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Abstract

The kinetics of biomolecular systems can be quantified by calculating the stochastic rate constants 

that govern the biomolecular state versus time trajectories (i.e., state trajectories) of individual 

biomolecules. To do so, the experimental signal versus time trajectories (i.e., signal trajectories) 

obtained from observing individual biomolecules are often idealized to generate state trajectories 

by methods such as thresholding or hidden Markov modeling. Here, we discuss approaches for 

idealizing signal trajectories and calculating stochastic rate constants from the resulting state 

trajectories. Importantly, we provide an analysis of how the finite length of signal trajectories 

restrict the precision of these approaches, and demonstrate how Bayesian inference-based versions 

of these approaches allow rigorous determination of this precision. Similarly, we provide an 

analysis of how the finite lengths and limited time resolutions of signal trajectories restrict the 

accuracy of these approaches, and describe methods that, by accounting for the effects of the finite 

length and limited time resolution of signal trajectories, substantially improve this accuracy. 

Collectively, therefore, the methods we consider here enable a rigorous assessment of the 

precision, and a significant enhancement of the accuracy, with which stochastic rate constants can 

be calculated from single-molecule signal trajectories.

Introduction

In single-molecule, kinetic studies of biomolecular systems, experimental data consisting of 

a signal originating from an individual biomolecule is collected as a function of time.1 This 

signal is, or can be converted into, a proxy for the underlying biomolecular state of the 

system. For instance, the intramolecular fluorescence resonance energy transfer (FRET) 

efficiency (EFRET) that is measured between two fluorophore-labeled structural elements of 

an individual biomolecule in a single-molecule FRET (smFRET) experiment depends on the 

distance between the two structural elements and can therefore be converted into a proxy for 

the conformational state of the biomolecule.2 Similarly, the distance that is measured 

between two optically trapped microbeads that are tethered to each other by an individual 

biomolecule in a single-molecule force spectroscopy experiment is a proxy for the 

conformational state of the biomolecule.3,4 Investigating the kinetics of biomolecular 

systems using such single-molecule approaches eliminates the ensemble averaging that is 

inherent to bulk approaches. Thus, these approaches can reveal transient and/or rare kinetic 

events that are typically obscured by ensemble averaging, but that can often be critically 

important for elucidating biological mechanisms. In order to take full advantage of the 

unique and powerful mechanistic information provided by single-molecule experiments, 
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however, the observed signals must be sensitive enough to unambiguously resolve the 

biomolecular states that are sampled during the experiment.

To obtain relevant kinetic information about a biomolecular system from such single-

molecule experiments, the inherently noisy, experimental signal versus time trajectories (i.e., 

signal trajectories) obtained from observing individual biomolecules are typically 

transformed, or idealized, into biomolecular state versus time trajectories (i.e., state 

trajectories). This idealization process is not trivial, as limitations in signal- and temporal-

resolution can easily obscure the relevant biomolecular states. Under the most favorable 

conditions, a researcher can sometimes manually select the signal data point where the 

biomolecule transitions to a new state. Unfortunately, this process is subjective and time 

consuming, and often the data is not sufficiently resolved to use this approach. A second 

method involves manually setting a signal threshold that, once crossed by the experimental 

signal, indicates a transition to a new state but this approach is still subjective and difficult to 

implement when more than two biomolecular states are present. A third, more rigorous and 

widely adopted method uses hidden Markov models (HMMs) to transform the inherently 

noisy signal trajectories into state trajectories by estimating the underlying, ‘hidden’ state 

responsible for producing the signal during each measurement period in a signal 

trajectory.5,6 An advantage of using HMMs for this transformation is that they can manage 

many states simultaneously, and that methods have been developed to select the correct 

number of states present in the trajectory.7-10 Regardless of the method that is used to 

idealize a signal trajectory into the corresponding state trajectory, the state trajectories can 

then be used to calculate stochastic rate constants and obtain kinetic information about the 

observed biomolecular system.

Herein, we begin by comparing the deterministic rate constants that are obtained from 

ensemble kinetic studies with the stochastic rate constants that are obtained from single-

molecule kinetic studies as a means for introducing the conceptual framework that is 

typically used to analyze and interpret single-molecule kinetic data. We then clarify the basis 

of several approaches for calculating stochastic rate constants from single-molecule state 

trajectories. We go on to describe how the finite lengths of signal trajectories restrict the 

precision of these approaches, and demonstrate how Bayesian inference-based versions of 

these approaches provide a natural method to account for the precision of the calculated 

stochastic rate constants. We then end by addressing how the finite lengths and limited time 

resolutions of signal trajectories restrict the accuracy of these approaches, and describing 

methods to correct for the effects of the finite length and limited time resolution of the signal 

trajectories in order to increase the accuracy of these approaches. The methods we examine 

here for assessing the precision and improving the accuracy of the approaches that are 

currently used to calculate stochastic rate constants from single-molecule data greatly 

improve the analysis and interpretation of single-molecule kinetic experiments.

Single-Molecules and Stochastic Rate Constants

In bulk kinetic experiments, the large number of molecules present in an ensemble yields 

well-defined, ensemble-averaged approaches to equilibrium that mask the individual 

behaviors of the underlying molecules.11 Thus, these approaches to equilibrium are 
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traditionally described as time-dependent changes in the concentrations of reactants, reaction 

intermediates, and/or products that are modeled using phenomenological, differential rate 

equations.12 Notably, bulk reaction kinetics and the rate equations that are used to model 

them are: (i) continuous in that individual molecules are not observed to undergo reactions, 

but rather the reaction is observed and described in terms of changes in concentrations, and 

(ii) deterministic in that an initial set of concentrations determines the subsequent values of 

the concentrations. By fitting changes in the concentrations of reactants, reaction 

intermediates, and/or products as they approach their equilibrium concentrations to these 

deterministic rate equations, one can obtain the deterministic rate constants that characterize 

the kinetics of the bulk system.13

In contrast with bulk reaction kinetics, however, single-molecule reaction kinetics are: (i) 

discrete in that individual molecules are observed to undergo reactions, and (ii) stochastic in 

that, even at equilibrium, reactions occur at random times that are often, but not always, 

independent of previous conditions. These differences between bulk and single-molecule 

reaction kinetics make it inappropriate to use the deterministic rate equations used to 

describe bulk reaction kinetics to account for the stochastic reactions that are observed at the 

single-molecule level.11 Therefore, in order to describe single-molecule reaction kinetics, 

stochastic approaches like the chemical master equation and the stochastic simulation 

algorithm were developed to model the time evolution of discrete reactions in which the 

behavior of individual molecules could be observed.12,14-18 These stochastic methods aim to 

quantify the kinetics of the molecular system by modeling the occurrence of individual 

reactions with probability distributions that are governed by stochastic rate constants, as 

opposed to modeling changes in concentrations with differential equations that are governed 

by deterministic rate constants. In order to quantify the kinetics of biomolecular systems 

observed in signal trajectories recorded using single-molecule biophysical techniques, 

therefore, we must adopt such a stochastic approach.

Consider the reaction coordinate of a biological process, such as protein folding or ligand 

binding. Due to the multiplicity of interactions present in biomolecular systems, the forward 

and reverse reactions along this reaction coordinate can often be considered as separate, 

elementary reactions that occur randomly and independently of the history of the system 

(i.e., in what states the biomolecule has been in and for how long).19,20 Such stochastic 

reactions are called Markovian when the probability of a reaction occurring (i.e., a transition 

between states) depends only upon the current state of system; when these probabilities are 

time-dependent, or, rather, depend upon the previous state(s) of the system, the reaction is 

called non-Markovian. As a result of the constant transition probability of Markovian 

reactions, the lengths of time that a biomolecule spends in a particular state before a 

transition occurs, called the dwell times, t, are distributed according to an exponential 

distribution of the form

(1)

where p(ti∣ki) is the probability distribution function (PDF) of a dwell time in the ith state 

lasting length ti given the stochastic rate constant ki, where ki = Σj≠i kij Here, ki is the net 
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stochastic rate constant out of the ith state, and kij are the stochastic rate constants governing 

the individual Markovian reactions out of the ith state. For instance, if there are multiple, 

parallel, Markovian reactions out of the ith state, the net stochastic rate constant that 

describes the length of time spent in the ith state, ki, will be the sum of the individual 

stochastic rate constants governing each of the parallel reactions, kij. Effectively, the dwell 

times in the ith state, ti, even if they are sorted into only those that transition to the jth state, 

will be distributed according to this net stochastic rate constant, ki. It follows then that, 

regardless of the final state, the average dwell time spent in the ith state, < ti >, is the 

reciprocal of this net stochastic rate constant, ki. Finally, while it is not possible to 

distinguish among the collection of stochastic rate constants, kij, that describe the individual 

Markovian reactions exiting the ith state by analyzing the observed dwell times spent in the 

ith state, ti, the number of times that an individual molecule enters a particular jth state will 

depend upon the stochastic rate constant kij and can therefore be used to quantify kij.

