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ABSTRACT: We demonstrate molecular similarity to be a
surprisingly effective metric for proposing and ranking one-
step retrosynthetic disconnections based on analogy to
precedent reactions. The developed approach mimics the
retrosynthetic strategy defined implicitly by a corpus of known
reactions without the need to encode any chemical knowledge.
Using 40 000 reactions from the patent literature as a
knowledge base, the recorded reactants are among the top
10 proposed precursors in 74.1% of 5000 test reactions,
providing strong quantitative support for our methodology. Extension of the one-step strategy to multistep pathway planning is
demonstrated and discussed for two exemplary drug products.

■ INTRODUCTION

In order to synthesize a target chemical compound, it is
necessary to identify a series of suitable reaction steps
beginning from available starting materials. This analysis
starting from the target compound and working backward
dates as far back as Robert Robinson’s seminal 1917 work on
the synthesis of tropinone.1 It was later formalized as
retrosynthesis by E. J. Corey, ultimately leading to his receiving
the 1990 Nobel Prize.2 This formalization prompted the
development of computer assistance with the intent of allowing
chemists to focus on what to make, rather than how to make it;
much of the field’s development in the following years was led
by J. Gasteiger.3 Computer assisted synthesis planning has been
well-reviewed over the years.4−7

From the very first attempt at computer-assistance in
retrosynthesis planning,8 the vast majority of automated
retrosynthesis programs have relied on encoding reaction
templates, or generalized subgraph matching rules. These
template-based approaches require a decision to be made about
the extent of generalization and abstraction, whether extracted
algorithmically from reaction databases9−17 or encoded by
hand.16,18−20 Various techniques have been developed to
extract the likely meaningful context around the reaction
center, including through the consideration of nonstructural
reactivity descriptors, but the trade-off of specificity and
coverage is inevitable. Moreover, application of templates is
computationally expensive due to the cost of solving the
subgraph isomorphism problem, and so these approaches do
not scale well for large template sets.14,21 Similar considerations
apply to the task of forward prediction,22 which has been the
subject of several recent studies.14,16,23,24

Liu et al.21 report a neural model based on the seq2seq
architecture, inspired by a similar study examining the goal of
forward synthesis.25 The problem of one-step retrosynthesis is
treated as a translation task, converting one sequence of

characters (i.e., a product SMILES26 string without atom
mapping) to another sequence of characters (i.e., a reactant(s)
SMILES string). They report comparable performance to a
baseline model that applies a library of algorithmically extracted
reaction templates and ranks candidate precursors in order of
decreasing template popularity.
Cadeddu et al.27 treat retrosynthesis in terms of chemical

linguistics, where the rarest bonds are proposed as the sites of
disconnections. This is similar to other techniques where an
attempt is made to reduce molecular complexity as rapidly as
possible.28 However, identifying the reaction site is only
sufficient to propose synthons,29 or nonphysical fragments of
precursors. Given one or more synthons resulting from a
proposed retrosynthetic step, it is still necessary to propose
specific functionalities to create synthetic equivalents (i.e.,
specify leaving groups). Hereafter we use the term “leaving
group” to mean any functionality added to a synthon to yield its
synthetic equivalent.
Despite their limitations, reaction templates still provide a

very useful way of encoding transformations, particularly in
their ability to fully specify chemical precursors. For example,
cleaving a single bond between two aromatic carbons is
associated with 57 different leaving group pairs (not all of
which are unique, due to symmetry) in our ca. 40 000 reaction
training data set, described later; the most common are
depicted in Figure 1. The reaction site, consisting of the atom−
bond−atom subgraph pattern, can be encoded in a SMARTS30

string representation as [cH0]−[cH0]. The abundance of
distinct leaving groups for equivalent reaction sites has been
described as a limitation of template-based approaches, as it
necessitates a proliferation of distinct templates corresponding
to each set of leaving groups.21
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Herein, we propose and validate a similarity-based approach
whereby strategic disconnections are performed based solely on
analogy to known reaction precedents. Reaction templates are
used only at the most rudimentary level to generate chemically
valid precursor molecules, circumventing the need to specify
precise levels of generalization. This is a purely data-driven
approach to retrosynthesis, where model suggestions can be
thought of as an interpolation of known reactions to novel
substrates, rather than an extrapolation to novel chemistries. In
other words, this approach is intended to mimic the “average
retrosynthetic strategy” implicit in a reaction corpus. It is purely
deterministic, acting directly on the available data, and does not
require tuning or training of any model parameters.

