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Abstract

Studies in epigenetics have shown that DNA methylation is a key factor in
regulating gene expression. Aberrant DNA methylation is often associated with
DNA instability, which could lead to development of diseases such as cancer.
DNA methylation typically occurs in CpG context. When located in a gene
promoter, DNA methylation often acts to repress transcription and gene
expression. The most commonly used technology of studying DNA methylation
is bisulfite sequencing (BS-seq), which can be used to measure genomewide
methylation levels on the single-nucleotide scale. Notably, BS-seq can also be
combined with enrichment strategies, such as reduced representation bisulfite
sequencing (RRBS), to target CpG-rich regions in order to save per-sample
costs. A typical DNA methylation analysis involves identifying differentially
methylated regions (DMRs) between different experimental conditions. Many
statistical methods have been developed for finding DMRs in BS-seq data. In
this workflow, we propose a novel approach of detecting DMRs using edgeR.
By providing a complete analysis of RRBS profiles of epithelial populations in
the mouse mammary gland, we will demonstrate that differential methylation
analyses can be fit into the existing pipelines specifically designed for RNA-seq
differential expression studies.

In addition, the edgeR generalized linear model framework offers great
flexibilities for complex experimental design, while still accounting for the
biological variability. The analysis approach illustrated in this article can be
applied to any BS-seq data that includes some replication, but it is especially
appropriate for RRBS data with small numbers of biological replicates.
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Introduction

Studies in the past have shown that DNA methylation, as an important epigenetic factor, plays a vital role in
genomic imprinting, X-chromosome inactivation and regulation of gene expression'. Aberrant DNA methylation
is often correlated with DNA instability, which leads to development of diseases including imprinting disorders
and cancer™’.

In mammals, DNA methylation almost exclusively occurs at CpG sites, i.e. regions of DNA where a cytosine (C)
is linked by a phosphate (p) and bond to a guanine (G) in the nucleotide sequence from 5’ to 3”. It has been found
that 70% ~ 80% of CpG cytosines are methylated in mammals, regardless of the cell type*. Unmethylated CpGs
usually group together in clusters of regions known as CpG islands’, which cover about 2% of the entire genome.
Around 40% of mammalian genes and 70% of human genes have CpG islands enriched in their promoter
regions®®. CpG methylation in gene promoters is generally associated with repression of transcription, and hence
silencing of gene expression’. When occurring at the promoters of tumor suppressor gene, DNA methylation
could repress the tumour suppressors, leading to oncogenesis’. In contrast, high levels of methylation have
been observed in the gene body of highly expressed genes’, which implies positive correlation between gene body
methylation and gene expression.

Among numerous existing technologies, the most widely used method to investigate DNA methylation is
bisulfite sequencing (BS-seq), which produces data on the single-nucleotide scale'’. Unmethylated cytosines (C)
are converted to Uracils (U) by sodium bisulfite and then deaminated to thymines (T) during PCR amplification.
Methylated Cs, on the other hand, remain intact after bisulfite treatment. The BS-seq technique can be used to
measure genome-wide single-cytosine methylation levels by sequencing the entire genome. This strategy produces
whole genome bisulfite sequencing (WGBS) data. However, the WGBS approach could be cost-prohibitive for
species, such as human, with large genome. In addition, the fact that CpG islands reside in only 2% of the entire
genome makes the WGBS approach inefficient when comparing a large number of samples.

To improve the efficiency and bring down the scale and cost of WGBS, enrichment strategies have been
developed and combined with BS-seq to target a specific fraction of the genome. A common targeted approach is
reduced representation bisulfite sequencing (RRBS) that targets CpG-rich regions''. Under the RRBS strategy,
small fragments that compose only 1% of the genome are generated using Mspl digestion, which means
fewer reads are required to obtain accurate sequencing. The RRBS approach can capture approximately 70% of gene
promoters and 85% of CpG islands, while requiring only small quantities of input sample'”. In general, RRBS has
great advantages in cost and efficiency when dealing with large scale data, whereas WGBS is more suitable for
studies where all CpG islands or promoters across the entire genome are of interest.

The first step of analyzing BS-seq data is to align short reads to genome. The number of C-to-T conversions
are then counted for all the mapped reads. A number of software tools have been developed for the purposes
of read mapping and methylation calling of BS-seq data. Popular ones include Bismark'’, MethylCoder", BRAT",
BS-Seeker'® and BSMAP". Most of the software tools rely on existing short read aligners, such as Bowtie'®.

Typical downstream DNA methylation studies often involve finding differentially methylated regions (DMRs)
between different experimental conditions. A number of statistical methods and software packages have been
developed for detecting DMRs using the BS-seq technology. methylkit" and RnBeads” implement Fisher’s Exact
Test, which is a popular choice for two-group comparisons with no replicates. In the case of complex experimental
designs, regression methods are widely used to model methylation levels or read counts. RnBeads offers a linear
regression approach based on the moderated t-test and empirical Bayes method implemented in limma*'. BSmooth*
is another analysis pipeline that uses linear regression and empirical Bayes together with a local likelihood smoother.
methylkit also has an option to apply logistic regression with overdispersion correction’”’. Some other meth-
ods have been developed based on beta-binomial distribution to achieve better variance modelling. For example,
DSS fits a Bayesian hierarchical beta-binomial model to BS-seq data and uses Wald tests to detect DMRs*'. Other
software using beta-binomial model include BiSeq*', MOABS> and RADMeth*.

In this workflow, we demonstrate an edgeR approach of differential methylation analysis. edgeR is one of
the most popular Bioconductor packages for assessing differential expression in RNA-seq data’’. It is based on
the negative binomial (NB) distribution and it models the variation between biological replicates through the NB
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dispersion parameter. Unlike other approaches to methylation sequencing data, the analysis explained in this work-
flow keeps the counts for methylated and unmethylated reads as separate observations. edgeR linear models are used
to fit the total read count (methylated plus unmethylated) at each genomic locus, in such a way that the proportion
of methylated reads at each locus is modelled indirectly as an over-dispersed binomial distribution. This approach
has a number of advantages. First, it allows the differential methylation analysis to be undertaken using existing
edgeR pipelines developed originally for RNA-seq differential expression analyses. The edgeR generalized
linear model (GLM) framework offers great flexibility for analysing complex experimental designs while still
accounting for the biological variability. Second, keeping methylated and unmethylated read count as separate data
observations allows the inherent variability of the data to be modeled more directly and perhaps more realistically.
Differential methylation is assessed by likelihood ratio tests so we do not need to assume that the log-fold-changes
or other coefficient estimators are normally distributed.

This article presents an analysis of an RRBS data set generated by the authors containing replicated RRBS
profiles of basal and luminal cell populations from the mouse mammary epithelium. As with other articles
in the Bioconductor Gateway series, our aim is to provide an example analysis with complete start to finish
code. As with other Bioconductor workflow articles, we illustrate one analysis strategy in detail rather than
comparing different pipelines. The analysis approach illustrated in this article can be applied to any BS-seq data
that includes some replication, but is especially appropriate for RRBS data with small numbers of biological
replicates. The results shown in this article were generated using Bioconductor Release 3.6.

The NB linear modeling approach to BS-seq data

A small example

To introduce the edgeR linear modeling approach to BS-seq data, consider a genomic locus that has m, methylated
and u, unmethylated reads in condition A and m, methylated and u, unmethylated reads in condition B. Our
approach is to model all four counts as NB distributed with the same dispersion but different means. Suppose the
data is as given in Table 1. If this were a complete dataset, then it could be analyzed in edgeR as follows.

