
cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of 
Large Biomolecular Datasets

Mathieu Le Muzic1, Ludovic Autin2, Julius Parulek3, and Ivan Viola1

1Institute of Computer Graphics and Algorithms, TU Wien, Austria

2Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 
La Jolla, California, USA

3Department of Informatics, University of Bergen, Norway

Abstract

In this article we introduce cellVIEW, a new system to interactively visualize large biomolecular 

datasets on the atomic level. Our tool is unique and has been specifically designed to match the 

ambitions of our domain experts to model and interactively visualize structures comprised of 

several billions atom. The cellVIEW system integrates acceleration techniques to allow for real-

time graphics performance of 60 Hz display rate on datasets representing large viruses and 

bacterial organisms. Inspired by the work of scientific illustrators, we propose a level-of-detail 

scheme which purpose is two-fold: accelerating the rendering and reducing visual clutter. The 

main part of our datasets is made out of macromolecules, but it also comprises nucleic acids 

strands which are stored as sets of control points. For that specific case, we extend our rendering 

method to support the dynamic generation of DNA strands directly on the GPU. It is noteworthy 

that our tool has been directly implemented inside a game engine. We chose to rely on a third 

party engine to reduce software development work-load and to make bleeding-edge graphics 

techniques more accessible to the end-users. To our knowledge cellVIEW is the only suitable 

solution for interactive visualization of large bimolecular landscapes on the atomic level and is 

freely available to use and extend.

1. Introduction

Computational biology already offers the means to model large structural models of cell 

biology, such as viruses or bacteria on the atomic level [JGA*14] [JAAA*15]. Visualization 

of macromolecular structures plays an essential role in this modelling process of such 

organisms. The most widely known visualization softwares are: VMD [HDS96], Chimera 

[PGH*04], Pymol [DeL02], PMV [S*99], ePMV [JAG*11]. These tools, however, are not 

designed to render a large number of atoms at interactive frame-rates and with full-atomic 

details (Van der Walls or CPK spherical representation). Megamol [GKM*15] is a state-of-

the-art prototyping and visualization framework designed for particle-based data and which 

currently outperforms any other molecular visualisation software or generic visualization 

frameworks such VTK/Paraview [SLM04]. The system is able to render up to 100 million 

atoms at 10 fps on commodity hardware, which represents, in terms of size, a large virus or a 

small bacterium. Larger bacteria, however, such as the well known E. coli, made out of tens 

HHS Public Access
Author manuscript
Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 
December 29.

Published in final edited form as:
Eurographics Workshop Vis Comput Biomed. 2015 ; 2015: 61–70. doi:10.2312/vcbm.20151209.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of billions of atoms, which is two orders of magnitude bigger than what the highest-end 

available solution is able to render.

According to our domain experts, responsive visual feedback is of a great value for the 

modelling process of such organisms. However, none of the currently available solutions are 

able to serve the ambitions of our domain experts, which is to model large macromolecular 

structures such as E. coli. Related works have already presented bleeding-edge techniques 

that can render large datasets with up to billions of atoms at interactive framerates on 

commodity graphics hardware [LBH12] [FKE13] [LMPSV14]. However, to our knowledge, 

the tools which implemented these techniques were either not publicly available, or 

remained in the prototyping stage. Indeed, a very cumbersome task for researchers is 

releasing and maintaining a usable version of the source code once the article has been 

published. The presented techniques are often a proof-of-concept that would require 

substantial software development work to ensure a maximum degree of accessibility. 

Unfortunately, this is often omitted because of a busy research schedule and is simply left in 

the hand of interested third party developers. Consequently, if this task remains unachieved, 

end-users are unlikely to use state-of-the-art techniques in their work.

cellVIEW is a new solution that enables fast rendering of very large biological 

macromolecular scene. Unlike Megamol, which is designed for generic particle-data, 

cellVIEW is primarily designed for large biomolecular landscapes, and thus, exploits the 

repetitive nature of such structures to improve the rendering performance. While the main 

function of this tool is to assist our domain experts in their modelling task, the visualization 

of these datasets could also serve an educational purpose. By interactively showcasing the 

machinery of life in science museums, for instance, we could also improve the 

understanding of basic cell biology of the laymen audience.