■ APPROACH
Overview. Our approach is motivated by the first question a

chemist might ask when tasked with developing a synthesis plan
to a target molecule: how have similar molecules been synthesized?
If a route to the molecule has been previously published, it may
be appropriate to use that route without modification. If it is a
novel compound, then one might look at routes to other
compounds with similar structural motifs and determine
whether that synthetic strategy is applicable. This analysis is
formalized into an automated workflow in the following
paragraphs. A more detailed description of its implementation
can be found in the Supporting Information.
First, reaction precedents are retrieved from the knowledge

base based on product similarity, sprod, scored between 0 and 1.
Molecular similarity is described in the following section. In our
previous work,14 we saw quantitative evidence that similar
products tend to be produced by similar reactions. This is not
that surprising, as often the first approach in a manual
retrosynthesis is examining how molecules with similar
functionalities are produced (e.g., by searching Reaxys31 or
SciFinder32). We restrict the number of precedent reactions to
be 100 to limit the computational time required in subsequent
steps.
Second, a highly local transform containing fully specified

leaving groups is extracted from each precedent reaction and
applied to the target compound. In contrast to traditional

template extraction approaches that attempt to include
neighboring atoms as necessary context,12−15 these templates
contain only the atoms that are immediately involved in the
reaction (specified by atomic identity, aromaticity, number of
hydrogen atoms, and chirality if applicable). Using the example
of Figure 1, the template for a Suzuki reaction would consist
only of the two aromatic carbons that are bridged in the
product and the unmapped halogen and boronic acid/ester
leaving groups. This template is applied to the target
compound, which may yield several candidate precursors or
yield none. Importantly, because templates are only applied
when the precedent’s product is similar to the target
compound, it is not as important to heuristically determine
the important context around the reaction center or manually
encode reactivity conflicts (as done by Szymkuc et al.20 among
others); that is implicitly handled by the previous and
upcoming similarity calculations.
Third, candidate precursors are further scored by their

similarity to that precedent’s reactants, sreac, between 0 and 1.
Precursors are analyzed as if they were a single molecule, so
that it is possible to use intramolecular reactions as the basis for
intermolecular suggestions (and vice versa). Comparing
reactant similarity ensures that not only are the product
molecules similar, but the precursors themselves are as well.
The resulting candidates are ranked by the overall similarity
score as calculated by multiplying product similarity and
reactants similarity, s = sprod·sreac. This overall score measures
the extent of the match between the proposed reaction and the
information upon which the suggestion is based; a score of 1.0
would indicate an exact match to a known disconnection in the
database.
An example prediction of a retrosynthetic heteroatom

alkylation/arylation reaction is displayed in Figure 2. The
recorded precursors (highlighted in green) are recovered and
predicted with rank 2; however, all of the top five precursor
suggestions are chemically reasonable. Of particular note is
reaction precedent 11, which is recalled from the knowledge
base due to a high product similarity but is disfavored when
considering the precursor similarity, as the precedent’s
bromonitrile is highly dissimilar to the proposed acid bromide.
Precedent reactions 3 and 13 both lead to multiple precursor
suggestions, which are then differentiated by their disparate
reactant similarity scores.