> counts <- matrix(c(2,12,11,0),1,4)
> dimnames (counts) <- list("Locus", c("A Me","A Un","B Me","B Un")))
> counts

A Me A Un B Me B Un

Locus 2 12 11 0

> design <- cbind(Samplel = c(1,1,0,0),
Sample2 = ¢(0,0,1,1),
A MvsU = ¢(1,0,1,0),
BvsA MvsU = ¢ (0,0,1,0))

> fit <- glmFit (counts, design, lib.size=c(100,100,100,100), dispersion=0.0247)
> 1rt <- glmLRT(fit, coef="BvsA MvsU")
> topTags (lrt)
Coefficient: BvsA MvsU
logFC logCPM LR PvValue FDR
Locus 8.99 16.3 20.7 5.27e-06 5.27e-06

Table 1. A small example data set.

Sample Condition Methylated Count Unmethylated Count
1 1 2 12
2 2 11 0
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In this analysis, the first two coefficients are used to model the total number of reads (methylated or unmethylated)
for samples 1 and 2, respectively. Coefficient 3 (A MvsU) estimates the log ratio of methylated to unmethylated
reads for sample 1, a quantity that can also be viewed as the logit proportion of methylated reads in sample 1.
Coefficient 4 (BvsA_ MvsU) estimates the difference in logit proportions of mythylated reads between conditions
B and A. The difference in logits is estimated here as 8.99 on the log2 scale. The P-value for differential methylation
(BvsA)is P =527 x 10"

The dispersion parameter controls the degree of biological variability”®. If we had set dispersion=0 in
the above code, then the above analysis would be exactly equivalent to a logistic binomial regression, with the
methylated counts as responses and the total counts as sizes, and with a likelihood ratio test for a difference in
proportions between conditions A and B. Positive values for the dispersion produce over-dispersion relative to the
binomial distribution. We have set the dispersion here equal to the value that is estimated below for the mammary
epithelial data.

In the above code, the two library sizes for each sample should be equal. Otherwise, the library size values are
arbitrary and any settings would have lead to the same P-value.

Relationship to beta-binomial modeling

It is interesting to compare this approach with beta-binomial modeling. It is well known that if m and u are
independent Poisson random variables with means u_and u , then the conditional distribution of m given m + u is
binomial with success probability p =y, /Au, + u ). If the Poisson means u and u, themselves follow gamma distribu-
tions, then the marginal distributions of m and u are NB instead of Poisson. If the two NB distributions have different
dispersions, and have expected values in inverse proportion to the dispersions, then the conditional distribution
of m given m + u follows a beta-binomial distribution. The approach taken in this article is closely related to the
beta-binomial approach but makes different and seemingly more natural assumptions about the NB distributions.
We instead assume the two NB distributions to have the same dispersion but different means. The NB linear
modeling approach allows the means and dispersions of the two NB distributions to be estimated separately, in
concordance with the data instead of being artificially linked.

Description of the biological experiment

Aim of the study

The epithelium of the mammary gland exists in a highly dynamic state, undergoing dramatic morphogenetic
changes during puberty, pregnancy, lactation, and regression””. Characterization of the lineage hierarchy of cells in
the mammary epithelium is an important step toward understanding which cells are predisposed to oncogenesis.
In this study, we profiled the methylation status of the two major functionally distinct epithelial compartments: basal
and luminal cells. The basal cells were further divided into those showing high or low expression of the surface
marker Itga5 as part of our investigation of heterogeneity within the basal compartment. We carried out global
RRBS DNA methylation assays on two biological replicates of each of the three cell populations to determine
whether the epigenetic machinery played a potential role in (i) differentiation of luminal cells from basal and (ii) any
compartmentalization of the basal cells associated with Itga5.

Sample preparation

Inguinal mammary glands (minus lymph node) were harvested from FVB/N mice. All animal experiments
were conducted using mice bred at and maintained in our animal facility, according to the Walter and Eliza
Hall Institute of Medical Research Animal Ethics Committee guidelines. Epithelial cells were suspended and
fluorescence-activated cell sorting (FACS) was used to isolate basal and luminal cell populations™. Genomic DNA
(gDNA) was extracted from freshly sorted cells using the Qiagen DNeasy kit. Around 25ng gDNA input was sub-
jected to DNA methylation analysis by BS-seq using the Ovation RRBS Methyl-seq kit from NuGEN. The process
includes Mspl digestion of gDNA, sequencing adapter ligation, end repair, bisulfite conversion, and PCR amplification
to produce the final sequencing library. The Qiagen EpiTect Bisulfite kit was used for bisulfite-mediated conversion
of unmethylated cytosines.
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Experimental design
There are three groups of samples: luminal population, Itga5- basal population and Itga5+ basal population.
Two biological replicates were collected for each group. This experimental design is summarized in the table below.

> targets <- read.delim("targets.txt", stringsAsFactors=FALSE)
> targets

Sample Population Description
1 P6 1 P6 Luminal
2 P6 4 P6 Luminal
3 P7 2 P7 Basal Itgab neg
4 P7 5 P7 Basal Itgab5 neg
5 P8 3 P8 Basal Itga5 pos
6 P8 6 P8 Basal Itga5 pos

The experiment has a simple one-way layout with three groups. A single grouping factor is made as follows:

> Group <- factor (targets$Population)
> Group

[1] P6 P6 P7 P7 P8 P8
Levels: P6 P7 P8

The sequencing was carried out on the Illumina NextSeq 500 platform. About 30 million 75bp paired-end reads
were generated for each sample.

Differential methylation analysis at CpG loci

Processing bisulfite sequencing FASTQ files

The first step of the analysis is to map the sequencing reads from the FASTQ files to the mouse genome and then
perform methylation calls. Though many options are available, we use Bismark for read alignment and methylation
calling. Bismark is one of the most popular software tools to perform alignments of bisulfite-treated sequencing
reads to a genome of interest and perform methylation calls. It maps sequencing reads using the short read aligner
Bowtie 1'% or alternatively Bowtie 2°'.

To increase alignment rates and reduce false methylation calls, it is recommended to trim poor quality
reads on sequence ends and remove adapters that can be potentially sequenced prior to the alignment. This is done
using trim galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). After that, Bismark
version v0.13.0 is used to align the reads to the mouse genome mm10. The final methylation calls are made using
bismark methylation extractor.

Downloading the data

The Bismark outputs include one coverage bed file of the methylation in CpG context for each sample. The
coverage outputs from Bismark are available at http://bioinf.wehi.edu.au/edgeR/F1000Research2017/. Readers
wishing to reproduce the analysis presented in this article can download the zipped coverage bed files produced by
Bismark from the above link.

Bed files can be read into R using read.delim as for txt files. Each of the bed files has the following format:

> P6 1 <- read.delim("P6 1l.bismark.cov.gz", header=FALSE)

> head (P6_1)

V1 V2 V3 V4 V5 V6
1 chre 3052156 3052156 87.9 51 7
2 chr6 3052157 3052157 85.7 6 1
3 chro 3052246 3052246 0.0 0 1
4 chro 3052415 3052415 100.0 57 O
5 chro 3052416 3052416 100.0 7 O
6 chr6e 3052434 3052434 94.7 54 3
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The columns in the bed file represent: V1: chromosome number; V2: start position of the CpG site; V3: end position
of the CpG site; V4: methylation proportion; V5: number of methylated Cs; V6: number of unmethylated Cs.