Interestingly, the ergodic hypothesis asserts that the dwell time PDF for an individual 

molecule observed for a very long amount of time is equivalent to the dwell time PDF 

comprised of many identical, individual molecules, each observed for very short periods of 

time.12 Thus, because many experimental factors, such as the photobleaching of 

fluorophores, limit the length of time that an individual biomolecule can be continuously 

observed, the latter approach of observing many individual biomolecules for very short 

periods of time is often taken. Regardless of which approach is taken, Onsager’s regression 

hypothesis18,21 asserts that this ‘microscopic’ dwell time PDF of an individual molecule is 

equivalent to the ‘macroscopic’ relaxation to equilibrium of an ensemble of molecules 

described by traditional chemical kinetics. Therefore, when monitoring the reaction of one 

biomolecule, or of multiple, identical, individual biomolecules, the observed single-

molecule reaction kinetics are equivalent to those that would be measured in bulk, if it were 

possible to observe them despite the ensemble averaging — this is especially significant for 

situations were the biomolecular population or event of interest is too rarely sampled to 

observe using a bulk, ensemble-averaged signal.

Before describing how to quantify the single-molecule stochastic rate constants ki and kij 

described above, we must note the several complications that have already arisen. First, the 

exponential dwell time PDF described above assumes that time is continuous, but single-

molecule signal trajectories are comprised of a sequence of discrete measurements that are 

spaced by, at minimum, the acquisition period of the measurement during which the signal 

was time averaged to acquire a single data point. Errors can therefore be introduced into 

these stochastic rate constant calculations if the discretized state trajectories misrepresent the 

temporal behavior of the molecule(s) as it samples state-space (i.e., the finite set of states 

available to it). Secondly, these stochastic rate constant calculations require several 

assumptions about the observed single-molecule data, including that a sufficient number of 

events were observed to accurately represent the ensemble average, that there are no 

subpopulations present in the sample, and that the system is at equilibrium and will not 

change over time, resulting in non-Markovian behavior. These assumptions are inherently 

difficult to confirm due to the small amounts of information present in a state trajectory from 

an individual molecule.
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Calculating Stochastic Rate Constants from Signal Trajectories

Approaches to Calculating Stochastic Rate Constants

As mentioned above, stochastic rate constants govern the Markovian nature with which a 

single molecule samples state-space during a reaction. The dwell time, t, in a particular state 

is governed by the sum of all of the stochastic rate constants exiting that state, while the 

number of transitions between particular states depends upon the particular stochastic rate 

constant describing that reaction. Below, we discuss how stochastic rate constants for 

Markovian reactions can be quantified by considering the distribution of dwell times, or the 

probability of transitioning between particular states. Before describing these methods, 

however, we will briefly discuss how the properties of state trajectories that facilitate 

stochastic rate constant calculations can be quantified such that they can be easily 

incorporated into the various stochastic rate constant calculation methods.

The state trajectories described above are each composed of a series of sequential, 

discretized data points, where each data point indicates the state occupied, during a 

measurement period of length τ, by the single molecule corresponding to the signal 

trajectory being analyzed; it is worth noting that this state was inferred from a time-averaged 

signal collected during the measurement period τ. From these sequential data points that 

comprise a state trajectory, we can obtain a dwell time list, nij, where each entry is the 

number of contiguous measurement periods, τ’s, that the single-molecule is observed to 

spend in a state, i, before transitioning to a second state, j. This is a discretized list of the 

dwell times in state i, ti, that transition to state j, and it has the form: nij = [5, 13, 12, 7, …]. 

Additionally, we can construct a counting matrix, M, for each state trajectory where the 

matrix elements, Mij, represent the number of times that the state trajectory began in state i 
at measurement n (i.e., at time t = 0) and ended in state j at measurement n+1 (i.e., at time t 
= τ). M is related to nij such that the off-diagonal elements of M, Mij, are the number of 

entries in the corresponding nij, and the on-diagonal elements of M, Mij, are

(1)

where Σnij is the sum of the entries in nij. M may be row normalized, such that each element 

in a row (i.e., with the same i) is divided by the sum of that row to yield the transition 

matrix, P. The off-diagonal elements of the transition matrix P, Pij, give the frequency that 

an individual molecule in state i has transitioned to state j at the next measurement period. 

Below, we detail several methods to explain how the stochastic rate constants that 

characterize kinetic processes may be obtained from the calculated dwell time list, nij, 

counting matrix, M, or transition matrix, P.

Dwell Time Distribution Analysis—One method to calculate stochastic rate constants 

from a state trajectory is by analyzing the distribution of observed dwell times. A state 

trajectory can be thought of as a sequence of discrete measurements that report on whether a 

transition has occurred between two measurements. These ‘transition trials’ are reminiscent 

of a series of repeated Bernoulli trials from probability theory,22 which are events where the 
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outcome is either a success with probability p, or a failure with probability 1 − p. In this 

analogy, a successful Bernoulli trial would be when the single molecule transitions from 

state i at measurement period n to state j at measurement period n+1, whereas a failed 

Bernoulli trial would be when, instead, the single molecule remains in state i at 

measurement period n+1.

The number of repeated, failed trials before a success (i.e., a transition) occurs is distributed 

according to the geometric distribution probability mass function (PMF),22

(2)

where n is the number of failed trials and p is the probability of a success. Therefore, the 

PMF of the number of measurement periods until a transition occurs in a Markovian state 

trajectory can be modeled using the geometric distribution. From the geometric distribution, 

we expect that the mean number of successive measurement periods in state i, 〈ni〉, until a 

transition out of state i occurs is,

(3)

where, Pi the probability of a successful transition out of state i to any other state, j. Given a 

particular state trajectory in a Markovian system, an estimate of the mean number of 

measurement periods before a transition out of state i occurs, 〈ni〉, would then allow the 

probability of a successful transition out of state i to be calculated by solving this equation. 

The maximum-likelihood estimate of 〈ni〉 is the total number of measurement periods 

observed to be in state i divided by the total number of transitions out of state i,

(4)

where Σnij is the sum of all entries in nij and the Mij are the total number of observed 

transitions from state i to state j. Solving this equation yields the probability of a successful 

transition,

(5)

As mentioned in the previous section, the dwell times that a single molecule will spend in a 

particular state before transitioning to a different state, t’s, in a Markovian system are 

distributed according an exponential distribution. Therefore, for such a Markovian system, 

the probability that a transition out of state i occurs within a measurement period, τ, in a 
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signal trajectory is the integral of the exponential distribution PDF from t = 0 to t = τ the 

measurement period, which is

(6)

This equation implies that a stochastic rate constant can be calculated as

(7)

if the transition probability, Pi, can be quantified as described above. Notably, the stochastic 

rate constant obtained by considering the dwell times in a particular state will be a sum of 

multiple stochastic rate constants, except in cases when there is only one state to transition 

to (e.g., two-state systems). Analyzing only the dwell times that a single molecule spends in 

state i before transitioning to a particular state j still yields the same sum of the stochastic 

rate constants, and not the associated kij. The major advantage of analyzing the distribution 

of dwell times, however, is that deviations from Markovian behavior can be observed as non-

geometric behavior and then this non-Markovian behavior can be analyzed.

Interestingly, a careful consideration of these equations reveals a limitation in the application 

of this dwell time distribution analysis method, which is the fact that the geometric 

distribution requires the state trajectories to have discrete dwell times that last {0, 1,2,…} 

measurement periods, τ, before a transition occurs. Unfortunately, in a state trajectory, dwell 

times, t, of zero measurement periods, τ, are never included in the dwell time lists, nij, 

because a dwell time must be at least one measurement period, τ, long for it to be associated 

with a particular state. The result is an undercounting of M due to the exclusion of all zero 

measurement period-long dwell times (n = 0, or, equivalently, t < τ), and a subsequent 

miscalculation of Pi. This undercounting is exacerbated by the fact that, from the geometric 

distribution, the highest probability dwell times are the zero measurement period-long dwell 

times (n = 0). As a result, stochastic rate constants calculated using the dwell time 

distribution analysis method are misestimates, and, more specifically, underestimates of the 

true stochastic rate constant. Nonetheless, this underestimate can easily be accounted for by 

conditioning the geometric distribution PMF such that only dwell times that are greater than 

zero measurement periods, τ, in length are considered (n > 0, or, equivalently, t > τ.