Similarity Calculation. An example of quantitative
similarity scores is shown in Figure 3. The reference compound
appears in the test data set, and the four other compounds
appear as products in the training data set. Scores can range
from 1.0 (exact match) to 0.0 (absolutely no commonality) and
reflect the extent to which a pair of molecules contains
overlapping substructures of various sizes. The benzenesulfo-
namide motif in the first three compounds results in a high
degree of similarity, while the similarity of the fourth
compound is primarily due to benzonitrile. The presence of
the second piperazine nitrogen in the first compound and the
fluorine in the third and fourth compounds decreases their
corresponding similarity scores, as these functionalities are not
found in the reference molecule.
Molecular similarity plays a key role in the selection of

reaction precedents and ranking of candidate precursors.
Beyond its use for information retrieval, molecular similarity
also provides an indication of the presence or absence of
functional groups in the target compound as compared to a
precedent reaction product. The presence of functional groups

Figure 1. Six most-frequent precursors for the disconnection of a
single bond between two aromatic carbons. Once a strategic
disconnection is identified (SMARTS: [cH0]−[cH0]), there may
still be dozens of locally plausible precursors to accomplish the
transformation, including different combinations of halides and
boronic acid/esters. (1) Bromide and acid; (2) bromide and ester;
(3) chloride and acid; (4) iodide and acid; (5) chloride and ester; (6)
iodide and ester.
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Figure 2. Example prediction of retrosynthetic heteroatom alkylation/arylation reactions for 1-phenyl-3,4-dihydroquinolin-2(1H)-one. After
recalling up to 20 reaction precedents in order of decreasing product similarity, the precedent reaction site (highlighted in red and displayed as a
SMARTS string) is extracted and matched against the target compound. Of the precedent reactions with the most similar products, not all involve a
reaction site that matches the target compound and thus not all produce candidate precursors. Aside from the first reaction, precedents with
inapplicable reaction sites are not shown for brevity. The recorded reactants for this target compound (highlighted inside a green box) are recovered
and predicted with rank 2; however, all of the top five precursor suggestions are chemically reasonable. Similarity scores are shown using
Morgan2noFeat and Tanimoto (see the section on Similarity Calculation).

Figure 3. Example similarity score calculation using Morgan2Feat fingerprints and the Tanimoto metric. Colors indicate atom-level contributions to
the overall similarity (green: increases similarity score, red: decreases similarity score, uncolored: has no effect).
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that do not appear in the precedent may lead to a competing
reaction channelthis will lead to a measurable decrease in
molecular similarity. The absence of functional groups that do
appear in the precedent may indicate that some enabling
context or activation is absentthis also leads to a decrease in
similarity. We recognize that the implicit detection of functional
group conflicts using this similarity approach is not as robust as
other reaction prediction methods,14 but is very attractive due
to its speed and simplicity.
Quantifying molecular similarity on the basis of two-

dimensional (2D) structure generally requires a fingerprinting
technique (to represent a molecule as a vector) and a similarity
metric (to compare the two vectors of two molecules).33 There
are a number of studies examining different approaches to
fingerprinting,34−38 including learned fingerprints using graph
neural networks,39−42 and to calculating molecular similar-
ity.43−50 This study was not intended to exhaustively explore
these different metrics, but rather demonstrate the proof of
concept using a few common implementations.
We focus our evaluation on Morgan circular fingerprints36 as

implemented in RDKit.51 A circular fingerprint is molecular
representation obtained through an enumeration of submo-
lecular neighborhoods. Initially, atoms are encoded by an
integer identifier (a hashed encoding of simple structural
properties like atomic number). Neighborhoods of larger sizes
are iteratively assigned their own numerical identifiers based on
their constituent atoms and bonds. The “radius” of a circular
fingerprint refers to the size of the largest neighborhood
surrounding each atom that is considered during enumeration.
The combination of all unique identifiers comprises the
fingerprint, which is often folded into a binary vector of fixed
length by converting integer identifiers into indeces of the
vector. We refer the reader to Rogers and Hahn36 for a
thorough explanation of extended-connectivity fingerprints
(ECFPs), which the RDKit implementation of Morgan
fingerprints aims to replicate. Four similar fingerprinting
techniques were attempted:

• Morgan2noFeat, Morgan fingerprints of radius 2 without
features,

• Morgan3noFeat, Morgan fingerprints of radius 3 without
features,

• Morgan2Feat, Morgan fingerprints of radius 2 with
features, and

• Morgan3Feat, Morgan fingerprints of radius 3 with
features.