Reading in the data

Since the start and end positions in the coverage outputs are identical for each CpG site, only one of them is
needed for marking the location of each. We also ignore the methylation proportion as it can be directly calculated

from the number of methylated and unmethylated Cs. The data can then be read into a list in R:

Sample <- targets$Sample
fn <- pasteO(Sample, ".bismark.cov.gz")

data <-

datal[1]]
names (data[[i]])

>

>

> list ()

> for(i in l:length(Sample))
+

+

+

<- read.delim(file=fn[i],
<- c("Chr",

{

"Position",

header=FALSE) [, -(3:4)]
"Meth",

”Ul’l")

The data object is a list containing six data frames, each of which represents one sample. The first and second
columns of each data frame are the chromosome numbers and positions of all the CpG loci observed in that sample.
The last two columns contain the numbers of methylated and unmethylated Cs detected at those loci. Since the
number of reported CpG loci varies across different samples, care is required to combine the information from
all the samples. We first obtain all unique CpG loci observed in at least one of the six samples. This is done
by combining the chromosome number and position of each CpG site. Then we extract read counts of methylated
and unmethylated Cs at these locations across all the samples and combine them into a count matrix.

position <- sapply(data,

function (x)

position all <- unique (unlist (position))

>

>

> counts <- matrix (0L, nrow=length (position all),
> for(i in 1l:length (Sample))

+ m <- match(position[[i]], position all)

+
+

counts[m, <- as.matrix(data[[i]l][,

c(2*i-1,2*1)]

{

paste(x[,1],

x[,2],

3:47)

Sep:"—")

)

ncol=2*length (Sample))

The counts object is a matrix of integer counts with 12 columns, two for each sample. The odd number of
columns contain the numbers of methylated Cs, whereas the even number of columns contain the numbers of
unmethylated Cs. The genomic positions are used as the row names of the count matrix.

Sample?2
Sample?2
Meth <-
Meth <-

vV V.V V V V V

chr6-3052156
chr6-3052157
chr6-3052246
chr6-3052415
chr6-3052416
chr6-3052434

chr6-3052156
chr6-3052157
chr6-3052246
chr6-3052415
chr6-3052416
chr6-3052434

rownames (counts)
<- rep(Sample,
<- factor (Sample2)
rep(c("Me","Un"),
factor (Meth,
colnames (counts)
head (counts)

P8 3-Me

P6 1-Me P6_1-Un

51 7
6 1
0 1

57 0
7 0

54 3

P8 3-Un

40
0
1

46
0

9
0
1
1
0
47 0

<- position all
each=2)

<- paste(Sample?2,

length (Sample))
levels=c ("Un", "Me"))

Meth,

Sep:n_n)

P6 4-Me P6 _4-Un P7 2-Me P7 2-Un

62

5

0

75

5

72

P8 6-Me
28

36

36

13
0

S O P O

P8 6-Un
10

O O O O

48
0
0

50
0

48

3
0
0
1
0
3

31
3
2

36
4

36

P7 5-Me P7 5-Un

= O P O ©
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We then proceed to the edgeR analysis of the methylation data. The edgeR package stores data in a simple
list-based data object called a DGEList. We first create a DGEList object using the count matrix generated
before. The information of CpG sites is converted into a data frame and stored in the genes component of the
DGEList object.

> library (edgeR)

> options (digits=3)

> Chr <- gsub("-.*$", "", position all)

> Position <- gsub("*.*-", "", position all)

> Genes <- data.frame (Chr=Chr, Position=Position)

> y <- DGEList (counts, genes=Genes, group=rep (Group,each=2))

Filtering to remove low counts
We first sum up the read counts of both methylated and unmethylated Cs at each CpG site within each sample.

> counts_total <- t(rowsum(t(counts), Sample2))
> head(counts total)

P6 1 P6_4 P7 2 P75 P8 3 P8 6
chr6-3052156 58 75 51 39 49 38

chr6-3052157 7 5 0 4 0 2
chr6-3052246 1 0 0 2 2 2
chr6-3052415 57 76 51 37 47 36
chr6-3052416 7 5 0 4 0 2

chr6-3052434 57 76 51 37 47 36

CpG loci that have very low counts across all the samples shall be removed prior to downstream analysis as
they provide little information for assessing methylation levels. As a rule of thumb, we require a CpG site to have a
total count (both methylated and unmethylated) of at least 10 across all the samples before it is considered in the
study.

> keep <- rowSums (counts_total >= 10) == 6
> table (keep)

keep
FALSE TRUE
3139160 398926

The DGEList object is subsetted to retain only the non-filtered loci:
> y <- ylkeep,,keep.lib.sizes=FALSE]

The option keep.1lib.sizes=FALSE causes the library sizes to be recomputed after the filtering. This is generally
recommended, although the effect on the downstream analysis is usually small.

Normalization

A key difference between BS-seq and other sequencing data is that the pair of libraries holding the methylated and
unmethylated reads for a particular sample are treated as a unit. To ensure that the methylated and unmethylated reads
for the same sample are treated on the same scale, we need to set the library sizes to be equal for each pair of libraries.
We set the library sizes for each sample to be the average of the total read counts for the methylated and unmethylated
libraries:

> TotalReadCount <- colMeans (matrix(y$samples$lib.size, nrow=2, ncol=6))

> y$samples$lib.size <- rep(TotalReadCount, each=2)
> y$samples
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group lib.size norm.factors

P6_1-Me P6 12620834 1
P6_1-Un P6 12620834 1
P6_4-Me P6 19410820 1
P6_4-Un P6 19410820 1
P7_2-Me P7 10272918 1
P7_2-Un P7 10272918 1
P7_5-Me P7 12055355 1
P7_5-Un P7 12055355 1
P8 3-Me P8 9055759 1
P8 3-Un P8 9055759 1
P8_6-Me P8 7475953 1
P8_6-Un P8 7475953 1

Other normalization methods developed for RNA-seq data, such as TMM™, are not required for BS-seq data.

Exploring differences between samples

In DNA methylation studies, methylation levels are of most interest. For Illumina methylation assay,
two common measurements of methylation levels are S-values and M-values, which are defined as § = M/(M+U)
and M-value= log,(M/U) where M and U denote the methylated and unmethylated intensity”’. Here we adopt the
same idea and extend the two measurements to BS-seq data. That is, denote the methylated and unmethylated Cs by
M and U respectively, and define the -values and M-values in the same way as above.

In practice, for a particular CpG site in one sample, the M-value can be computed by subtracting the log2
count-per-million (CPM) of the unmethylated Cs from that of the methylated Cs. This is equivalent to the calcula-
tion of the defined M-values as the library sizes are set to be the same for each pair of methylated and unmethylated
columns and they cancel each other out in the subtraction. A prior count of 2 is added to the calculation of log2-CPM
to avoid undefined values and to reduce the variability of M-values for CpG sites with low counts. The calculation
of S-value is straight-forward though a small offset may also be added to the calculation.

> Beta <- y$counts[, Meth=="Me"] / counts totall[keep, ]

> logCPM <- cpm(y, log=TRUE, prior.count=2)

> M <- logCPM[, Meth=="Me"] - 1logCPM[, Meth=="Un"]

> colnames (Beta) <- colnames (M) <- Sample

The outputs Beta and M are numeric matrices with six columns, each of which contains the [-values or
M-values calculated at each CpG site in one sample. Then we can generate multi-dimensional scaling (MDS)
plots to explore the overall differences between the methylation levels of the different samples. Here we decorate
the MDS plots to indicate the cell groups:

> par (mfrow=c(1,2))
> plotMDS (Beta, col=rep(l:3, each=2), main="Beta-values")
> plotMDS (M, col=rep(l:3, each=2), main="M-values")

Figure 1 shows the resulting plots. In these plots, the distance between each pair of samples represents the
average log-fold change between the samples for the top most differentially methylated CpG loci between that
pair of samples. (We call this average the leading log-fold change.) The two replicate samples from the luminal
population (P6) are seen to be well separated from the four basal samples (populations P7 and PS).
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Figure 1. The MDS plots of the methylation levels of the data set. Methylation levels are measured in beta
values (left) and M-values (right). Samples are separated by the cell population in the first dimension in both MDS
plots.