Here, we will condition the geometric distribution PMF so that it only considers n > 0, and 

denote these discrete dwell time lengths with n★ ∈ {1,2,…} to maintain clarity. From the 

law of conditional probability, we note that

(8)
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Therefore, the geometric distribution PMF conditioned upon all dwell times being greater 

than zero measurement periods in length is equivalent to the regular geometric distribution 

PMF divided by 1 − p. Because P(n★∣p) is proportional to P(n∣p) in a manner that does not 

depend upon n, the expectation values of P(n*∣p) (e.g., the mean) are also proportional to 

those of P(n∣p) in the same manner due. Therefore,

(9)

We can then follow the same derivation of Pi above in Eqn. (6), but substitute this expression 

for 〈n★〉 in place of 〈n〉. This yields,

(10)

Interestingly, this is the identical result for the transition probability Pij that is obtained with 

the transition probability expansion analysis described in the following section.

For further insight into this expression, consider that, from the Poisson distribution, the 

expected value for the number of transitions out of state i is 〈Mi〉 = ki · Ti, where Ti is the 

total time spent in state i. Then, from Eqn. (10) we find that

(11)

Note that the expression for the Pi that is calculated here is different then in Eqn. (6). From 

the Taylor series

(12)

we see that Eqn. (11) is the Taylor series expansion of the transition probability given by 

Eqn. (6), but truncated after the first-order term. Notably, since this expression in Eqn. (11) 

is conditioned upon only the observation of dwell times, t’s, that are greater than zero 

measurement periods, τ’s, in length, this conditioned, dwell time distribution analysis is 

insensitive to the types of missed dwells in state i that are less than one measurement period, 

τ, long. As we will show further below, however, it is sensitive to other types of missed 

events.
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Finally, it is worth noting that stochastic rate constants for a particular reaction pathway out 

of state i, kij, can be calculated from ki by equating the splitting probability, , and the 

observed branching ratios as

(13)

Since we will not discuss this approach in the section on Bayesian inference further below, 

we note here that the calculation of the kij described above can be recast with a Bayesian 

inference approach by utilizing a Dirichlet distribution as the conjugate prior and a 

multinomial distribution as the likelihood function (vide infra). Regardless, while this dwell 

time distribution analysis approach to calculating individual stochastic rate constants is quite 

effective, and it has the benefit of allowing the dwell times to be checked for non-Markovian 

behavior that would render the calculated stochastic rate constants much less meaningful, a 

more straightforward method to calculate the stochastic rate constants for each parallel 

reaction pathway of an individual molecule is to analyze the transition probabilities for each 

pathway.

Transition Probability Expansion Analysis—Another method for calculating 

stochastic rate constants is to consider the observed frequency with which a single molecule 

transitions from one state to another. For the discrete state trajectories considered here, this 

is equivalent to determining whether the single molecule in state i during a measurement 

period, n, is in state j during the subsequent measurement period, n+1. Since this data 

consists of multiple Bernoulli trials of whether or not the transition has occurred, the 

probability of a particular transition can be modeled with the binomial distribution. The 

binomial distribution is appropriate for modeling the number of successful trials (i.e., 

transitions from state i to state j, Mij) from a certain number of performed trials (i.e., the 

number of times the single molecule was in state i in the state trajectory, Σnij) that can each 

succeed with a fixed probability (i.e., Pij) as,

(14)

where m is the number of successful trials, n is the total number of trials, and p is the 

probability of a successful trial. From the mean of the binomial distribution, 〈m〉 = np, we 

will take frequentist approach to statistics and substitute

(15)
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Here, we have equated Pij with the observed frequency of the transitions from state i to state 

j. However, in an experiment, only a finite number of transitions from state i to state j are 

observed; as such, the equality will only be approximate. Regardless, according to the 

central-limit theorem, as the number of measurements increase, Mij should approach the 

mean value dictated by the binomial distribution; thus, barring a small number of 

measurements (e.g., less than ~100 measurements), we might reasonably estimate that

(16)

and from this expression, estimate kij using Eqn. (7).

Now, we will consider the accuracy of calculating a stochastic rate constant in this manner. 

Interestingly, given a particular amount of time spent in state i in a state trajectory, Ti, the 

Poisson distribution indicates that

(17)

where the substitution for Ti is generally accurate, excepting the types of missed events 

which we will discuss further below. With this in mind, by substituting Eqn. (17) into Eqn. 

(16), we find that

(18)

Therefore, rather than being corrected to a Taylor series expansion of the transition 

probability truncated at the first order term, as was the case in the dwell time distribution 

analysis approach described in the previous section, this method of calculating transition 

probabilities is inherently a Taylor series expansion of the transition probability truncated at 

the first order term. Regardless, the transition probability expansion analysis approach 

described here and the dwell time distribution analysis approach described above are 

therefore equivalent methods of calculating stochastic rate constants, which are accurate 

only when kijτ is small (i.e., much less than one) and the higher-order terms of the Taylor 

series expansion are therefore negligible.

When kijτ is large (i.e., approaching and greater than 1), however, the probability of 

experimentally recording measurements where more than one state is occupied during a 

measurement period becomes substantially high. Neither the process of idealizing a signal 

trajectory into a state trajectory nor performing the first-order expansion of the Taylor series 

is well justified in such a situation. Regardless, before discussing the precision associated 

with calculating stochastic rate constants from individual molecules, we would like to note 

here that the transition probability expansion analysis approach described in this section has 

the added benefit of being insensitive to missed dwells, as will be discussed further below. 
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Finally, as will also be discussed further below, this type of analysis approach is analogous 

to using the transition matrix from an HMM for Pij.

Methods for Calculating Stochastic Rate Constants

Manual Idealization of Signal Trajectories—In order to calculate stochastic rate 

constants using either the dwell time distribution- or transition probability expansion 

analysis methods described above, a signal trajectory must first be idealized into a state 

trajectory. This state trajectory can then be quantified as described above to obtain the 

parameters necessary to calculate stochastic rate constants. One approach to idealizing a 

signal trajectory is to identify the states that are sampled by the signal trajectory, as well as 

the measurement periods during which transitions between the states take place, by visual 

inspection (e.g., as in Refs. 23-25). Even in cases where the experimental signals 

corresponding to the various states are well separated and the signal trajectory has an 

excellent signal-to-noise ratio, however, it is still difficult and time consuming to locate the 

exact measurement period during which a transition occurs. In cases where the signals are 

insufficiently separated and/or the signal trajectory has a poor signal-to-noise ratio, 

therefore, this method can become quite subjective, such that different researchers, who will 

generally have slightly different criteria for what constitutes a state or a transition, can 

produce different state trajectories from the same signal trajectory, and thus different 

stochastic rate constants.

A more robust approach is to systematically employ a user-defined signal threshold such that 

transitions from one state to another state can be pinpointed by identifying the measurement 

periods in a signal trajectory during which the signal crosses the threshold (e.g., as in Refs. 

26-29). Typically, thresholds are defined by generating a histogram of all of the signal values 

that are sampled throughout the entire signal trajectory, and subsequently identifying signal 

boundaries (i.e., thresholds) for each state that minimize overlap of the signal values 

corresponding to neighboring states. When more than two states are present, different 

thresholds can be used to define each state so as to allow for more flexibility when dealing 

with multiple states, however, it can be difficult to unambiguously specify these thresholds. 

Unless the signals corresponding to the various states are well separated and the signal-to-

noise ratio of the signal trajectory is exceptional, there is often significant overlap between 

the signal values corresponding to neighboring states. As a result, natural fluctuations in the 

signal due to noise can result in spurious transitions that cross the threshold. This will result 

in the misidentification of transitions in the state trajectory, which can propagate into a 

misestimation of the stochastic rate constants. One approach to guard against the effects of 

these spurious transitions, as well as to dispel concern about the subjectivity of a user-

defined signal threshold, is to repeat the process of idealizing the signal trajectory and 

calculating the stochastic rate constants using several, slightly different values for the user-

defined signal thresholds (e.g., favoring one state, favoring the other state, exactly between, 

etc.), and demonstrating the robustness of the calculated stochastic rate constants to the 

choice of threshold (e.g., as in Refs. 28,29).

