions, in WT mice. To the best of our knowledge,

the role of mitochondrial Ca2þ transport in [Ca2þ]i has not

been examined in ECs under the physiological flow profiles

PS and OS. Concurrent recordings of spatio-temporal profiles

of [Ca2þ]i and [Ca2þ]m have shed light on the communication

between the two Ca2þ pools in different cell types under chemi-

cal stimulation [5,82,83,178,179], but these experiments have

not been conducted in ECs exposed to shear stress. Interest-

ingly, work by the Pozzan group showed that MCU

overexpression, via enhanced Ca2þ buffering by mitochondria,

reduces the [Ca2þ]i peaks both during spontaneous oscillations

and following caffeine treatment in cardiomyocytes [180]. A

higher EC MCU activity (and/or expression) in OS- versus

PS-exposed arterial regions would lead to increased mitochon-

drial Ca2þ uptake and would explain the reported diminished

[Ca2þ]i responses under OS.

The pro-inflammatory signalling pathways underlying

atherogenesis, including c-Jun N-terminal kinase (JNK)/the

family of mitogen-activated protein kinases (MAPKs) and the

transcription factors NF-kB and activator protein-1 (AP-1),

are redox sensitive [181]. OS was found to cause a sustained

increase in O2
�2 production/ROS levels, whereas PS (or SS)

induced an increase upon the onset of flow, but, after the first

couple of hours, the increase in ROS was compensated by up-

regulation of antioxidant defences, such as haem oxygenase-1

(HO-1) and NADPH quinone oxidoreductase 1 (NQO1),

under the control of nuclear factor erythroid 2-related factor 2

(Nrf2) [153,182–186]. NADPH oxidases (NOXs), xanthine oxi-

dase, mitochondria and uncoupled eNOS are the main sources

of cytosolic ROS in ECs [187]. PS (or SS) downregulated NOX4

expression; OS upregulated NOX1 and NOX2 expression in

parallel with xanthine oxidase levels, with mixed results

regarding the OS effects on NOX4 (figure 3c,d) [153,188].

NOX1-derived ROS, in particular, were responsible for acti-

vation of NF-kB and upregulation of intercellular adhesion

molecule-1 (ICAM-1) in OS-exposed ECs in vitro and in vivo
[188]. Shear-induced ROS are expected to play a key role in

Ca2þ homeostasis, because the second messengers are known

to interact in a bidirectional manner (in general, increased

[Ca2þ]i causes an increase in [Ca2þ]m and mROS, whereas

increased mROS result in a further increase in [Ca2þ]m)

(figure 3c,d). In addition, ECs in atheroprone areas in vivo
were found to undergo ER stress, and UPR activation is associ-

ated with increased ER ROS [114,127,189]. Increased mROS are

thought to both activate ER stress/UPR and be the result of ER

stress/UPR (the latter due to increased Ca2þ release from the

ER resulting in elevated [Ca2þ]i and [Ca2þ]m) (figure 3c,d)

[13,190]. Any O2
�2 in the cytosol/organelles that escaped anti-

oxidant defences is consumed by a diffusion-limited reaction

with NO to form the reactive nitrogen species (RNS) peroxy-

nitrite (ONOO2), thus lowering the bioavailable NO levels

(ONOO2 can also uncouple eNOS) and promoting athero-

sclerosis [191,192]. Either OS-exposed ECs in vitro or

atheroprone regions in vivo had increased levels of nitro-

tyrosine, the footprint of ONOO2 formation, compared with

PS-exposed ECs and atheroresistant regions, respectively

(due to increased O2
�2 production and despite decreased NO
generation under OS) [193]. Even following short exposure of

cultured ECs to SS, low levels of ONOO2 formed in mitochon-

dria resulted in partial inhibition of mitochondrial respiratory

complexes and increased mitochondrial O2
�2/ROS levels; the

effect was attenuated when SS was performed at lower than

atmospheric (closer to arterial) O2 levels [194,195]. Interest-

ingly, NOX-derived O2
�2/ROS were found to either activate

or inactivate eNOS: under SS (and one might assume the

same for PS), activatedNOX2/p47phox and resultant ROS were

responsible for eNOS activation, whereas, under OS, ROS from

activated NOX1/NOXO1 caused eNOS uncoupling leading

to eNOS-derived O2
�2/ROS and a concomitant decrease in

NO production/bioavailable levels (figure 3c,d) [196]. Based

on the higher levels of mROS/cytosolic ROS in OS-exposed

ECs compared with PS (or SS)-exposed ECs and the recently

discovered mROS sensing by the MCU [65], one can speculate

that there may be increased MCU activity/mitochondrial Ca2þ

uptake/[Ca2þ]m levels under OS versus PS (figure 3c,d), which

may be the reason behind the OS-induced EC inflammation

and decreased cell resistance to apoptosis.
5. Mitochondrial Ca2þ uniporter: a potential
therapeutic target in vascular diseases