cellVIEW is built on top of state-of-the-art techniques, and also introduces new means to 

efficiently reduce the amount of processed geometries. The approach we demonstrate in 

cellVIEW improves rendering performance compared to related work by introducing 

efficient occlusion culling and robust level-of-detail schemes. Our level-of-detail scheme 

also abstracts the shape of macromolecules efficiently, thus reducing visual clutter, as seen 

on the artistic depictions of David Goodsell in Figure 2. We showcase our tool with real, 

large-scale scientific data such as the HIV virus and Mycoplasma bacterium, which were 

provided by our cooperating domain scientists. Their datasets, not only contain information 

relative to the location of individual macromolecules, but also provide the path of nucleic 

acids strands, which is stored in the form of control points. We additionally extend our 

method to procedurally generate DNA strands on-the-fly via the GPU tessellation shader, 

thus reducing the modelling effort as well as GPU transfer times and memory space. Our 

system is implemented using a user-friendly and popular game engine. The ease of use of 

the engine guarantees our tool a maximum degree of accessibility, thus bridging the gap 

between bleeding-edge techniques and actual use in real applications. Additionally, since 

game engines are gaining in popularity among the visualization community, we anticipate 

third-party users adopting our tool, and thereby breaking the barriers caused by 

heterogeneous toolset usage across research departments.

Le Muzic et al. Page 2

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Related Work

Large-scale Molecular Visualization

Lindow et al. [LBH12] have first introduced a method capable of quickly rendering large-

scale atomic data consisting of several billions of atoms on commodity hardware. Rather 

than transferring the data from CPU to GPU every frame, they store the structure of each 

type of molecule only once and utilize instancing to repeat these structures in the scene. For 

each type of protein a 3D grid structure containing all the atoms is created and then stored 

on the GPU memory. Upon rendering, the bounding boxes of the instances are drawn and 

individually raycasted, similar to volumetric billboards [DN09]. Subsequently Falk et al. 
[FKE13] presented a similar approach with improved depth culling and hierarchical ray 

casting for impostors that are located far away and do not require a full grid traversal. 

Although this implementation features depth culling, their method only operates on the 

fragment level, while they could have probably benefited from a culling on the instance level 

too. With their new improvement they managed to obtain 3.6 fps in full HD resolution for 25 

billion atoms on a NVidia GTX 580, while Lindow et al. managed to get around 3 fps for 10 

billions atoms in HD resolution on a NVIDIA GTX 285. Le Muzic et al. [LMPSV14], 

introduced another technique for fast rendering of large particle-based datasets using the 

GPU rasterization pipeline instead. They were able to render up to 30 billions of atoms at 10 

fps in full HD resolution on a NVidia GTX Titan. They utilize tessellation shaders to inject 

atoms on-the-fly into the GPU pipeline similar to the technique of Lampe et al. [LVRH07]. 

In order to increase the rendering speed they dynamically reduce the number of injected 

atoms according to the camera depth. To simplify the molecular structures they discard 

atoms uniformly along the protein chain and increase the radius of remaining atoms to 

compensate for the volume loss. This level-of-detail scheme offers decent results for low 

degrees of simplification, but it does not guarantee preserving the initial shape of the 

molecules, resulting in poor image quality with highly simplified shapes.

Occlusion Culling

A key aspect when rendering large and complex scenes is efficient occlusion culling. Grottel 

et al. [GRDE10] presented a method to perform coherent occlusion culling for particle-based 

datasets, which is closely related to Deferred Splatting [GBP04] and relies on temporal 

coherency. Their particle data is stored in a uniform grid, and they operate the culling at two-

levels: at the level of grid cells first, and at the atomic level afterwards. Individual atoms are 

rendered via 2D depth impostors, because they have a much lower vertex count than sphere 

meshes for the same results. At the beginning of each frame they render an early depth pass 

with atoms that were visible during the previous frame. This pass results in an incomplete 

depth buffer that they utilize to determine the visibility of the remaining particles. For the 

coarse-level culling they determine the visibility of the grid cells by testing their bounding 

boxes against the incomplete depth buffer via hardware occlusion queries (HOQ). For the 

fine-level culling they test the visibility of individual atoms in the final render using the well 

known hierarchical Z-buffer (HZB) visibility technique [GKM93]. They construct the HZB 

from the incomplete depth buffer beforehand, and during the final render, they discard 

fragment operations from the vertex shader if the visibility test fails, thus compensating for 

the lack of early fragment rejection with depth impostors.