Hidden Markov Models—HMMs are a popular method to analyze signal versus time 

trajectories obtained from biophysics experiments7,10,30-33— detailed descriptions can be 
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found elsewhere.19,34 Briefly, in an HMM, the time-averaged signal recorded during each 

measurement period, τ, in a signal trajectory is assumed to be representative of some 

‘hidden’ state (i.e., the state trajectory). The underlying, hidden state trajectory, which is not 

directly observed, is then assumed to behave as a Markovian process that is governed 

according to transition probabilities. As discussed above, the transition probabilities of a 

single molecule in a Markovian system are related to stochastic rate constants governing the 

biomolecular system. With an HMM, the probability that a signal originates from a 

particular hidden state is calculated while considering the hidden state of the previous time 

period in order to explicitly account for the transition probability. Notably, in an HMM, the 

values of the signal that are observed when a single molecule is in a particular hidden state 

are typically assumed to be distributed according to a normal distribution PDF (i.e., the 

observed signals will be a Gaussian mixture model). Using this approach, one ‘estimates’ an 

HMM that describes the signal in terms of a discrete number of states, and that provides, as 

parameters, the signal emission probabilities of each state as well as the transition 

probabilities as a transition probability matrix, P, from each state.

With the optimal estimate of the HMM describing a signal trajectory, two different methods 

can be used to calculate stochastic rate constants. In the first method, the idealized, state 

trajectory can be obtained from the HMM and then quantified as described for use with the 

dwell time distribution, or transition probability expansion analysis approaches. This 

idealized, state trajectory is obtained by applying the Viterbi algorithm to the HMM in order 

to generate the Viterbi path.35 The Viterbi path, which gives the idealized state trajectory 

directly, is the most likely sequence of hidden states that not only would yield the observed 

signal values given the optimal signal emission probabilities, but that would most likely have 

arisen from the optimal transition probabilities. As such, it is important to note that, by using 

an HMM to idealize a signal trajectory, the resulting idealized state trajectory, and emission- 

and transition probabilities have been forced to be as Markovian as possible. Therefore, if 

there is any non-Markovian behavior present in the biomolecular system under investigation, 

it will be masked and made to appear Markovian. To avoid this shortcoming of HMMs, the 

idealized state trajectory can be generated using a different approach, such as thresholding.

The second method for calculating stochastic rate constants from the optimal HMM estimate 

involves directly using the transition probabilities obtained from the HMM. While, on its 

surface, this method seems to bypass the use of idealized, state trajectories, the process of 

estimating the optimal HMM that describes the data inherently involves estimating the 

hidden states that generated the signal trajectory, and therefore involves the use of idealized, 

state trajectories. From an HMM, individual stochastic rate constants can be calculated using 

Eqn. (7) and the transition probability matrix, which is analogous to that calculated from an 

idealized, state trajectory. This approach is equivalent to transition probability expansion 

analysis. As with calculating stochastic rate constants from the Viterbi path, it must be noted 

that this second HMM method also enforces Markovian behavior.

Finally, we note that in the smFRET literature alone, there are several software packages 

available for HMM-based analysis of EFRET trajectories. Of these packages, there are two 

types of approaches to estimating the optimal HMM that describes the data: maximum-

likelihood approaches (e.g., QuB,36 HaMMy,33 and SMART37) and Bayesian approaches 
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(e.g., vbFRET7,8 and ebFRET9,10). There are many benefits to using Bayesian HMMs over 

maximum-likelihood HMMs. First, unlike Bayesian HMMs, maximum-likelihood HMMs 

are fundamentally ill-posed mathematical problems — essentially, individual states can 

‘collapse’ onto single data points, which yields a singularity with infinite likeliness that is 

not at a reasonable HMM estimate. Second, as we will discuss in the next section, Bayesian 

approaches naturally incorporate the precision with which a certain amount of data can 

determine the parameters of the HMM by learning the probability distribution of the 

transition probabilities instead of finding one set of transition probabilities. In addition to 

providing the precision, this allows one to combine the results from multiple, individual 

molecules, and simultaneously learn consensus, stochastic rate constants from an ensemble 

of single molecules. Third, while maximum-likelihood approaches can result in HMMs that 

are significantly over-fit and that consequently overestimate the number of hidden states 

present in a signal trajectory, Bayesian approaches are inherently able to select the correct 

number of hidden states present in a signal trajectory. For example, with maximum-

likelihood HMMs, a better HMM estimate of the signal trajectory is obtained simply by 

adding additional hidden states; in the extreme case, there would be one hidden state for 

each data point. Although the HMM in this extreme case would fit the data perfectly, it 

would not be very meaningful, nor would it be a useful model for predicting the future 

behavior of the system. While the use of heuristic approaches such as the Bayesian- and 

Akaike Information Criteria (BIC and AIC, respectively) have been proposed to help select 

the correct number of states in maximum-likelihood HMMs, these are approximations to 

true Bayesian approaches that are valid only under certain conditions and that, in practice, 

we find do not work well for the HMM-based analysis of smFRET data. Additionally, 

Bayesian HMMs have been shown to be more accurate than maximum-likelihood HMMs 

for the analysis of signal trajectories where the dwell-times, t’s, in the hidden states are 

transient relative to the measurement period, τ.7 Finally, there is effectively no added 

computational cost between the maximum-likelihood- and Bayesian- approaches to HMMs, 

as both implement the same algorithms to calculate the probabilities associated with the 

HMM (e.g., the forward-backward algorithm), so speed is not a concern. Given the benefits 

of the Bayesian approach over the maximum-likelihood approach for HMMs, we 

recommend using Bayesian HMMs when analyzing signal trajectories from single-molecule 

biophysical experiments.

Precision of Calculated Rate Constants

Using Bayesian Inference to Quantify Precision

The finite length of a signal trajectory ensures that only a finite number of randomly 

distributed dwell times and transitions will be observed during the duration of the signal 

trajectory. The fact that only a finite number of dwell times and transitions are observed in a 

signal trajectory limits the precision with which a stochastic rate constant can be calculated 

from that signal trajectory. With the observation of more dwell times and transitions, this 

precision will increase, and eventually the value of the calculated stochastic rate constant 

will converge to the value of the ‘true’ stochastic rate constant. Here, we demonstrate how to 

rigorously quantify this precision, and therefore the amount of information contained in a 

single signal trajectory, through the use of Bayesian inference.
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One simplistic attempt to account for variability in the number of dwell times and transitions 

that are observed is to report the statistical uncertainty in the calculated stochastic rate 

constant in the context of ‘bootstrapping’ of the data.38 Bootstrapping is an attempt to 

simulate the data of future experiments from a set of observed data. From the analysis of 

bootstrapped, ‘future’ data, any variation in subsequently calculated properties can attributed 

to the uncertainty present in the original dataset. For example, when calculating stochastic 

rate constants from a state trajectory as described above, the bootstrapping process would 

involve creating a resampled data set, , by randomly sampling from nij with replacement 

such that, after each sample is drawn, the sampled data point is placed back into the 

population before the next sample is drawn. The new, bootstrapped transition probability, 

, can then be calculated from , and this yields new, bootstrapped stochastic rate 

constants, . The bootstrapping process is then repeated several times, and the reported 

stochastic rate constant kij is given as the mean of the set of bootstrapped , with the 

uncertainty of the reported kij given as the standard deviation of the set of bootstrapped . It 

is important to note, however, that bootstrapping inherently assumes that the collected data 

accurately represents the characteristics of an infinitely large amount of data. Consequently, 

bootstrapping artificially inflates the dataset in a way that perpetuates any misrepresentations 

of the infinitely large amount of data that are present in the actual dataset. The smaller the 

collected dataset is, the more likely it is to misrepresent this infinitely large amount of data. 

In practice, bootstrapping single-molecule results, where there are often only several 

hundreds of individual molecules in a dataset, perpetuates these misrepresentations and leads 

to inaccurate rate constants, all the while not providing a reasonable estimate of the 

statistical error present in the calculation.

Consider the following, extreme, hypothetical calculation where only one transition with a 

one measurement period-long dwell time (i.e., nij = [1]) has been observed in one signal 

trajectory. Using the conditioned dwell time distribution- or transition probability expansion 

analysis approaches, we find that, in this case, Pij is equal to 1.0, and that all of the 

bootstrapped  are also equal to 1.0. Thus, in this case, there is no uncertainty in the 

calculation of the transition probability, or, consequently, in the stochastic rate constant, and 

this stochastic rate constant is infinitely large. Nonetheless, we know intuitively that the 

stochastic rate constant is probably not infinity, and that there must be some uncertainty in 

this calculation, even though it employs only one measurement. The uncertainty lies in the 

fact that the one transition we have observed simply cannot be representative of the 

stochastic rate constant governing an entire ensemble or even an individual molecule. 