Design matrix

One aim of this study is to identify differentially methylated regions (DMRs) between different groups. In edgeR,
this can be done by fitting linear models under a specified design matrix and testing for corresponding coefficients
or contrasts. Here, a design matrix is constructed as follows:

> design <- model.matrix (T Sample2 + Meth)
> colnames (design) <- gsub ("Sample2","",colnames (design))
> colnames (design) <- gsub ("Meth","",colnames (design))
> colnames (design) [1] <- "Int"
> design <- cbind(design,
+ Me2=c(0,0,0,0,1,0,1,0,0,0,0,0),
+ Me3=c(0,0,0,0,0,0,0,0,1,0,1,0))
> design

Int P6 4 P7 2 P75 P8 3 P8 6 Me Me2 Me3
1 1 0 0 0 0 0 1 0 0
2 1 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 1 0 0
4 1 1 0 0 0 0 0 0 0
5 1 0 1 0 0 0 1 1 0
6 1 0 1 0 0 0 0 0 0
7 1 0 0 1 0 0 1 1 0
8 1 0 0 1 0 0 0 0 0
9 1 0 0 0 1 0 1 0 1
10 1 0 0 0 1 0 0 0 0
11 1 0 0 0 0 1 1 0 1
12 1 0 0 0 0 1 0 0 0

The first six columns represent the sample effect. It accounts for the fact that each pair of columns of the
count matrix are from one of the six samples. The 7th column “Me” represents the methylation level (in M-value)
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in the P6 group. The 8th column “Me2” represents the difference in methylation level between the P7 and P6 groups.
Finally, the last column “Me3” represents the difference in methylation level between the P8 and P6 groups.

Dispersion estimation

With the design matrix specified, we can now proceed to the standard edgeR pipeline and analyze the data in
the same way as for RNA-seq data. Similar to the RNA-seq data, the variability between biological replicates has
also been observed in bisulfite sequencing data. This variability can be captured by the NB dispersion parameter
under the generalized linear model (GLM) framework in edgeR.

The mean-dispersion relationship of BS-seq data has been studied in the past and no apparent mean-dispersion
trend was observed”. This is also verified through our own practice. Therefore, we would not consider a
mean-dependent dispersion trend as we normally would for RNA-seq data. A common dispersion estimate for
all the loci, as well as an empirical Bayes moderated dispersion for each individual locus, can be obtained from the
estimateDisp function in edgeR:

> y <- estimateDisp(y, design=design, trend="none")

> y$common.dispersion

[1] 0.0247
> summary (y$prior.df)

Min. 1st Qu. Median Mean 3rd Qu. Max.

Inf Inf Inf Inf Inf Inf

This returns a DGEList object with additional components (common.dispersion and tagwise.
dispersion) added to hold the estimated dispersions. Here the estimation of trended dispersion has been turned
off by setting trend="none". For this data, the estimated prior degrees of freedom (df) are infinite for all
the loci, which implies all the CpG-wise dispersions are exactly the same as the common dispersion. A BCV

plot is often useful to visualize the dispersion estimates, but it is not informative in this case.

Testing for differentially methylated CpG loci
We first fit NB GLMs for all the CpG loci using the glmFit function in edgeR.

> fit <- glmFit(y, design)
Then we can proceed to testing for differentially methylated CpG sites between different populations. One of
the most interesting comparisons is between the basal (P7 and P8) and luminal (P6) groups. The contrast
corresponding to any specified comparison can be constructed conveniently using the makeContrasts function:
> contr <- makeContrasts(BvsL=0.5* (Me2+Me3), levels=design)
The actual testing is performed using likelihood ratio tests (LRT) in edgeR.
> lrt <- glmLRT (fit, contrast=contr)
The top set of most differentially methylated (DM) CpG sites can be viewed with topTags:
> topTags (lrt)
Coefficient: 0.5*Me2 0.5*Me3
Chr Position logFC logCPM LR PValue FDR
chrl13-45709467 chrl3 45709467 -7.60 3.06 342 2.71le-76 9.62e-71

chrl6-76326604 chrl6e 76326604 8.87 2.60 341 4.82e-76 9.62e-71
chr10-40387375 chrl0 40387375 8.13 2.85 333 2.48e-74 3.30e-69
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Here positive log-fold changes represent CpG sites that have higher methylation level in the basal population
compared to the luminal population. The Benjamini-Hochberg multiple testing correction is applied to control the
false discovery rate (FDR).

The total number of DM CpG sites identified at an FDR of 5% can be shown with decideTestsDGE. There
are in fact more than 50,000 differentially methylated CpGs in this comparison:

> summary (decideTests (lrt))

0.5*Me2 0.5*Me3

-1 35891
0 344846
1 18189

The differential methylation results can be visualized with an MD plot (see Figure 2):

> plotMD (1lrt)
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Figure 2. MD plot showing the log-fold change of the methylation level and average abundance of each CpG site.
Significantly up and down methylated CpGs are highlighted in red and blue, respectively.
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The logFC of the methylation level for each CpG site is plotted against the average abundance in log2-CPM.
Significantly differentially methylated CpGs are highlighted.

Differential methylation in gene promoters

Pre-defined gene promoters

The majority of CpGs are methylated in mammals. On the other hand, unmethylated CpGs tend to group into
clusters of CpG islands, which are often enriched in gene promoters. CpG methylation in promoter regions is
often associated with silencing of transcription and gene expression’. Therefore it is of great biological interest to
examine the methylation level within the gene promoter regions.

For simplicity, we define the promoter of a gene as the region from 2kb upstream to 1kb downstream of the
transcription start site of that gene. The genomic locations and their associated annotations of the promoters can
be obtained using the TxDb.Mmusculus. UCSC.mm10.knownGene package.

library (TxDb.Mmusculus.UCSC.mml0.knownGene)
genes Mm <- genes (TxDb.Mmusculus.UCSC .mm10.knownGene)

rr

GRanges object with 24044 ranges

sedgnames

<Rle>
100009600 chr9 [ 21074497,
100009609 chr7 [ 84963010,
100009614 chrl0 [ 77709446,
100009664 chrll [ 45806083,
100012 chr4 [144161652,
99889 chr3 [ 85886519,
99890 chr3 [110250000,
99899 chr3 [151748960,
99929 chr3 [ 65526447,
99982 chr4 [136601724,

>

>

> pr <- promoters(genes Mm, upstream=2000, downstream
>

and 1 metadata colum
ranges strand |
<IRanges> <Rle>
21077496] -
84966009
77712445
45809082
144164651

]
] +
] +
]

85889518] |
110252999] |
151751959] -

65529446] |
136604723] |

seginfo: 66 sequences (1 circular) from mml0 genome

=1000)

n:
gene_ id
<character>
100009600
100009609
100009614
100009664
100012
99889

99890

99899

99929

99982

Here, pr is a GRanges class object that contains the genomic ranges of the promoters of all the known mouse

genes in the annotation package.

Summarizing counts in promoter regions

We create another GRanges class object sites, which contains the genomic locations of all the observed CpG

sites.