Le Muzic et al. Page 3

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Illustrative Molecular Visualization

When rendering large structures the speed of execution is not the only concern. As the 

structures increase in size, they are also increasing in complexity, and it is necessary to 

display the data in the most suitable way. Ambient occlusion, for instance, has been shown 

to play an essential role when dealing with large molecular structures, as it provides 

important depth cues which increase shape perception [GKSE12, ESH13]. But the rendering 

style is not the only means to define visual encoding, geometric abstraction should be 

applied as well. Parulek et al. [PJR*14], demonstrated a continuous level-of-detail scheme 

for molecular data. Their object-space approach offers detail-on-demand in the focus area 

while applying gradual shape simplification schemes elsewhere. At the finest level of detail 

they were showcasing solvent excluded surface (SES) representation and abstracted 

molecular shape for distant molecule. They introduced an interesting abstraction approach, 

other than molecular surfaces, based on union of spheres obtained via clustering methods. 

Several common clustering methods are compared and evaluated.

Modelling of Nucleic Acids Chains

DNA plays a key role in cell biology, and thus is an important part of our datasets. 

Therefore, as with protein data, we shall also provide the means for efficient rendering of 

this type of structure. There are several scientific modeling tools [MC98, LO08, HLLF13] 

designed to generate DNA strands from a simple set of control points. These techniques, 

however, are all performed on the CPU, which means that geometry data must be uploaded 

on the GPU prior to the rendering. Because of the cost of transferring data from CPU to 

GPU, such approach would likely perform poorly when rendering and animating long DNA 

strands. Therefore, we introduce a new GPU-based approach which relies on dynamic 

instancing of DNA base-pairs along a curve. This approach is similar to the work of Lampe 

et al. [LVRH07], who use the geometry shader to dynamically instantiate residues along the 

protein backbone. The major difference here is the introduction of procedural building rules 

based on scientific data and the use of the tessellation shader, which offer a much greater 

bandwidth of injected primitives. Moreover, by changing the building rules, our approach 

can also be extended and applied to fibres or repetitive objects that are present in cellular 

environment (actin filaments, microtubules, lipoglycane, etc.).

Game Engines and Biomolecular Visualization

Game engines are becoming increasingly popular in the molecular visualization community. 

Shepherd et al. [SZA*14] have developed an interactive application to showcase 3D genome 

data using a game engine. Their visualization is multi-scale and is able to render a large 

amount of data thanks to the implementation of a level-of-detail scheme. Various works on 

interactive illustration of biological processes have also mentioned using game engines to 

interactively visualize biomolecular processes in 3D, such as polymerization [KPV*14] and 

membrane crossings [LMWPV15]. Similarly to our work, Baaden et al. [LTDS*13] 

developed a molecular viewer which offers artistic and illustrative rendering methods based 

on the Unity3D game engine. Their primary intention was to democratize biomolecular 

visualization thanks to the use of a more intuitive and user friendly framework. Their tool 

has managed to prove that game engines are also useful in serious visualization projects. 

Le Muzic et al. Page 4

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



One noticeable technical difference between cellVIEW and UnityMol, other than the scale 

of the supported datasets, is that our tool is fully integrated in the “What you see is what you 

get” (WYSIWYG) editor of the Unity3D engine. Thus, our tool coexists with the engine 

toolset which provides a rich set of functionalities that can be directly used to enhance the 

quality of our visualization.