Fingerprinting “with features” refers to the inclusion of
information in the initial atom encoding beyond atomic identity
to, for example, take into consideration the similarity between
different halogens; these are documented in RDKit and are
based on the work of Gobbi and Poppinger.52 Similarity scores
were calculated without explicitly folding the fingerprint down
to a fixed length.
We also evaluate several similarity metrics. The Dice

similarity,53 shown in eq 1, quantifies the similarity between
two fingerprint vectors x and y by calculating the ratio between
the prevalence of overlapping substructures (as measured by
nonzero values of xiyi for each vector index i) and the number
of distinct substructures observed in each (as measured by the
summation over xi

2 and yi
2 for each fingerprint separately). The

Tanimoto metric,54 shown in eq 2, instead normalizes the
prevalence of overlapping substructures (in x and y) by the
total number of unique substructures (in x or y). The Tversky

similarity55 (eq 3) is a generalization of the Tanimoto similarity
that is parametrized by α and β to enable an asymmetrically
weighted normalization.
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We choose to test four similarity metrics:

• Dice, the Dice similarity,
• Tanimoto, the Tanimoto similarity,
• TverskyA, the Tversky similarity with α = 1.5 and β = 1.0,
• TverskyB, the Tversky similarity with α = 1.0 and β = 1.5.

Qualitatively, within the context of our approach, α and β in
the Tversky similarity metric can be thought of as punishing
potential reactivity conflicts (groups present in x but not y) and
punishing missing molecular context (groups present in y but
not x), respectively.

Evaluation Procedure. There is rarely a single correct
answer in retrosynthesis, but rather disconnections that are
considered productive, yielding precursors that are more
synthetically accessible, and those that are unproductive.
Proposed reactions should have a high likelihood of success
in the forward direction14 and fit into a broader synthesis plan
connecting back to buyable reactants with an acceptably high
overall yield. There have been many attempts to quantify
synthetic accessibility, primarily involving heuristic scoring
functions trained on subjective expert ratings.56 Here, we use a
success criterion that enables a more objective evaluation: that
when given the products of reactions in the United States
patent literature, the program recovers and ranks highly the
recorded reactants without having seen that reaction previously.
We use the open source ca. 50k reaction data set previously

used by Liu et al.21 for the same task of one-step retrosynthesis
prediction. This data set was derived from a larger collection
from the U.S. patent literature;57 the reactions of this particular
subset have been classified by Schneider et al.58 into 10 reaction
classes. These are described in Table 1. We follow the same
data cleaning procedure as Liu et al., whereby examples with
multiple products are split into multiple distinct examples.
Products with a SMILES length less than five characters (e.g.,
byproduct salts) are discarded. Also following Liu et al., we use
an 80%/10%/10% training/validation/testing split; the ca.
40 000 training reactions comprise our knowledge base. The
full data set with the fixed split is available in the Supporting
Information; limitations of this data set are discussed later.
In Liu et al.’s study, evaluation was performed within each

class as if the reaction class of the intended transformation was
known a priori. This is useful for cases when a chemist knows
what type of reaction step they would like to perform.
However, for general retrosynthesis planning, a proposed step
can come from any reaction class. We evaluate our approach
using both the former approachto enable comparisonand
the latteras a more realistic formulation of the prediction
task. Unfortunately, no direct comparison can be made to the
proposed method of Segler and Waller16 due to their lack of
open-source code and use of commercial data sets. Perform-
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ance is quantified using the top-n accuracy for n = {1, 3, 5, 10,
20, 50}, defined as the fraction of examples where the recorded
precursors are suggested by the program with rank ≤ n. Atom-
mapping is excluded from this comparison, but we do require
the chirality of proposed precursors to exactly match that of
recorded precursors.
All scripts were written in Python 2.7 using the open source

RDKit.51 We have written an additional package to improve
handling of stereochemistry when simulating reactions. Details
are available in the Supporting Information.