> Position <- as.numeric (Position)

> sites <- GRanges (seqnames=Chr,

ranges=IRanges (start

=Position,

end=Position))

Then we find the overlaps between the gene promoter regions and all the CpG sites in the data using

findOverlaps.
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> olap <- findOverlaps (query=pr, subject=sites)
> olap

Hits object with 1522464 hits and 0 metadata columns:
queryHits subjectHits
<integer> <integer>

[1] 3 2493045
[2] 3 2493046
[3] 3 2493047
[4] 3 2493048
[5] 6 1898041
[1522460] 24044 3077832
[1522461] 24044 3317008
[1522462] 24044 3317009
[1522463] 24044 3317010
[1522464] 24044 3434601

queryLength: 24044 / subjectLength: 3538086

The queryHits component of olap marks the indices of the promoter region as in pr, whereas the
subjectHits component contains the indices of the CpG sites as in sites that overlap with the corresponding
promoter regions.

The numbers of methylated and unmethylated CpGs overlapping with gene promoters are summed up for each
promoter.

> counts2 <- counts[subjectHits (olap), |
> counts2 <- rowsum(counts2, queryHits (olap))

The integer matrix counts2 contains the total numbers of methylated and unmethylated CpGs observed
within the promoter of each gene. Same as before, counts2 has 12 columns, two for each sample. The odd
number of columns contain the numbers of methylated Cs, whereas the even number of columns contain the
numbers of unmethylated Cs. The only difference is that each row of counts2 now represents a gene promoter
instead of an individual CpG site.

The gene symbol information can be added to the annotation using the org.Mm.eg.db package. A DGEList object is
created for the downstream edgeR analysis.

ind <- as.numeric (rownames (counts2))

rownames (counts2) <- pr$gene id[ind]

library(org.Mm.eg.db)

anno <- select (org.Mm.eg.db, keys=pr$gene id, columns="SYMBOL",
keytype="ENTREZID")

anno <- data.frame (Symbol=anno$SYMBOL[ind])

y2 <- DGEList (counts2, genes=anno, group=rep (Group,each=2))

vV V. + V V V V

We sum up the read counts of both methylated and unmethylated Cs at each CpG sites within each sample.

> counts2 total <- t(rowsum(t (counts2), Sample2))
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Filtering to remove low counts
Filtering is performed in the same way as before. Since each row represents a 3,000-bp-wide promoter region that
contains multiple CpG sites, we would expect less filtering than before.

> keep2 <- rowSums (counts2 total >= 10) == 6
> table (keep2)

keep2
FALSE TRUE
1754 16790

> y2 <- y2[keep2,,keep.lib.sizes=FALSE]

Same as before, we do not perform normalization but set the library sizes for each sample to be the average of the
total read counts for the methylated and unmethylated libraries.

> TotalReadCount2 <- colMeans (matrix(y2$samples$lib.size, nrow=2, ncol=6))
> y2$samples$lib.size <- rep(TotalReadCount2, each=2)

> y2$samples

group lib.size norm.factors

P6_1-Me P6 12474999 1
P6_1-Un P6 12474999 1
P6_4-Me P6 12579436 1
P6_4-Un P6 12579436 1
P7_2-Me P7 5110397 1
P7_2-Un P7 5110397 1
P7_5-Me P7 11189796 1
P7_5-Un P7 11189796 1
P8 3-Me P8 4123987 1
P8 3-Un P8 4123987 1
P8_6-Me P8 3562239 1
P8_6-Un P8 3562239 1

Exploring differences between samples

Same as before, we measure the methylation levels of gene promoter regions using both B-values and M-values.
A prior count of 2 is added to the calculation of log2-CPM to avoid undefined values and to reduce the variability
of M-values for gene promoters with low counts. Then MDS plots are produced to examine the overall differences
between the methylation levels of the different samples.

Beta2 <- y2S$counts[, Meth=="Me"] / counts2 total[keep2, ]
logCPM2 <- cpm(y2, log=TRUE, prior.count=2)

M2 <- logCPM2[, Meth=="Me"] - 1logCPM2[, Meth=="Un"]
colnames (Beta?2) <- colnames (M2) <- Sample

par (mfrow=c(1l,2))

plotMDS (Beta2, col=rep(l:3, each=2), main="Beta-values")
plotMDS (M2, col=rep(l:3, each=2), main="M-values")

vV V. V V V V V

The resulting Figure 3 shows that the two replicate samples from the luminal population (P6) are well separated
from the four replicate samples from the basal population (P7 and PS).
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Figure 3.The MDS plots of the methylation levels at gene promoters. Methylation levels are measured in beta values
(left) and M-values (right). Samples are separated by the cell population in the first dimension in both MDS plots.

Dispersion estimation
We estimate the NB dispersions using the estimateDisp function in edgeR. For the same reason, we do
not consider a mean-dependent dispersion trend as we normally would for RNA-seq data.

> y2 <- estimateDisp(y2, design=design, trend="none", robust=TRUE)
> y2$common.dispersion

[1] 0.0301
> summary (y2$prior.df)

Min. 1st Qu. Median Mean 3rd Qu. Max.
10.2 10.2 10.3 10.3 10.4 10.4

The dispersion estimates can be visualized with a BCV plot (see Figure 4):
> plotBCV (y2)

Testing for differential methylation in gene promoters
We first fit NB GLMs for all the gene promoters using glmFit.

> fit2 <- glmFit(y2, design)

Then we can proceed to testing for differentially methylation in gene promoter regions between different
populations. Suppose the comparison of interest is same as before. The same contrast can be used for the testing.

> 1rt2 <- glmLRT(fit2, contrast=contr)
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Figure 4. Scatterplot of the BCV against the average abundance of CpG sites in each gene promoter. The plot
shows the square-root estimates of the common and tagwise NB dispersions.

The top set of most differentially methylated gene promoters can be viewed with topTags:

> topTags (lrt2)

Coefficient:

16924
238161
64082
11601
12740
387514
73644
321019
76509

100043766

Symbol
Lnx1
Akapb6
Popdc?2
Angpt2
Cldn4
Tas2rl43
2210039B01R1ik
Gprl83
Pletl
Gm14057

0.5*Me2 0.5*Me3

logFC logCPM

6.
5.
.91
-5.

5.
-4.

4.
-5.

6.
-5.

-4

85
26

58
56
52
03
86
00
40

5.
.06
.84
.30
.16
.49
.44
.82
.35
.64

W NN O 0w o

24

LR
314
249
226
209
190
178
169
153
146
146

R WwWE R WD DN

PValue

.49e-70
.19%9e-56
.07e-51
.23e-47
.81e-43
.39%e-40
.21e-38
.44e-35
.13e-33
.21e-33

NN I NN WE OWN WD

FDR

.18e-66
.52e-52
.28e-47
.37e-44
.28e-39
.88e-37
.91e-35
.22e-32
.03e-30
.03e-30

Here positive log-fold changes represent gene promoters that have higher methylation level in the basal
population compared to the luminal population. The Benjamini-Hochberg multiple testing correction is applied to
control the false discovery rate (FDR).
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The total number of DM gene promoters identified at an FDR of 5% can be shown with decideTestsDGE.
There are in fact about 1,200 differentially methylated gene promoters in this comparison:

> summary (decideTests (1lrt2))

0.5*Me2 0.5*Me3

-1 817
0 15617
1 356

The differential methylation results can be visualized with an MD plot (see Figure 5):
> plotMD(1lrt2)

Correlate with RNA-seq profiles

RNA-seq profiles of mouse epithelium

To show that DNA methylation (particularly in the promoter regions) represses gene expression, we relate
the differential methylation results to the gene expression profiles of the RNA-Seq data. The RNA-seq data used
here is from a study of the epithelial cell lineage in the mouse mammary gland*, in which the expression pro-
files of basal stem-cell enriched cells and committed luminal cells in the mammary glands of virgin, pregnant and
lactating mice were examined. The complete differential expression analysis of the data is described in

Chen et al.>.