3. Efficient Occlusion Culling

The overwhelmingly increasing size of structural biology datasets calls for efficient means 

for reducing the amount of processed geometries. Our rendering pipeline is based on the 

work of Le Muzic et al. [LMPSV14], which relies on the tessellation shader to dynamically 

inject sphere primitives in the pipeline for each molecule. However, without proper 

occlusion culling, the injection of sphere primitives would still be performed, even if a 

molecule is completely hidden behind occluders. The presented occlusion culling method is 

inspired by the work of Grottel et al. [GRDE10]. We have revisited their technique to 

provide efficient occlusion culling for macromolecular datasets that are several orders of 

magnitude larger than the ones showcased with their method.

3.1. Temporal coherency

We developed a custom visibility technique, implemented with compute shaders and using 

the well-known hierarchical Z-buffer (HZB) occlusion culling. This solution has the 

advantage to reduce GPU driver overhead compared to HOQ used by Grottel et al. 
[GRDE10], since multiple queries can be performed in a single call. The approach rely on 

the use of an item-buffer to precisely determine the visibilty of the molecules at the end of a 

frame. Then at the beginning of the next frame, the previously visible molecules are firstly 

drawn. This will result in an partially complete frame, in case of eventual camera motion. 

The next step is to determine the remaining visible elements in order to complete the frame. 

We generate the HZB from the partially complete depth buffer and we compute the visibility 

information for the remaining molecules. The remaining visible molecules are finally drawn 

and we use the item buffer to determine which molecules are present on the screen at the end 

of this frame. The sequential steps of our occlusion culling method for a given frame are laid 

down as follows:

1. Clear HZB and depth buffer

2. Draw visible molecules at the previous frame

3. Generate HZB from the depth buffer obtained in step 2

4. Compute HZB-visibility for the remaining molecules

5. Draw HZB-visible molecules from step 4

6. Find visible molecules via item-buffer for the next frame

3.2. Accelerating Texture Writes

Individual atoms are rendered via 2D sphere impostors, because they have a much lower 

vertex count than sphere meshes for the same results. The depth of the sphere impostors is 

Le Muzic et al. Page 5

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



corrected in the fragment shader in order to mimic a spherical volume. Upon drawing the 

atoms, many of them are actually occluded by other atoms of the same or surrounding 

molecules. These atoms would normally be processed, as a well-known limitation of 

graphics hardware, so far, has been the lack of early depth fragment rejection for depth 

impostors. Thanks to advances in graphics hardware however, it is now possible to activate 

early depth rejection when a fragment is modifying the output depth value. Hence, thanks to 

this feature, we may now easily avoid fragment computation for hidden atoms. This feature 

is called conservative depth output. Once activated, in order for conservative depth output to 

work, we must output a depth which is greater than the depth of the 2D billboard. This way 

the GPU is able to tell if a fragment will be occluded beforehand by querying the visibility 

internally. A description of the depth conservative output sphere impostor is given in Figure 

3. Additionally, to limit the number of texture writes, we only output the id of the molecules 

to the render texture upon rendering. The colors are fetched afterwards in post-processing by 

reading the molecules properties from the id.

4. Twofold Level-of-Detail

Proteins are key elements of biological organisms, and thus it is important to visualize them 

in order to understand how these work. They are also present in fairly large quantities, which 

is challenging to render interactively without proper level-of-detail schemes (LOD). 

Additionally, their complex shapes might cause a high degree of visual clutter, which may 

render overly complex images. We propose a twofold LOD scheme which provides 

rendering acceleration and offers a clearer depiction of the scene using smoothly abstracted 

shapes. Our technique also offer a seamless continuum between the different levels of 

abstractions from highly detailed to highly abstracted.

Our rendering pipeline is based on the work of Le Muzic et al. [LMPSV14], where LOD 

was dynamically determined during the tessellation stage. To reduce the number of spheres, 

atoms were periodically skipped along the protein backbone, and the radii of remaining 

atoms were increased to compensate the volume loss. This technique, although fully 

dynamic, offers poor results for highly decimated molecules since it does not guarantee to 

preserve the overall shape. We employ clustering methods instead, similar to the technique 

of Parulek et al. [PJR*14], to simplify the shape of the molecules and reduce the number of 

primitives to render. Atoms corresponding to one cluster are replaced by a single sphere with 

a radius that approximates the size of the cluster. Clustering offers a very good decimation 

ratio as well as accurate shape abstraction, because it tends to preserve low-frequency 

details. With higher shape accuracy we are also able to switch to simpler LOD proxies closer 

to the camera, thus gaining in render speed without compromising image quality.