Likewise, we should suspect that Pij is probably a poor estimate of the true transition 

probability. It is easy to imagine that after recording a few more measurements from that 

hypothetical single molecule, we might calculate a different value of Pij, and that the extra 

data would give us a better sense of the uncertainty in Pij. This extreme example illustrates 

how the analyses of the stochastic rate constant calculations described above are insufficient 

by themselves, even when supplemented by bootstrapping. Fortunately, in contrast to these 

intrinsic shortcomings, Bayesian inference provides a statistically rigorous manner with 

which to encode our intuition that the number of observations should change our knowledge 
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about Pij, and systematically address the uncertainty in the calculation of stochastic rate 

constants.

Bayesian inference is a statistical method grounded in the Bayesian approach to probability 

(see Ref. 39 for a pedagogical introduction). In Bayesian inference approaches, the 

parameters of a model that has been developed to describe experimentally observed data are 

treated as probability distributions that reflect the consistency of the particular parameter 

values with the data. These probability distributions can then be updated if new data is 

acquired so as to be consistent with the new, as well as any previous, data. This approach is 

analogous to the way that a scientific hypothesis is tested and then updated with each new 

laboratory experiment.39 In the context of quantifying a state trajectory, Bayesian inference 

allows us to formulate a hypothesis about the underlying stochastic rate constants of a 

system (i.e., the probability of certain stochastic rate constants producing the observed state 

trajectory), and then to update that hypothesis as each transition, or lack thereof, is observed 

in the state trajectory. In this way, we can use Bayesian inference to describe the probability 

distribution of a stochastic rate constant as each measurement period in a signal trajectory is 

analyzed.

The foundation of Bayesian inference is Bayes’ rule, which can be written mathematically 

as

(19)

where Θ represents the parameters of the model, and D represents the data values. The first, 

second, and third terms are referred to as the ‘posterior’, the ‘likelihood’, and the ‘prior’, 

respectively. Bayes’ rule can be expressed verbally as: the probability of the model’s 

parameter values after observing the data is proportional to the product of (i) the probability 

of observing the data given those particular parameter values, and (ii) the initial probability 

of those parameters. More succinctly, the posterior probability is proportional to the product 

of the likelihood and the prior probability.

With a model for experimental data (i.e., expressions for the likelihood and the prior 

probability distribution), we can calculate the posterior probability distribution, and learn 

about the distribution of parameter values that are consistent with the experimental data. 

Unfortunately, for some models, these calculations can be analytically and numerically 

difficult, making their practical use relatively intractable. However, there are certain 

conditions that significantly simplify these calculations. Specifically, certain pairs of 

likelihood functions and prior distributions are complementary in that they yield posterior 

distributions that are of the same algebraic form as the prior distribution. In such a case, the 

prior is called the conjugate prior for that particular likelihood function. The benefit of using 

a conjugate prior with its corresponding likelihood function is that simple updating rules can 

be applied to the parameters of the conjugate prior probability distribution to yield the 

resulting posterior probability distribution. These calculations typically amount to the 

addition of certain experimental values. As such, the use of conjugate priors and likelihood 

Kinz-Thompson et al. Page 15

Methods Enzymol. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



functions circumvents the computationally expensive need to calculate the posterior 

probability distribution for every possible point in the entire probability space.

Below we describe how to employ Bayesian inference using conjugate priors and likelihood 

functions in both the dwell time distribution- and the transition probability expansion 

analysis approaches described above for calculating stochastic rate constants from state 

trajectories in a manner that is extremely tractable, and easy to employ.

Bayesian Dwell Time Distribution Analysis

To perform Bayesian inference upon the exponentially distributed dwell times that a single 

molecule will spend in a particular state in a state trajectory, we must first identify the 

likelihood function and its conjugate prior probability distribution that will serve as a model 

of the observed data. As described above, the number of consecutive, discrete measurement 

periods, n, that such a single molecule will spend in a particular state is distributed according 

to the geometric distribution PMF. Therefore, in this model, the geometric distribution PMF 

is the likelihood function for observing some number of sequential measurements in state i 
before transitioning to state j, and this depends only upon one parameter: the transition 

probability out of state i, Pi. Mathematically, the geometric distribution PMF is constructed 

such that the conjugate prior for this likelihood function is the beta distribution PDF,

(20)

where B(x, y) is the beta function of x and y.

The beta distribution PDF is often used to describe the probability of a probability, P (in this 

case, of a successful transition out of state i, Pi), because, much like a probability, the PDF is 

defined continuously between 0 and 1.34 Additionally, the beta distribution PDF is a 

function of only two parameters, α and β, which have intuitive interpretations relating to 

probabilities. Notably, when α = β = 1, the beta distribution is flat, as all values of P have 

equal probabilities. In this case, the beta distribution mathematically expresses a lack of 

knowledge about P in a similar manner as the equal, a priori probability assumption of 

statistical mechanics.12 Along these lines, larger values of α and/or β yield more defined and 

peaked distributions, which expresses the increased knowledge about P. As we will discuss 

below, the process of performing Bayesian inference amounts to modifying the initial values 

of α and β in a data-dependent manner to yield a posterior, beta distribution PDF with 

updated values of α and β. In this sense, Bayesian inference mathematically encodes a 

method to express the incremented knowledge that originates from new information.

By using the geometric distribution PMF as a likelihood function, and the beta distribution 

PDF as its conjugate prior, we can now calculate the posterior probability distribution of the 

transition probability, Pi, from a state trajectory. We begin by assuming that all transition 

probabilities are initially equally probable. Therefore, the prior probability distribution is a 

beta distribution PDF with α = β = 1. The posterior probability distribution will be another 

beta distribution PDF where α and β are interpreted as α0 plus the number of successful 

transitions, and β0 plus the number of unsuccessful transitions, respectively, where the 
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subscript 0 refers to the prior probability distribution. Thus, for the transitions out of state i 
in a state trajectory, the posterior probability distribution is a beta distribution with 

, and . Therefore, since the mean of the beta distribution 

is α/(α+β), the mean transition probability out of state i after having observed the state 

trajectory is

(21)

This mean value of the transition probability converges to the maximum likelihood estimate 

of Pi given in the previous section when α ≫ 1 and β ≫ 1. Note that the maximum 

likelihood estimate of Pi is equivalent to the mode of the beta distribution PDF, which is (α 
− 1)/(α + β − 2).

The benefit of this Bayesian inference approach is that the posterior probability distribution 

of Pi not only provides a mean value, but also speaks to the uncertainty inherent in Pi due to 

limited number of dwell times observed in state i. This uncertainty can be expressed in the 

form of a credible interval. A credible interval, which is similar to the frequentist idea of a 

confidence interval, is the range in which a certain percentage of the probability density of 

the PDF resides; typically one uses a 95% credible interval as this is similar to ±2σ for a 

normal distribution, but this choice is arbitrary. The upper- and lower boundaries of the 

credible interval can be found through the inverse of the cumulative distribution function of 

the beta distribution. Many standard computational programs come with a function to do 

this, which is sometimes called the ‘inverse function of the regularized incomplete beta 

function’, Ix(α, β), where α and β are the posterior probability distribution parameters and x 
is the fraction of the boundary (e.g., 0.025 for 2.5%). For instance, in Matlab this function is 

called betaincinv.

Finally, let us consider the application of this Bayesian approach to observed data from a 

state trajectory where the length of a dwell time must be at least one measurement period in 

length (n ≥ 1) in order to be associated with a particular state, as discussed earlier. 

Previously, we conditioned the geometric distribution PMF to only consider dwell times of 

at least one measurement period in length to address this problem. Now we must adapt our 

Bayesian inference approach to allow for this conditioning. Due to the linearity of this 

conditioning, and since the total likelihood function is the product of the likelihood function 

from each individual data point, the conditioned posterior probability distribution contains 

an extra term of . This is equivalent to setting , where 

β′ is the parameter used in the beta distribution for the posterior probability distribution, 

and β is the parameter calculated above. Using α and β′ as the parameters for a beta 

distribution PDF, the posterior probability distribution of the transition probability, Pi, can be 

accurately and precisely quantified as a function of each successive, observed dwell time, 

even though dwell times of zero length are missed in the state trajectory (Fig. 1). With a 

sufficient number of measurements, this approach yields the same mean transition 

Kinz-Thompson et al. Page 17

Methods Enzymol. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



probability as the maximum likelihood estimate of the transition probability expansion 

analysis, thereby rendering this approach insensitive to some types of missed events that we 

will discuss further below.