0.5*Me2 0.5*Me3
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Figure 5. MD plot showing the log-fold change of the methylation level and average abundance of CpG sites
in each gene promoter. Significantly up and down methylated gene promoters are highlighted in red and blue,

respectively.
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The RNA-seq data is stored in the format of a DGEList object y rna and saved in a RData file rna.RData.
The object y rna contains the count matrix, sample information, gene annotation, design matrix and dispersion
estimates of the RNA-seq data. The gene filtering, normalization and dispersion estimation were performed in
the same way as described in Chen ef al.”>. The DE analysis between the basal and luminal in the virgin mice
was performed using glmTreat with a fold-change threshold of 3. The results are saved in the spread sheet
BvsL-fc3.csv. Both rna.RData and BvsL-fc3.csv are available for download at http://bioinf.wehi.edu.au/
edgeR/F1000Research2017/.

We load the RData file and read in the DE results from the spread sheet.

> load("rna.RData")

> y rna
An object of class "DGEList"
Scounts
497097 438 300 65
20671 106 182 82
27395 309 234 337
18777 652 515 948
21399 1604 1495 1721
MCL1.LD MCL1.LE MCL1.LF
497097 0 0 0
20671 8 3 10
27395 328 307 342
18777 646 544 581
21399 926 508 500

MCL1.DG MCL1.DH MCL1.DI MCL1.DJ MCL1.DK MCL1.DL MCL1.LA MCL1.LB MCL1.LC

15636 more rows

$samples

MCL1.
MCL1.
MCL1.
MCL1.
MCL1.

DG
DH
DI
DJ
DK

group
B.virgin
B.virgin
B.pregnant
B.pregnant
B.lactating

7 more rows

Sgene

49709
20671
27395
18777
21399

S

7

Length Symbol

3634 Xkrd
3130 Sox17
4203 Mrpll5
2433 Lyplal
2847 Tceal

15636 more rows

Sdesi

gn

237
105
300
935
1317

lib.size norm.factors

23137472
21687755
23974787
22545375
21420532

1.
.21

1
1.
1
1

23

13

.07
.04

354
43
290
928
1159

287
82
270
791
1066

0

16
560
826
1334

B.lactating B.pregnant B.virgin L.lactating L.pregnant L.virgin

[\

0
0
0

0
0
1

1
1
0

0
0
0

0
0
0

0
0
0

0 0
25 18
464 489
862 668

1258 1068

Page 19 of 33


http://bioinf.wehi.edu.au/edgeR/F1000Research2017/
http://bioinf.wehi.edu.au/edgeR/F1000Research2017/

4 0 1 0 0
5 1 0 0 0
7 more rows

Scommon.dispersion
[1] 0.0134

Strended.dispersion
[1] 0.02086 0.03012 0.01303 0.01007 0.00957
15636 more elements

Stagwise.dispersion
[1] 0.13795 0.08336 0.01387 0.00678 0.00631
15636 more elements

SAveLogCPM
[1] 2.58 1.32 4.00 5.06 5.64
15636 more elements

Strend.method
[1] "locfit"

Sprior.df
[1] 4.68 6.08 6.77 6.77 6.77
15636 more elements

Sprior.n
[1] 0.78 1.01 1.13 1.13 1.13
15636 more elements

Sspan
[1] 0.292
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> rna DE <- read.csv("BvsL-fc3.csv", row.names="GenelD")

> head(rna DE)

Length Symbol logFC unshrunk.logFC logCPM

24117 2242 wifl 9.15 9.18
69538 5264 Antxrl 7.35 7.36
55987 3506 Cpxm2 8.15 8.18
12293 7493 Cacna2dl 8.30 8.31
12560 3995 Cdh3 6.98 6.98
110308 2190 Krt5 8.94 8.94 1

Correlation between the two datasets

6.
.66
.01
.81
.54
.27

O J o o I

77

PP JwN

PValue

.79e-15
.67e-15
.20e-15
.0le-15
.1lde-14
.35e-14

w W N =P

FDR

.67e-11
.67e-11
.67e-11
.T4e-11
.51le-11
.51le-11

We select the genes of which the promoters are significantly DM (FDR < 0.05) and examine their expression
level in the RNA-Seq data. A data frame object 1fc is created to store the gene information, log-fold change of
methylation level and log-fold change of gene expression of the selected genes.

> tp <- topTags(lrt2, n=Inf, p=0.05)S$table

> m <- match (row.names (tp), row.names (rna DE))
> 1fc <- tpl[,c("Symbol","logFC") ]

> names (1fc) [2] <= "ME"

> 1fc$RNA <- rna DE$logFC[m]
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> 1fc <- 1lfc[!is.na(1lfcS$RNA),
> head (1lfc)

Symbol ME RNA
16924 Lnxl 6.85 -2.27
238161 Akap6 5.26 3.23
64082 Popdc2 -4.91 7.67
11601 Angpt2 -5.58 2.10
12740 Cldn4 5.56 -5.10
387514 Tas2rl43 -4.52 3.10
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]

The Pearson correlation coefficient between the two log-fold changes of the selected genes is estimated. The result
shows high negative correlation between gene expression and methylation in gene promoters.

> cor (Lfc$SME, 1fcS$SRNA)

[1] -0.47

The log-fold changes of the selected genes from the two datasets are plotted against each other for visualization

(see Figure 0):

> plot (1fc$ME, 1fcS$SRNA,

main="Basal vs Luminal",

xlab="1log-FC Methylation",

+ ylab="1log-FC Gene Expression", pch=16, cex=0.8, col="gray30")
> abline (h=0, v=0, col="graylO0", lty=2, lwd=2)
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Figure 6. Scatter plot of the log-fold changes of methylation levels in gene promoters (x-axis) vs the log fold-
changes of gene expression (y-axis). The plot shows results for the genes of which the promoters are significantly
differentially methylated between basal and luminal. The red line shows the least squares line with zero intercept.

A strong negative correlation is observed.
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The horizontal axis of the scatterplot shows the log-fold change in methylation level for each gene while
the vertical axis shows the log-fold change in expression. To assess the correlation, we fit a least squares regression
line through the origin and compute the p-value:

> u <- 1lm(lfcSRNA ~
> coef (summary (u))

0 + 1fcSME)

Estimate Std. Error t wvalue Pr(>|t])
1fc$SME -0.739 0.0473 -15.6 1.08e-47

> abline(u, col="red", 1lwd=2)

The negative association is highly significant (P = 10™*"). The last line of code adds the regression line to the
plot (Figure 6).

Gene set testing

A rotation gene set test can be performed to further examine the relationship between gene expression and
methylation in gene promoters. This is to test whether the set of genes (i.e., genes of which the promoters are
differentially methylated) are differentially expressed (DE) and in which direction they are DE.

The indices are made by matching the Entrez Gene Ids between the two datasets. The log-fold changes of
methylation level in gene promoters are used as weights for those genes. The test is conducted using the fry function
in edgeR. The contrast is set to compare basal with luminal in virgin mice.

> ME <- data.frame (GenelID=row.names (1fc), weights=1fc$SME)
> fry(y rna, index=ME, design=y rnaS$design, contrast=c(0,0,1,0,0,-1))

NGenes Direction PValue PValue.Mixed
setl 731 Down 1.51e-09 7.17e-11

The small Pvalue indicates the significant testing result. The result Down in the Direction column indicates
negative correlation between the methylation and gene expression.