The speculation regarding altered MCU activity in the endo-

thelium of atheroprone regions, compared with activation in

atheroprotective ones, is in agreement with the oxidative

stress and inflammation encountered in those locations.

Specifically, under OS, increased [Ca2þ]m/mROS/cytosolic

ROS would dampen NO bioavailability and render the endo-

thelium dysfunctional, which could result in vascular risk

factors (figure 3d ). It is safe to assume that, even if the global

EC [Ca2þ]i does not change significantly in OS-exposed

regions, [Ca2þ]i in specific locations of the cytosol, such as in

proximity to the mitochondria (e.g. the MAMs), could influ-

ence [Ca2þ]m overload. Based on the speculation of regional

dependency of MCU activity, graded inhibition of MCU

activity (and/or expression), down to levels encountered in

atheroprotective regions, may be a great strategy to prevent

EC dysfunction and atherosclerotic disease initiation/

progression. As MCU activity is elevated following its oxi-

dative modification by mROS [65], administration of

mitochondria-targeted antioxidants would have a beneficial

effect. In agreement with this notion, Li et al. [197] showed

that human aortic ECs (HAECs) treated with the pro-

inflammatory lipid lysophosphatidylcholine increased their

mROS due to enhanced MCU activation; both were attenuated

in the presence of the mROS scavenger mitoTEMPO.

MitoTEMPO also suppressed EC activation and monocyte

recruitment in the aorta of ApoE2/2 mice fed with a high-fat

diet [197]. Although this study did not examine specific

aortic locations, the beneficial effect of the drug would be

apparent in locations that experience OS. Decreasing mito-

chondrial Ca2þ entry in vitro can also be done by knocking

down proteins involved in ER–mitochondria contact sites

and, thus, increasing the MAM width. Although this method

cannot be translated to clinical settings, nevertheless it was

shown that it protects cultured cells from oxidative stress-

induced apoptosis [198]. One of the reasons why graded

inhibition of MCU activity may be able to maintain EC

health in OS-exposed regions is its potential impact on auto-

phagy. Autophagy is a critical homeostatic mechanism in
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cardiovascular health [199–201]. Functional autophagy was

shown to be a prerequisite for the SS-induced increase in NO

production [202,203]. Dysfunctional autophagy occurs when

autophagy induction (autophagosome formation) becomes

highly activated and, as a result, the autophagic flux (rate of

autophagosome–lysosome fusion and degradation of auto-

phagosomal cargo) slows down (‘impaired’ flux) leading to

inadequate removal of dysfunctional mitochondria and a

tonic increase in oxidative stress. Li et al. [204] showed that

OS exposure increases the induction of autophagy, but

decreases the autophagic flux in cultured HAECs (whereas

PS maintains autophagy at levels comparable to static con-

trols); both the increased induction and decreased flux under

OS were mediated by JNK activation and elevated mROS.

The impaired EC autophagic flux was verified in OS-exposed

regions of rabbit aortas [204]. Graded inhibition of MCU acti-

vation in OS-exposed regions will reduce mROS, which, by

lowering autophagy induction, should allow for, at least, partial

normalization of the impaired flux, in agreement with a recent

review [205]. In support of the importance of a functional

autophagic flux in EC health, it was recently shown that SS
upregulates the transcription factor EB (TFEB), master regulator

of autophagic flux and lysosomal biogenesis, and that trans-

genic mice with EC-specific TFEB expression exhibit reduced

leucocyte recruitment to ECs and decreased development of

atherosclerosis [206]. Since mitochondrial ion homeostasis

plays a major role in endothelial function, we put forward a

hypothesis that perturbation of mitochondrial Ca2þ homeostasis

could lead to several vascular pathological conditions.
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