■ RESULTS
One-Step Evaluation. Each combination of similarity

metric and fingerprint was tested on the validation set using
the training set as the knowledge base. The aggregated
accuracies across all classes are shown in Figure S1 for the
case of known reaction class; the accuracies when the reaction
class is excluded from consideration are shown in Figure S2.
We find that model performance is relatively insensitive to the
choice of fingerprint and similarity metric, demonstrating that
our approach is robust to changes in how similarity is
quantified. From the result of this validation study, we select
the Morgan2Feat fingerprint and Tanimoto similarity for
evaluation on the test set.
Quantitative model performance is shown in Table 2 when

the reaction class is known in advance; details of the top-n
accuracy within each class are reported in Table S1. Model
performance aggregated across all classes is shown in Table 3 in
addition to a second evaluation when the reaction class is not
provided to the model. When making predictions within a
specific reaction class, the top recommendation by the program
exactly matches the reactants used in the recorded reaction
52.9% of the time. The recorded reactants are found within the
top 3, top 5, and top 10 suggestions 73.8%, 81.2%, and 88.1%
of the time, respectively. Without prior knowledge of the

reaction class, recorded reactants are found in the top 10
suggestions for 74.1% of test cases.
The similarity-based model outperforms the baseline and

seq2seq models of Liu et al. by a large margin in every class. In
particular, we see a tremendous improvement in classes 5 and 6
over the baseline approach (retro protections and retro
deprotections); this is a result of our fully specifying leaving
groups when extracting and applying templates from precedent
reactions. Naively generalizing an ester deprotection reaction
might result in a forward synthetic template allowing any alkyl
side chain (SMARTS: [C]), which effectively prevents the
retrosynthetic template from suggesting any ester other than
the methyl ester. Our focused template application strategy
suggests specific protecting groups by preserving the full leaving
group functionalities found in precedent reactants. Using a
proper template extraction strategy overcomes the “maximum
possible test accuracy” of 69.5% cited by Liu et al. for the
template-based baseline model.
The top nine retrosynthetic predictions for an exemplary

compound found in the test set is shown in Figure 4. The
highest ranked suggestion from the model is an aldol
condensation to bring together the pyrazolopyrimidine and
the thiazolidinedione ring systems, which exactly matches what
is recorded for this product. The other recommendations are
(1) to form the thiazolidinedione through various ring-closing
amidation reactions, (2) to install the cyclopropylamino
functionality using an SNAr reaction with either the chloro or
fluoro substrate, and (3) to deprotect either of the two amines
that appear as secondary amines in the target compound. The
diversity of these recommendations highlights the power of
using the collective knowledge contained in a reaction database
to identify strategic retrosynthetic steps that might otherwise be
overlooked, particularly by a less experienced chemist. Several
additional example predictions are shown in Figures S3 to S18.

Application to Multi-Step Planning. This one-step
strategy is easily extended to full pathway design by recursive
suggestion of retrosynthetic disconnections. Lenalidomide and
salmeterol serve as two model compounds of significant
medicinal importance59 that can be synthesized using common
chemistries we would expect to exist in our small knowledge
base of 40k reactions. Example pathways for each are shown in
Figure 5. Note that none of these compounds appears as a

Table 1. Descriptions of Each of the 10 Classes and the
Fraction of the ca. 50k Reactions They Represent, Adapted
from Schneider et al.58a

class description fraction of data set (%)

1 heteroatom alkylation and arylation 30.3
2 acylation and related processes 23.8
3 C−C bond formation 11.3
4 heterocycle formation 1.8
5 protections 1.3
6 deprotections 16.5
7 reductions 9.2
8 oxidations 1.6
9 functional group interconversion (FGI) 3.7
10 functional group addition (FGA) 0.5

aThese were randomly sampled from the patent literature and should
approximate the true distribution of reaction types reported in the full
USPTO literature.