We can visualize the gene set results with a barcode plot (see Figure 7):

> m <- match(row.names (rna DE), row.names (tp))

> gw <- tp$logFC[m]

> gwl[is.na(gw)] <= 0

> barcodeplot (rna DES$logFC, gene.weights=gw, labels=c("Luminal","Basal"),
+ main="Basal vs Luminal")

> legend ("topright", col=c("red","blue"), lty=1l, lwd=2,

+ legend=c ("Up-methylation in Basal", "Up-methylation in Luminal")

In the barcode plot, genes are sorted left to right according to expression changes. Genes up-regulated in
luminal are on the left and genes up-regulated in basal are on the right. The x-axis shows the expression
log2-fold change between basal and luminal. The vertical red bars indicate genes up-methylated in basal and verti-
cal blue bars indicate genes down-methylated in basal. The variable-height vertical bars represent the methylation
log-fold changes. The red and blue worms measure relative enrichment, showing that increased methylation is
associated with decreased regulation and down-methylation is associated with up-regulation. In other words, there is a
negative association between methylation of promotor regions and expression of the corresponding gene.
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Figure 7. Barcode plot showing strong negative correlation between gene expression and DNA methylation in

gene promoters.

Packages used

This workflow depends on various packages from version 3.6 of the Bioconductor project, running on
R version 3.4.0 or higher. Most of the workflow also works with Bioconductor 3.5, but the code in the last section
(Correlate with RNA-seq samples) requires some minor changes for use with Bioconductor 3.5 because the ear-
lier version of topTags did not preserve row names in the output table. A complete list of the packages used for

this workflow is shown below:
> sessionInfo()

R version 3.4.2 (2017-09-28)
Platform: x86 64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 15063)

Matrix products: default

locale:

[1] LC COLLATE=English Australia.l1252 LC CTYPE=English Australia.l1252
[3] LC MONETARY=English Australia.l1252 LC NUMERIC=C

[5] LC TIME=English Australia.l1252

attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[9] base

methods
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other attached packages:

[1]

org.Mm.eg.db 3.4.2
TxDb.Mmusculus.UCSC.mml10.knownGene 3.4.0
GenomicFeatures 1.30.0
AnnotationDbi 1.40.0
Biobase 2.38.0
GenomicRanges 1.30.0
GenomeInfoDb 1.14.0
IRanges 2.12.0
Sd4Vectors 0.16.0
BiocGenerics 0.24.0
edgeR 3.20.1

limma 3.34.0

knitr 1.17

loaded via a namespace (and not attached):

[11]

—

B W wwww NN NDNDE PP
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Rcpp 0.12.13 compiler 3.4.2

highr 0.6 XVector 0.18.0
prettyunits 1.0.2 bitops 1.0-6

tools 3.4.2 zlibbioc 1.24.0
progress 1.1.2 statmod 1.4.30

biomaRt 2.34.0 digest 0.6.12

bit 1.1-12 RSQLite 2.0

evaluate 0.10.1 memoise 1.1.0

tibble 1.3.4 lattice 0.20-35
pkgconfig 2.0.1 rlang 0.1.4

Matrix 1.2-11 DelayedArray 0.4.1

DBI 0.7 GenomeInfobbData 0.99.1
rtracklayer 1.38.0 stringr 1.2.0
Biostrings 2.46.0 locfit 1.5-9.1

bit64 0.9-7 grid 3.4.2

R6 2.2.2 BiocParallel 1.12.0

XML 3.98-1.9 RMySQL 0.10.13

blob 1.1.0 magrittr 1.5
matrixStats 0.52.2 GenomicAlignments 1.14.0
Rsamtools 1.30.0 SummarizedExperiment 1.8.0
assertthat 0.2.0 stringi 1.1.5

RCurl 1.95-4.8

Data and software availability
All data and supporting files used in this workflow are available from: http:/bioinf.wehi.edu.au/edgeR/
F1000Research2017

Archived code/data as at time of publication: http://doi.org/10.5281/zenodo. 10528717

All software used is publicly available as part of Bioconductor 3.6.
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Open Peer Review

Current Referee Status: ¢ ¢

Referee Report 20 December 2017

doi:10.5256/f1000research.14317.r28485

v

Peter F. Hickey
Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA

Chen et al. propose a novel use of negative binomial generalized linear models (GLMs), as implemented
in the edgeR software, to test for differential methylation from bisulfite-sequencing data, particularly
reduced representation bisulfite-sequencing (RRBS). By leveraging the existing edgeR software, a
popular tool in the analysis of diffential gene expression analysis from RNA-seq data, this method is
immediately able to handle complex experimental designs and integrates with downstream analysis tools
such as gene set tests provided by the limma software. The paper is well-written and | was able to
reproduce the authors’ analysis. It will be a useful workflow for people needing to develop an analysis of
RRBS data.

Like Simon Andrews, | initially struggled a little with some of the detail of the method itself. The method’s
elegance and power, like all those based on (generalized) linear models, is driven by careful formulation
of the design matrix and the choice of contrasts. Necessarily, the design matrix for analysing
bisulfite-sequencing data is more complex than that used to analyse RNA-seq data from an identical
experimental design. As | know the authors are well aware, getting the design matrix and contrasts correct
is 95% of the battle for most people analysing data with edgeR and limma. | will explain my concerns
below (many are the same as raised by Simon in his review).

Main points

® p4: The initial example has no replicates. Since the method is designed for “any BS-seq data that
includes some replication”, should this example include replicates? | appreciate the desire to keep
the initial example simple (especially in light of my next comment).

® p4: |initially found the design matrix confusing. In fact, | had the same reaction/interpretation as
Simon Andrews 4th comment: “In the small example description you say that A_MvsU estimates
the log ratio for Sample1, but it wasn’t clear to me why this would apply to only Sample 1 since the
factor has a 1 against the meth count for both samples 1 and 2”. | had to manually check a few
quantities to convince myself, e.g., to rounding error, “coef(fit)[, "A_MvsU"] is "logit((2 +
prior.count) / (2 + prior.count + 12 + prior.count)’, where “prior.count = 0.125". Because so much
depends on constructing the appropriate design matrix, this description/section may warrant
further explanation (e.g., comparing to some manually computed quantities).

® | ike James MacDonald, although the code was clearly written, | was a little surprised that it didn’t
use more consistent integration with existing Bioconductor packages and data structures. To add
to his example, almost all the work in the section ‘Reading in the data’ can be achieved with
“bsseq::read.bismark(fn)’, which will: read in an arbitrary number of Bismark ".cov.gz’ files,
appropriately combine samples with different sets of CpGs, and return a SummarizedExperiment
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-derived object (a BSseq instance) which could readily be used to construct the DGEList used in
the analysis. In my experience, loading the data and combining different sets of loci is a step
fraught with danger of hard-to-track-down errors, so it may be better to advise workflow users to
use a fairly well-tested function. Full disclosure: | am the author of "bsseq::read.bismark()".

® p14: The aggregation of CpGs to promoters may lead to surprising results. An (extreme) example:
the first half of a promoter is methylated in one condition and unmethylated in the other, and vice
versa for the second half of the promoter. In aggregate over the promoter the proportion of
methylated CpGs may be similar in both conditions, yet this promoter is clearly differentially
methylated. | think a note encouraging workflow users to think carefully about their hypothesis
when doing this form of aggregation is warranted.