To be concrete, we will use this Bayesian dwell time distribution analysis approach to 

analyze the extreme, hypothetical case of the single observed transition introduced in the 

previous section. The posterior probability distribution would be a beta distribution with α = 

(1 + 1) = 2, and β′ = (1 + 1 − 1) = 2. This yields 〈Pi〉 = 0.66, with a lower-bound of Pi = 

0.16, and an upper-bound of Pi = 0.99 for the 95% credible interval. Notably, the mean value 

of the transition probability calculated using the Bayesian dwell time distribution analysis 

approach is not infinitely large, as was the estimate of Pi using the maximum-likelihood 

approach as described earlier, and, by noting that the credible interval is consistent with a 

wide range of transition probabilities, this method inherently accounts for the large 

uncertainty in the transition probability that we intuitively expect (Fig. 1).

The transition probabilities calculated with this approach can also be transformed into the 

stochastic rate constants with Eqn. (7). Therefore, this Bayesian inference-based method 

also provides an intuitive, explicit expression for how the uncertainty in the stochastic rate 

constants, ki, diminishes with additional observations. One interesting case is that when no 

measurements have been made, the posterior distribution of the rate constants is equivalent 

to the prior distribution; all rate constants from 0 to ∞ are therefore equally probable. Thus, 

this analysis method is a very objective approach to analyzing transition probabilities from 

discrete state trajectories, and it is one that intrinsically encodes a statistically rigorous 

approach to the precision of such calculations.

Bayesian Transition Probability Expansion Analysis

We can also extend the transition probability expansion analysis approach to account for the 

precision of these calculations in a statistically robust manner with the application of 

Bayesian inference. Since the probability of undergoing a transition from state i to state j 
during a measurement period, n, was modeled with the binomial distribution, the binomial 

distribution will be the likelihood function used to perform Bayesian inference. The 

binomial distribution depends upon a single parameter: the probability of a success, P, 

which, in this case, is the transition probability Pij. Mathematically, the conjugate prior to 

the binomial distribution is also the beta distribution, which is consistent with the 

interpretation of the beta distribution as describing the probability of a probability. Without 

any foreknowledge of the transition probability or, equivalently, the stochastic rate constant, 

we will use a flat, uninformative prior of α0 = β0 = 1. From this prior probability 

distribution, the resulting posterior probability distribution for Pij is a beta distribution with 

α = 1 + Mij, and . Interestingly, while this posterior probability 

distribution can be quantified for each observed transition trial, it is equivalent to the 

posterior probability distribution calculated using Bayesian dwell time distribution analysis 

once all of the transition trials that comprise a particular dwell time have been analyzed (Fig. 

1). For the extreme example of a state trajectory with one transition from a one measurement 

period-long dwell time (nij = [1]) the posterior probability distribution would then be α = (1 
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+ 1 = 2), and β = (1 + 1 − 1) = 1. The mean and the credible interval for the beta distribution 

can then be calculated as described above, as can the stochastic rate constants related to 

these transition probabilities.

Interestingly, a more encompassing, Bayesian approach to inferring transition probabilities 

is obtained by considering all of the parallel reaction pathways out of state i at once. In this 

case, the multivariate generalization of the binomial distribution, which is called the 

multinomial distribution, is more appropriate for the likelihood function, as it models the 

probability of a Bernoulli trial where there are different types of successes — although only 

one type of success is chosen at a time. The conjugate prior to the multinomial distribution is 

the Dirichlet distribution,

(22)

where bold characters denote a vector and B(x) is the multinomial beta function of x. 

Unsurprisingly, the Dirichlet distribution is the multivariate generalization of the beta 

distribution; in fact, in the case of only one type of success (i.e., in one dimension) they are 

equivalent. Analogously, we will use a flat, uninformative prior of αij = 1, such that each jth 

element of α is unity. As a result, the posterior probability distribution is αij= 1 + Mij. In 

order to analyze the transition probability of an individual reaction pathway out of state i 
from this posterior probability distribution of the transition probabilities for all the possible 

transitions, we can marginalize the posterior Dirichlet distribution. The result is that the 

posterior probability distribution for one of the reaction pathways is a beta distribution with 

α = αij = 1 + Mij, and . This is 

equivalent to the binomial result for a two-state system given at the start of this section. 

Regardless, the most notable aspect of this treatment is that the mean posterior probability 

distribution is equivalent to the transition probability matrix that is calculated using an 

HMM. Notably, the Bayesian-based HMMs go even further, and utilize Dirichlet 

distributions such as this one to describe the posterior probability distributions of the 

transition probabilities.7-10 As such, both this Bayesian transition probability expansion 

analysis approach and the Bayesian-based HMMs are able to describe the precision 

associated with the transition probabilities calculated from a finite number of transitions by 

calculating a credible interval from the marginalized distribution as described above.

Importantly, unlike maximum-likelihood methods, the Bayesian inference-based approach to 

transition probability expansion analysis enables the statistically robust analysis of 

trajectories where there are not only zero transitions to a particular state, but also when there 

are no transitions at all during a state trajectory. In these cases, the on-diagonal elements of 

M, Mii, will reflect the measurements from the state trajectory that were assigned to state i, 
even though the final state was unclear. In doing so, the prior probability distribution 

accounts for the numerical instability that would otherwise yield infinitely precise estimates 

of stochastic rate constants that are zero when using the maximum-likelihood approach.
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Accuracy of Calculated Stochastic Rate Constants

Characterizing Missed Events

While discretized, idealized state trajectories can be used to analyze the single-molecule 

reactions, many factors complicate the quantification of these state trajectories, and limit the 

amount of information that can be extracted from them. For instance, if the underlying 

single-molecule reaction is faster than the time resolution (i.e., the integration time of each 

measurement) of the experimental technique used to record the signal trajectories from 

which the state trajectories originate, then there is a risk that excursions to states with dwell 

times, t, that are significantly shorter than the measurement period, τ, will be missed. The 

consequence of this type of situation is that the idealized, discretized state trajectory will 

contain missing transitions, misclassified transitions, and missed dwells such that it is no 

longer a reasonable representation of the underlying single-molecule reaction. As a rule of 

thumb, the effects of missed events in a state trajectory begin to become pronounced when, 

for a stochastic rate constant, k, the condition kτ > 0.1 is true (i.e., k is greater than about 

1/10th of the acquisition rate). This is because, for a Markovian reaction, the exponential 

distribution dictates that when kτ = 0.1 about 10% of the dwell times will be shorter than the 

measurement period, τ. This percentage increases as the stochastic rate constant increases, 

leading to a substantial number of missed events. In the sections that follow, we discuss how 

missing such events when transforming signal trajectories into state trajectories complicates 

the process of analyzing single-molecule kinetic data using state trajectories (Fig. 2), and 

then discuss how one might correct for these effects in order to ensure the accuracy of 

analyzing single-molecule kinetic data using state trajectories.

Finite Length of Signal Trajectories—Many factors limit the length of the signal 

trajectories that can be collected from individual biomolecules using single-molecule kinetic 

techniques. Superficially, the patience of the experimenter and the practical data storage 

limitations of computers restrict this length. Practically, the stability of the biomolecular 

system can limit the length of an experiment; for instance, many enzymes become inactive 

after a certain time spent at room temperature under in vitro conditions, or, depending on the 

acid-base properties of the reactants and products of the reaction being investigated, the 

buffering capacity of a buffer might saturate. More commonly, however, is the fact that the 

signal corresponding to an individual molecule can simply be lost, for instance, by 

photobleaching of a fluorophore, or by dissociation of a tether, and such an event terminates 

the signal trajectory. Regardless of the cause, signal trajectories are finite in length and do 

not extend infinitely. Thus, considering the ergodic hypothesis, the data from a single 

molecule will consequently not contain enough information to completely characterize a 

system. In an extreme case, one can imagine a state trajectory where no transitions occur 

before signal loss. Such a situation places a clear limitation on the precision with which the 

dynamics of the single-molecule system can be quantified. This consideration applies to all 

state trajectories generated during the analysis of single-molecule kinetic data, because all of 

these trajectories will have a finite length.

Missed Transitions—Consider a single molecule that dwells in a particular state, i, for 

some length of time, t. Eventually, the single molecule will transition to a new state, j. If the 
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dwell time, t, in j is shorter than the measurement period, τ, there is a chance that the single 

molecule might transition back to i during the measurement period (Fig. 2, yellow boxes). 

This is more likely to occur with increasingly fast rate constants for the transition from j to i. 
In such a case, neither the initial transition from i to j, nor the subsequent transition from j to 

i would be registered in the state trajectory. Instead, the single molecule would appear to 

have remained in i throughout this measurement period, n, – not having transitioned to the 

new state; this event is called a missed transition, and they affect the nij, and thus M. The 

direct consequence of the missed transition is that the number of transitions from i to j, Mij, 

would be underestimated, ultimately resulting in an underestimation of kij. Additionally, as a 

result of the missed transition, the initial dwell time in i would be overestimated, because it 

would be the combined length of the initial dwell time and the following dwell time in i, 
consequently resulting in an overestimation of Mii, and, ultimately, an underestimation of kij. 