The clustering of the molecules is precomputed and results in a set of spheres which are 

stored in the GPU memory. We compute our LOD levels using a GPU-based K-means 

clustering algorithm. In our tests, we deemed that four levels were sufficient with our current 

datasets. The compression factor of each level was manually chosen to obtain the best 

performance/image quality ratio. The results of the clustering of our four levels is shown in 

Figure 4. These parameters can be easily changed via the editor interface. A side-by-side 

Le Muzic et al. Page 6

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



comparison between our illustrative LOD compared to full atomic detail is provided in 

Figure 5.

5. Dynamic DNA Generation

Animating individual molecules is fairly straightforward because modifying the atomic 

structure may not be required. In the case of DNA, the positions of the control points of the 

DNA path highly influence its structure, namely the positions and rotations of the individual 

nucleic acids. As a result, each modification of the control points of the DNA path requires a 

new computation of the strand. Current approaches are only performed on the CPU, 

[HLLF13, LO08, MC98] which means that the whole nucleic acids chain has to be 

transferred to the GPU upon re-computation. While this approach is viable for low to mid 

sized DNA strands, it is likely to perform poorly for large and dynamic DNA paths featuring 

a large number of control points.

We propose to use the dynamic tessellation to leverage the generation of nucleic acid 

strands. So far we have only used tessellation to instantiate data stored in the GPU memory. 

However it is possible to include building rules characteristic to the DNA’s well known 

geometry to procedurally generate a double helix structure simply based on control points. 

Thus, data transfers as well as GPU memory space can be dramatically reduced.

Similar to GraphiteLifeExplorer [HLLF13], our goal is more illustrative than strict 

biomolecular modeling. Therefore we privilege rendering performance over accuracy, and 

we provide only a limited array of folding types. Although the study of DNA structures has 

revealed many different types of folding, requiring complex modeling algorithms, the most 

commonly recognizable shape that of B-DNA that exhibits a regular structure which is 

simple to model: a spacing of 3.4Å and a rotation of 34.3° between each base. Based on 

these rules we are able to procedurally generate B-DNA strands based on path control points 

via GPU dynamic tessellation. The workflow which we employ is described as follow:

1. Resample control points (on the CPU).

2. Compute smooth control point normals (on the CPU).

3. Upload control point data to the GPU

4. Draw all the path segments in one pass, one vertex shader per segment

5. Read the control points and adjacent points needed for smooth cubic 

interpolation. (In vertex shader, for each segment)

6. Do uniform sampling along the cubic curve segment to determine the positions 

of the bases. (In vertex shader, for each segment)

7. Pass the position of the bases to the tessellation shader. (In vertex shader, for 

each segment)

8. Compute normal vector of each base using linear interpolation between the 

control points normals (In tessellation shader, for each base)

Le Muzic et al. Page 7

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. Inject atom, then translate and rotate accordingly (In tessellation shader, for each 

atom of each base)

10. Render sphere impostor from injected atom (In geometry & fragment shader, for 

each atom of each base)

5.1. Smooth Normals Computation

A well known challenge when dealing with 3D splines is to determine smooth and 

continuous frames along the whole curve. Any twists or abrupt variation in frame orientation 

would cause visible artifacts due to irregularities in the DNA structure, which should be 

avoided at all costs. We perform the computation of the smooth and continuous frames 

primarily on the CPU. We first determine the normal direction for every control point of the 

path. Then, we sequentially browse the control points and rotate the normal direction vector 

around the tangent vector in order to minimize the variation in orientation compared to the 

previous control point normal. The recalculated normals are then uploaded to the GPU along 

with the control points positions. Then, during the instantiation of the nucleic acids, we 

obtain the normal vector of a nucleic acid by linear interpolation between the two normal 

vectors of the segment.