Minor points
® p1:“The most commonly used technology of studying DNA methylation is bisulfite sequencing
(BS-seq)”. The lllumina 27k/450k/EPIC microarrays are the most commonly used ‘genome-wide’
assays for studying DNA methylation. However, (whole genome) BS-seq is arguably the gold
standard genome-wide assay.
®  p3:1think there’s some confusion about CpGs and CpG islands (CGl). Approximately 0.9% of
dinucleotides in the human genome (hg19) are CpGs, and approximately 0.7% of the genome is a
CGi (using UCSC CGils, which is not the only definition but perhaps the standard); see code below:
“R
library(BSgenome.Hsapiens.UCSC.hg19)
hg19_size <- sum(as.numeric(seqglengths(BSgenome.Hsapiens.UCSC.hg19)[
paste0("chr", c(1:22, "X", "Y"))]))

# CpGs on chr1-22,chrX,chrY in hg19
n_CpGs <- Reduce(sum, bsapply(BSParams = new("BSParams",
X =BSgenome.Hsapiens.UCSC.hg19,
FUN = countPattern,
exclude = c("M", "_")),
pattern = "CG"))
100 * n_CpGs/ hg19_size

# CGlsin hg19

library(rtracklayer)

my_session <- browserSession("UCSC")

genome(my_session) <- "hg19"

cgi <- track(ucscTableQuery(my_session, track = "cpglslandExt"))
sum(width(cgi)) / hg19_size

® 13: Possible type, “with a large genome”

® 13: “WGBS is more suitable for studies where all CpG islands or promoters across the entire
genome are of interest.” Might also add ‘distal regulatory elements’ and CG-poor regions (RRBS
targets CG-rich regions of the genome).

® 1h3: BSmooth (implemented in bsseq) doesn’t use Empirical Bayes although it does use limma for
linear regression

® p4: Missing a 'library(edgeR)’ in order for the code to work

® p4: There’s an extra parenthesis at the end of line 2 when constructing “dimnames(counts)’

® p4: The authors note that the method is “especially appropriate for RRBS data”. Is the main
challenge for running on WGBS data that of computational resources?
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® p5: Typo, “mythlyated” should be “methylated”

® Table 1: Condition should be ‘A’ or ‘B’ instead of ‘1’ or ‘2’

® 16: Was Bowtie1 or Bowtie2 used as the Bismark backend for the mouse data?

® 8: The filtering step removes almost 90% of CpGs. Is this unavoidable, e.g., due to low
sequencing coverage of these samples, or might the filtering be relaxed?

o

Figure 1: Any thoughts for why the P8_6 sample is rather separated from the other Basal samples

along dim2 of the MDS plot?

®  Figure 2: What is the meaning of ‘average abundance of each CpG site’? Is ‘abundance’
interpretable as ‘sequencing depth’?

® 116: Possible typo, “Suppose the comparison of interest is the same as before”

® 122: In the DNA methylation literature, ‘up-methylated’ is typically called ‘hypermethylated’ and

‘down-methylated’ is typically called ‘hypomethylated’.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Referee Report 18 December 2017

doi:10.5256/f1000research.14317.r28484

v

James W. MacDonald
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA,
USA

This is primarily a software pipeline article, showing how to use the Bioconductor edgeR package to
analyze RRBS data, but to a certain extent is also a methods paper, as to my knowledge this is the first
proposal for directly analyzing count data rather than converting to either ratios and using a beta-binomial,
or to logits and using conventional linear modeling. This is an interesting idea, and should be explored
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further, but for this manuscript the main goal is to present the software pipeline.

The authors progress through each step of the pipeline, clearly describing each step as well as providing
code (and links to the underlying data), so readers can easily understand the process and get some
hands on experience as well.

The code is clearly written, and as straightforward as one could expect for a relatively complex analysis.
However, | would prefer to see more consistent integration with other Bioconductor packages. In
particular, when reading in the raw data, the authors use a clever trick to account for the fact that not all
samples have reads for the same genomic positions. This step could just as easily be accomplished using
the Bioconductor GenomicRanges package, which is intended for manipulating genomic data. In fact, the
authors use GenomicRanges later in the pipeline to subset the methylation data to just gene promoter
sites, so it would be more natural to start with a GRanges if you will need one later anyway.

Otherwise this is a good article that clearly shows how one could use an innovative method to analyze
RRBS data using the edgeR package.

Typos:
Under a small example section, (BvsA_MvsU) estimates the difference in logit proportions of mythylated

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes
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Simon Andrews
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Chen et al present an interesting re-application of the EdgeR analysis package to the analysis of
bisulphite sequencing data. The method they propose would utilise the existing negative biomial models
within EdgeR and would potentially provide the power which comes with the linear model framework to
bisulphite data. The method described requires no changes to EdgeR itself, and merely describes a
suitable formulation of design matrix to allow this to be applied to bisulphite data.

The article is generally well written and the authors go to great lengths to break down and describe the
method. They also provide a page from which all of the underlying data and code can be obtained and |
was able to reproduce the results, and independently verify them in a parallel analysis.

The main thing which | struggled with was some of the detail in the description of the method itself. There
were some parts which | wasn't clear on, and some nomenclature which didn't help in understanding the
explanation. I'll try to lay out my concerns below:

1) In the small example | completely understand that the authors wanted to keep this as simple as
possible, but it might have helped to have had 2 samples per condition so that the full complexity of the
method is visible.

2) There is a typo in the code for the small example so it doesn't run as is. The list function on line 2 has
an extra bracket at the end.

3) The nomenclature in the small example is inconsistent. You have samples 1 and 2, but (in the table)
also conditions 1 and 2, but in the code the conditions are A and B. If you had Samples 1,2,3,4 in
conditions A and B this might help to alleviate some of the confusion.

4) In the small example description you say that A_MvsU estimates the log ratio for Sample1, but it wasn't
clear to me why this would apply to only Sample 1 since the factor has a 1 against the meth count for both
samples 1 and 2

In the expanded examples there were also some points on which | wasn't clear.

5) You calculate a single dispersion parameter for all data points and say that in contrast to RNA-Seq
there is no global trend to follow. It wasn't clear to be exactly why this is since read count and methlyation
level would all affect the dispersion - is it simply because these factors are explicitly accounted for in the
linear model?

6) In the design matrix for the RRBS it wasn't clear why the first column was all 1s, whereas the rest
obviously matched the condition from which they came. This also contrasted with the simple example
where the structure wasn't like this. Is this because you were comparing both P7 and P8 to P6?

7) I think this is possibly the same thing as point 4, but you say that the Me column represents the
methylation level in P6, but again this highlights the methylated values in all samples, so why only P6?

For the final results obtained it would have been nice to show the general level of concordance with
running the same analysis through one of the beta-distribution models to either show general agreement,
or to generally explain any major differences.
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Minor points:

In the introduction you say that "40% of mammalian genes and 70% of human genes have CpG islands
enriched in their promoter regions". Enriched probably isn't the right word to use (or you need to say that
CpGs are enriched rather than islands). The difference between 'humans' and 'mammals' is also
somewhat contentious - non-human mammals certainly have weaker CpG islands which get missed by
CpG island prediction tools, but for example in mouse lllingworth et al showed that if you use CpG binding
protein ChIP that you can see about the same number of islands in both species.

It's also not really fair to say that CpG methylation in promoters is "generally" associated with repression
of transcription. There is a categorical expression level shift associated with the presence/absense of
CpG islands, but you can make a Dnmt1 knockout which removes pretty much all methlyation from the
genome and for the vast majority of genes their transcription is completely unaffected.

P3 "with large genome" should be "with large genomes"
P5 "mythylated" should be "methylated”

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes
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