Similarly, in this example, the transition back from j to i is also missed, resulting in an 

underestimation of Mij, and therefore an underestimation of kji.

Misclassified Transitions—A related occurrence is that of misclassified transitions, 

rather than of missed transitions. In this case, a single molecule beginning in state i could 

transition to state j, where it dwells for a period of time, t, that is less then the measurement 

period, τ. Instead of transitioning back from j to i, as in the example above, however, the 

single molecule could transition to a third, distinct state, k. In this case, the initial dwell time 

in i can approximately be correctly measured from the state trajectory, but the transition 

from i to j will be misclassified as a transition from i to k, and the transition from j to k will 

be entirely missed (Fig. 2, green box. As a result of this misclassification, Mij will be 

underestimated, while Mjk will be overestimated. These misestimations result in an 

underestimation of kij, and an over-estimation of kjk. Moreover, in cases where j is an 

obligatory intermediate in the transition from i to k, such misclassified transitions could lead 

to an incorrect kinetic model in which the fact that j is an obligatory intermediate is not 

deduced, and, instead, direct transitions from i to k are erroneously concluded to occur.

Missed Dwells—In the example of the missed transition from state i to state j given in 

above, we described a dwell time, t, in state j that was shorter than the measurement period, 

τ. This transient dwell time, which resulted in the missed transition, is called a missed dwell 

because it is so short that the time spent in j was not registered in the state trajectory (Fig. 2, 

purple boxes). While the missed dwell is closely related to the missed transitions (it is 

causal), it and its effects are conceptually distinct from a missed transition. The missed dwell 

in j yields an underestimation of Mjj, and, consequently, an overestimation of kjx, where x 
stands for any state accessible from j. However, it also can provide drastic overestimates of 

the entries in nix, which, as we show below, can seemingly distort otherwise normal 

Markovian behavior.

Correcting Rate Constants for the Finite Length of Signal Trajectories

Biomolecular systems may undergo very long-lived dwell times, t, relative to the finite 

length of a signal trajectory. For example, in an smFRET experiment, signal loss due to 

fluorophore photobleaching can occur before a transition occurs. In such a case, the entire 

state trajectory is typically discarded, and is not included in any subsequent dwell time 
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distribution analysis. This is because the arbitrary experimental end time of the signal 

trajectory truncates the last and only dwell time, and it is therefore unclear to which nij such 

a dwell time belongs. As a result, such long-lived dwell times are typically unclassified, and 

systematically excluded from further analyses, which can result in a misestimated counting 

matrix, M, but, also, it reduces the amount of data in M to a point where any subsequent 

calculation of a stochastic rate constant will be extremely imprecise.

Fortunately, there is a straightforward correction that can be employed to correct for this loss 

of the excluded data, which relies on a control experiment. By including the unclassified 

dwell times in the ith state into Mii, the counting matrix is augmented to account for the 

effect of not having observed a transition during the finite length of the signal trajectory. 

This is true if the finite length of the trajectory is due to stochastic causes (e.g., 

photobleaching, or dissociation of a tether) or deterministic causes (e.g., prematurely 

terminated data collection).40 Notably, the uncertainty in the transition probabilities 

quantified by the Bayesian inference approaches introduced in the previous sections 

accounts for the unobserved transitions. One complicating factor, however, is that any 

resulting stochastic rate constant calculated from this counting matrix will be the sum of the 

parallel reaction pathways of both the reaction under consideration, as well as the stochastic 

causes of signal termination. Mathematically, this can be expressed as

(23)

where  is the observed stochastic rate constant from states i to j calculated from the 

augmented counting matrix, and kst is the stochastic rate constant governing the stochastic 

termination of the signal trajectory. Fortunately, kst can be measured using a control 

experiment performed at the single-molecule level or at the ensemble level (e.g., by 

measuring the rate of photobleaching or of dissociation of a tether. Therefore, the true 

stochastic rate constant in the absence of these signal-terminating processes, kij, can be 

calculated using Eqn. (23). Finally, we note that this correction can easily be extended to 

address additional considerations, such as inactive subpopulations, as it simply entails 

modifying the on-diagonal elements of the counting matrix, M, to account for otherwise 

ignored contributions.

Correcting Stochastic Rate Constants for Missed Dwells and Transitions

One well-characterized method to correct for the effects of missed dwells and missed 

transitions upon the calculation of stochastic rate constants is through the augmentation of 

the kinetic mechanism with ‘virtual states’.41 This method originated in the field of single-

molecule conductance measurements on ion channels, where researchers such as Colquhoun 

and Hawkes pioneered the use of HMMs to analyze the stochastic kinetics of individual ion 

channel opening and closing events.19 The general approach of this method to correct 

stochastic rate constants is to consider the expected number of missed dwells in a particular 

state. These expected, missed dwells are then classified into virtual states, which then 

account for any missed dwells without artificially contaminating the dwells that were 
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actually observed. While this method was developed in Ref. 41, and reviewed several times 

since,19,42 we briefly explore it here for completeness.

Assume that there is some ‘cutoff time’, τc, for which a dwell time shorter than τc would 

become a missed dwell in a state trajectory. Interestingly, τc is related to the distinction in 

signal between two states in a signal trajectory, more than to a particular dwell time. For 

instance, if one is assigning states in a state trajectory based upon the crossing of a 

threshold, then τc is the amount of time in a state that yields a time-averaged signal that 

crosses that threshold. Along these lines, τc is also related to the noise and other particulars 

of the recording equipment used in the experiment. Unfortunately, it remains an open 

question as to how to exactly determine τc.41,42 For example, consider the asynchronicity of 

the stochastic transitions between states relative to the start of a measurement period in a 

signal trajectory. For an arbitrary dwell time of length t = τ, the measurement period length, 

a single molecule will, at least, occupy the state for one half of a measurement period, and, 

at most, for all of a measurement period; the exact amount depends upon the exact times 

when the transition occurred, and when the measurement began. Regardless, given an evenly 

spaced threshold, both of these observed dwell times of length τ would time average the 

signal past the threshold — either during the measurement period, n, where the transition 

occurred, or during the neighboring one, n+ 1. However, given several dwell times of the 

exact same length τ/2 < t < τ, only some of these dwell times would pass the threshold and 

be detected; the success of these detections would depend only upon the stochastic time of 

the transition relative to the beginning and end time of the measurement period. Therefore, 

any static value of τc stochastically excludes only some, but not all, of the dwell times of 

these lengths. Regardless, τc should hypothetically be between 0, and τ.

To perform the stochastic rate constant correction, consider a single-molecule experiment on 

a reversible, two-state system, 1 ⇌ 2, with forward and reverse stochastic rate constants of 

k12 and k21, and where measurements are made with a measurement time period, τ. For 

instance, this reaction could be a conformational change, ligand binding event, or folding 

process between states 1 and 2 of a biomolecular system. In this case, the forward reaction 

occurs from state i = 1 only to state j = 2, while the reverse reaction occurs from state i = 2 

only to state j = 1. For a particular observed dwell time in state 1, the following dwell time 

in state 2 can either be a missed dwell, or an observed dwell if it is of length t < τc, or t > τc, 

respectively. Since each missed dwell can induce a missed transition in a state versus time 

trajectory, this criterion also allows us to split the true number of transitions in a state 

trajectory into those that are observed transitions, and those that are missed transitions. 