Table 2. Model Top-10 Accuracy within Each Class When the Reaction Class Is Known a Priori

reaction class, top-10 accuracy (%)

model 1 2 3 4 5 6 7 8 9 10

Liu et al. baseline21 77.2 84.9 53.4 54.4 6.2 26.9 74.7 68.4 46.7 73.9
Liu et al. seq2seq21 57.5 74.6 46.1 27.8 80.0 62.8 67.8 69.1 47.3 56.5
similarity (this work) 86.7 94.2 74.6 67.0 97.1 95.5 88.3 98.8 71.2 91.3

Table 3. Model Performance Aggregated Across All Classes

top-n accuracy (%), n =

model 1 3 5 10 20 50

Liu et al. baseline21 35.4 52.3 59.1 65.1 68.6 69.5
Liu et al. seq2seq21 37.4 52.4 57.0 61.7 65.9 70.7
similarity (this work) 52.9 73.8 81.2 88.1 91.8 92.9
similarity (this work)a 37.3 54.7 63.3 74.1 82.0 85.3

aDenotes that reaction class information was not provided to the
model, which represents a much harder prediction task.
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product in the knowledge base from which suggestions are
made.
The first suggestion for lenalidomide (Figure 5a) is a retro

amidation ring opening. Following closely at rank 3 is a nitro
reduction, consistent with published literature pathways.60,61

The subsequent retro alkylation to open the five-membered
ring is the next step in both literature pathways, although one
begins from the nitrophthalic anhydride,60 and the other uses
the methyl ester, rather than the acid chloride.61 The latter
reference begins with the bromination by N-bromosuccinimide
(NBS), precisely as suggested.
The retrosynthesis for salmeterol (Figure 5b) is perhaps

more interesting due to the presence of a chiral center.
Following only the rank 1 suggestions, the similarity-based
approach suggests a benzyl deprotection, preceded by an
alkylation, preceded by a reduction of a methyl ester to an
alcohol, preceded by an asymmetric ketone reduction. This
exactly matches the published synthesis62 except for the order
of the alkylation and reduction steps and the choice of amine
protecting group. A notable alternate albeit low-ranked
suggestion from our approach is to introduce the chirality by
means of an enantioselective organometallic addition of
bromochloromethane to the benzaldehyde, although this
would likely present a lack of selectivity in practice.
The success of the approach in finding viable synthetic

pathways is particularly impressive when considering that we
have not defined any explicit retrosynthetic strategy. Computer-
assisted retrosynthesis typically involves some high-level
strategy to help guide the search toward simpler, buyable

chemicals (e.g., favoring smaller precursors), just as chemists
manually identify disconnections to simplify compounds.5 In
this program, the goal is to mimic the implicit strategy
contained within the reactions in a knowledge base. In other
words, the tendency of the program to lead to smaller, simpler
precursors is solely due to that same tendency being present in
the data. Forgoing an explicit search heuristic allows the
program to rely solely on analogy to precedent reactions and
in the case of salmeterolrecover a known pathway following
the top suggestions at each step. With a guiding heuristic
explicitly favoring smaller molecules, the first proposed step
would have been a retro alkylation without the retro
deprotection first, which would have led to nonselective
overalkylation.

■ DISCUSSION

Limitations of the Approach. By design, the similarity-
based approach is meant to apply existing reaction knowledge
to novel substrates. This strategy inherently disfavors making
creative disconnections. Retrosynthetic suggestions do not offer
major insights beyond what could be achieved by a trained
synthetic chemist familiar with the types of reactions found in
the knowledge base. We emphasize that this is an intentional
result of using an empirical, data-driven approach to automated
retrosynthesis. The suggestions made by a model extrapolating
outside of its training data carry a significant amount of
uncertainty; as described, the model is effectively restricted to
operate within the scope of known chemistry.

Figure 4. Example retrosynthetic predictions when pooling all reaction classes. The model successfully proposes the recorded reactants with rank 1,
corresponding to an aldol condensation. Other suggestions among the top nine include three ring-closing amidations to build the five-membered
ring, two SNAr reactions to install cyclopropamine, and three amine deprotections.
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While the goal of this study was to recover the true
precursors used in reactions from the patent literature, this
method can be trivially adapted to encourage pathway diversity.
Rather than retrieving precedents and ranking candidate
precursors deterministically, one might intentionally add a
random value to the calculated similarity scores to introduce
stochasticity and sample more dissimilar precedents. The
absolute score values used to determine the rankings of
suggestions are included with the various examples in Figures
S3−S18. A small score perturbation would lead to more
creative disconnections butas alluded to earlierintroduces
more uncertainty into the quality of recommendations.
There are obviously many additional considerations in

synthetic route planning, not limited to cost, process
complexity, reaction yield, workup difficulty, safety, and toxicity
of intermediates. Because this information is either incomplete
or unavailable in public databases, we focus on the
disconnections themselves, which makes this methodology
more suitable for research-scale discovery applications. We
expect that additional considerations could be incorporated by
weighting the scores assigned to precedent reactions by an
additional “process suitability” function to balance the similarity
metric with these other considerations. This method could also
be restricted to use a particular subset of available reaction data

to provide domain-specific suggestions, e.g., only from process
chemistry journals.

Limitations of the Data set. While this methodology is
easily applied to other data sources (e.g., Reaxys31 or an
electronic lab notebook), use of unpublishable data would
prevent future performance comparisons; for this reason, we
have made use of open source data originating from the patent
literature. This data set is well-suited for quantitative perform-
ance comparisons but does present quality concerns, as
patented syntheses may not have been validated experimentally
or may have had a very low yield. This concern, however, does
not negate the fact that these examples reflect an implicit
retrosynthetic strategy (with regard both to the types of
reactions commonly employed and to when certain dis-
connections are applied on the basis of present or absent
structural motifs) contained within the patent literature.

Quality of Suggestions. There are certain patterns that
chemists follow when performing a retrosynthetic analysis,
including consideration of reaction classes, viable synthons, and
hierarchies of functional group reactivities. On the basis of the
quantitative performance on the USPTO data set, it is clear that
the model is successful in proposing retrosynthetic disconnec-
tions that match actual patented syntheses without the need for
any explicit chemical knowledge. When making suggestions

Figure 5.Multistep synthesis plans. Routes are constructed by recursively applying the one-step retrosynthetic methodology to (a) lenalidomide and
(b) salmeterol. The suggested disconnections are consistent with published pathways, highlighted with green and blue backgrounds for
lendalidomide and salmeterol, respectively.60−62 Slight differences are described in the main text.
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within a specific reaction class, the model makes a perfect
recommendation 52.9% of the time; even without specifying
the reaction class, perfect recommendations are made 37.3% of
the time. When 10 disconnections are proposed, the success
rates increase to 88.1% and 74.1%, respectively. The approach
is successful even when extended to pathway planning for high-
value, medicinally relevant drug compounds.
However, some suggestions, particularly lower-ranked or

lower-scored ones, may not be synthetically viable when
attempted experimentally. The use of similarity for prioritizing
suggestions partially mitigates this issue of “false positive”
recommendations while still generating potential synthetic
routes rapidly; to generate more conservative recommendations
with a more guaranteed rate of success, slower methods can be
applied for forward reaction prediction.14

■ CONCLUSION
We have demonstrated an approach for automated retrosyn-
thesis based on analogy to known reactions. Molecular
similarity, both between products and between reactants, is a
sufficient metric for determining relevant precedents and
applying the corresponding highly local retrosynthetic trans-
form. Because a relatively small number of templates are
applied when they are thought to be relevant, it is not necessary
to define heuristics for their extraction, nor is the speed limited
by the computational bottleneck of full template library
application. Calculating a target molecule’s similarity to a set
of known products is an “embarrassingly parallel”, computa-
tionally inexpensive problem and there exist numerous means
of doing so. By design, suggested precursors are necessarily
linked to specific precedents as supporting evidence. And
although this data set does not contain contextual information,
using one that does would further enrich suggestions by
including information about reagents, catalysts, solvents, and
temperatures of precedent reactions to assist in experimental
validation.
We describe our workflow in full detail and open source our

code to enable use of other data sets as knowledge bases, for
example, in-house electronic lab notebook data.
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