Furthermore, by considering the mean of the Poisson distribution, an equivalent statement 

can be made for the stochastic rate constants; therefore, the true stochastic rate constants can 

be partitioned as

(24)

From Eqn. (24), we can calculate a corrected stochastic rate constant, kcorrected, in place of 

ktrue, by utilizing a virtual state to account for the contribution for kmissed. Since we know 
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the dwell times assigned to the virtual state are those that were missed, this expression can 

be written as

(25)

where fmissed is the fraction of the total transitions that are missed transitions. Because a 

missed dwell in the subsequent state causes a missed transition in the state of interest, for a 

Markovian system fmissed in state 1 is the fraction of dwell times in state 2 that are less than 

τc, which is fmissed = 1 − e−k21τc. An equivalent expression can be written for the fmissed in 

state 2. Therefore, by substituting this expression into Eqn. (25), we find

(26)

This resultant set of coupled equations is non-linear, so the solution to the corrected 

stochastic rate constants can be calculated numerically by minimizing the sum of squares of 

these equations.42 Without the correction, the observed stochastic rate constants for a two-

state system begin to become inaccurate when the stochastic rate constants become faster 

then one-tenth of the acquisition rate, τ−1. This correction increases the region over which 

stochastic rate constants can be accurately calculated, such that the corrected stochastic rate 

constants are now ~90% accurate when they approach the acquisition rate; the inaccuracy is 

partially due to an unclear choice of τc, and also that the correction assumes a well 

quantified kobserved, which may not be the case, especially given any misclassified 

transitions. Additionally, there are sets of true stochastic rate constants that do not provide a 

solution to these equations, and those that do unfortunately have two solutions—one with 

faster stochastic rate constants and one with slower stochastic rate constants—so, it can be 

challenging to pick the proper solution.41

Seemingly Non-Markovian Behavior Induced by Missed Dwells—While we have 

described how to partially account for missed dwells and missed transitions when 

calculating stochastic rate constants from state trajectories, the assumptions used to both 

calculate the observed stochastic rate constants and to correct the observed stochastic rate 

constants rely on the system being Markovian. Experimentally, many single-molecule 

systems seem to exhibit non-Markovian behavior,43,44 and this is typically assessed, if at all, 

by checking to see whether the discrete dwell times observed in a particular state are 

distributed according to the geometric distribution PMF (Markovian) or not (Non-

Markovian). Again, all of the methods described above that directly address stochastic rate 

constants assume Markovian behavior, and should not be applied in the case of non-

Markovian behavior. Additionally, it is worth noting that model selection for HMMs 

depends upon this assumption as well.7-10 With these limitations in mind, here we 

demonstrate that one particularly detrimental consequence of missed dwells in an otherwise 

Markovian state trajectory is the introduction of seemingly non-Markovian behavior.
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To demonstrate the introduction of seemingly non-Markovian behavior into a Markovian 

system during the analysis of state trajectories, consider a single-molecule kinetic 

experiment that is performed on a reversible, two-state, Markovian system, 1 ⇌ 2, with 

forward and reverse rate constants k12 and k21, respectively. As before, in this case the 

forward reaction occurs from state i = 1 only to state j = 2, while the reverse reaction occurs 

from state i = 2 only to state j = 1. If even one of these stochastic rate constants is relatively 

fast compared to the acquisition rate, there will be many missed dwells for that state. To be 

concrete, one such system might be where k12 = 0.5 sec-1, k21 = 10.0 sec-1, and τ = 0.1 sec; 

here k21 is equal to the acquisition rate while k12 is 20 times slower, and we therefore expect 

that there will be many missed dwells in state 2. The subsequent missed events can be 

readily observed in a signal trajectory (Fig. 3).

After idealizing this signal trajectory into a state trajectory, perhaps by using a threshold, the 

observed length of each dwell time is used to calculate the stochastic rate constants. While 

the observed length of a dwell time in the state trajectory depends upon the true length of the 

dwell time in question, it also depends upon the true lengths of previous and subsequent 

dwell times. This is evident by considering the effect that a missed dwell has upon the state 

trajectory. Consider a dwell time in state 1 that is longer than the measurement period, τ, 

which is followed by a dwell time in state 2 that is shorter than the measurement period, τ 
(Fig. 2). Since this short dwell time in the transiently occupied state 2 will be missed, the 

previous and subsequent dwell times in state 1 are compounded together to create an overly 

long, observed dwell time in the state trajectory. These compounded dwell times can be 

composites of two, three, four, or higher integer-numbers of dwells in state 1; where the 

exact number is one more than the number of missed events in state 2. This dwell time 

compounding phenomenon also occurs for the dwell times in state 2, when the subsequent 

dwell time in state 1 is too short; nonetheless, in this example, there are rarely any missed 

dwells in state 1 because K12 is so slow.

Observed dwell times that are actually several compounded dwell times introduce seemingly 

non-Markovian behavior into the state trajectory. This is apparent when inspecting the 

distribution of the lengths of the observed dwells in the state trajectory (Fig. 3, left). If the 

system is Markovian, these discrete dwell times should be distributed according to the 

geometric distribution PMF as described above. However, it is clear that the geometric 

distribution PMF does not adequately describe the distribution of these observed dwell times 

in this example, especially for the dwell times in state 1 (Fig. 3, right). Despite the 

Markovian behavior used to simulate this two-state system, the fast stochastic rate constant 

k21 yields a dwell time distribution with behavior that is seemingly non-Markovian. As such, 

it is important to recognize that, in this particular situation, analysis methods that assume 

Markovian behavior would be deemed inappropriate for analyzing this data. Beyond the 

problem of attempting to correct for missed events, in order to accurately calculate 

stochastic rate constants from single-molecule kinetic data recorded on systems governed by 

such fast stochastic rate constants, a new approach must be developed that would effectively 

enable ‘temporal super-resolution’ of the data collected from any single-molecule kinetic 

technique. Recently, we have developed a Bayesian-inference based method to do this that 

we call Bayesian Inference for the Analysis of Subtemporal Resolution Data (BIASD) 

(manuscript in preparation).
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Conclusions

While we highlighted several well-established methods for calculating stochastic rate 

constants from state trajectories, the reporting of the precision associated with the resultant 

stochastic rate constants has often been underappreciated. Here, we have shown that a 

common Bayesian inference-based framework is able to provide the uncertainty associated 

with the analysis of every data point in a statistically robust manner; thus, not only does it 

provide an intuitive method to integrate concerns about precision into stochastic rate 

constant calculations, but it helps to maximize the efficiency of the experiment by enabling 

the analysis of the entirety of the data. In addition, we categorized the types of missed events 

that often appear after idealizing signal trajectories into state trajectories, and discussed the 

consequences of these missed events as well as some of the methods that can be 

implemented to account for them and improve the accuracy of stochastic rate constant 

calculations. Perhaps in the future, more detailed, statistical descriptions of the underlying 

molecular dynamics present in the signal trajectories, such as that offered by BIASD, will be 

developed to further overcome these limitations.
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Figure 1. Maximum Likelihood versus Bayesian Approaches to Calculating Transition 
Probabilities
(A) Graphical models of maximum likelihood (ML) (left), and Bayesian (right) based 

methods for calculating the transition probability from state i to state j, Pij. Each model is 

divided in half to give the dwell time distribution analysis (left) or the transition probability 

expansion analysis (right). Blue circles represent the observed variables, grey circles 

represent hidden variables, and black dots represent fixed parameters. The Bayesian model 

expands upon the ML model by using a probability distribution to describe Pij. (B) The 

calculations of Pij from three dwell times using ML (left)- and Bayesian (right)-based 

approaches are plotted as a function of increasing measurement periods (i.e., observations in 

a state trajectory). The true transition probability is shown with a dashed line. Both the ML 

value and the mean of the posterior probability distribution value of Pij calculated with 

dwell-time distribution analysis (stars) and transition probability expansion analysis (circles) 

are shown. Additionally, for the Bayesian approach, the posterior probability distributions 

are plotted for dwell time distribution analysis (filled curves) and for transition probability 

expansion analysis (thin curves). The prior probability distribution, and the numbers of the 

dwell times are denoted in boxes. Notably, the Bayesian-based approach yields non-zero 

transition probabilities, and also provides the uncertainty in Pij in the form of a probability 

distribution.
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Figure 2. Types of Missed Events
An example of a single molecule’s path through state-space is shown in blue, and it 

transitions between three states (i, j, and k) shown in red. Measurement periods over which 

the experimental signal is time averaged are shown as alternating white and grey boxes. 

Missed transitions are shown in yellow, misclassified transitions are shown in green, and 

missed dwells are shown purple.
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Figure 3. Seemingly Non-Markovian Behavior from a Markovian, Two-state System
(Left) Plot of the first 60 sec of a signal trajectory from a simulated two-state, Markovian 

system. A state trajectory for this system was simulated for 2.5×106 sec, and then the 

corresponding signal with signal means of 0 and 1 for states 1 and 2, respectively, was time 

averaged for each measurement period to create a signal trajectory. A negligible amount of 

Gaussian noise was added for visibility. The red line denotes the threshold used to idealize 

the data back into a state trajectory for analysis. Many dwells in the upper state are so 

transient that they result in missed dwells and missed transitions. (Right) Histograms of the 

observed dwell times for state 1 (top), and state 2 (bottom). The red curves are geometric 

distribution PMFs conditioned upon dwell times greater than 1 measurement period, which 

were calculated using the exact stochastic rate constants that were used for the simulation. 

Deviations are the apparent non-Markovian behavior. Contributions from observed dwell 

times comprised of compounded dwell times are shown as dashed curves.
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