5.2. Double Helix Instancing

When instancing individual pairs of nucleic acids in the tessellation shader, we first fetch the 

nucleic acid atoms, position them along the curve, orient them toward the normal direction 

and then rotate then around the tangent vector in order to generate the double helix. We 

always orient the first base of a segment according to the normal direction only, while the 

subsequent bases are all oriented towards the normal direction first and then rotated with an 

increasing angular offset of 34.3° around the tangent of the curve. The angular offset of a 

given base is defined as follows: α = i × 34.3, where i corresponds to the index of the base 

inside a segment. The last base of a segment must therefore always perform an offset 

rotation of (360 − 34.3)° around the tangent vector. This way it connects smoothly to the 

first base of the next segment, which is oriented towards the normal vector only. The result 

of the procedural generation of B-DNA is given in Figure 6 as well as a visual explanation 

of the different steps.

5.3. Control Points Resampling

Given that the bases of a segment must perform a revolution to connect smoothly to the next 

segment, it is trivial to determine the number of bases per segment as follows: n = 360 ÷ 
34,3. From the number of bases per segment we can easily deduce the required size of a 

segment as follows: s = n × 3.4 Å, which results in a segment length of approximately 35 Å. 

This constraint implies that all control points be spaced uniformly with a distance of 35 Å. 

However, it may be the case that control points obtained via modelling software have 

arbitrary spacing. Therefore, we must resample the control points along the curve to ensure a 

uniform spacing before uploading it to the GPU. Although we resample the control points 

according to the B-DNA build rules, the length of the interpolated curve segments will 

always be slightly greater because of the curvature. We did not find this to be visually 

Le Muzic et al. Page 8

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



disturbing, mostly because consecutive segments in our dataset did not showcase critically 

acute angles, so the overall curvature of individual curve segments remained rather low.

6. Results

We have tested our tool with several datasets of different nature and sizes. The datasets were 

modelled with cellPACK [JAAA*15], a modelling tool for procedural generation of large 

biomolecular structures. cellPACK is developed and used by our domain experts, it is 

publicly available and offers to anyone the means for experimenting and creating their own 

models. Our program reads the files that are generated by cellPACK and is able to 

reconstruct and display the scene in a multiscale approach. The generated files comprise of a 

list of elements with their properties such as name, position, rotation, and PDB identifier that 

indicates the atomic structure [SLJ*98]. The structural data is directly fetched online from 

the Protein Data Bank via the PDB identifier. In case an entry is not present or refers to a 

custom PDB file, we load the protein information from a dedicated repository provided by 

the domain experts. The generated files also include control points for the linear or repetitive 

type of structures such as DNA, unfolded peptide, lypoglycane, etc.

6.1. Use cases

HIV Virus + Blood Plasma—The first dataset we showcase is a combination of two 

datasets: the HIV virus [JGA*14] surrounded by blood plasma. The HIV is a retrovirus and 

thus only contains RNA, which features much more complex modeling rules than DNA and 

forbids dynamic procedural generation. For this specific case the atomic structure of RNA 

would have to be modelled ad-hoc with a third party tool before being loaded in cellVIEW. 

Without the genomic information, the dataset comprises a total of 60 millions atoms 

consisting in 40 different types of molecules. For the purpose of benchmarking, we 

periodically repeat this dataset to reach an overall number of 15 billion atoms.

Mycoplasma—To demonstrate the use of our dynamic building rules for DNA, we use the 

data from Mycoplasma mycoide, one of the smallest bacteria with a genome of 1,211,703 

baise pairs. Mycoplsama has been widely studied by biologists, and was the first organism to 

be fully synthetized. For this dataset we only showcase a preliminary model built with 

cellPACK and containing only a quarter of the total genome. This dataset comprises a set of 

9617 control points defining the overall path of the DNA and the PDB reference of the 

nucleic acid base pairs. The pairs are instanced along the path resulting in an overall number 

of 11,619,195 atoms. We were able to procedurally generate and render the entire dataset at 

70 fps without any culling nor LOD schemes. With this test we simply wanted to show the 

raw computation time in order to demonstrate the efficiency of our technique. Naturally, 

when using LOD and culling schemes like with protein data, the performance would 

considerably increase and would not impact the rest of the computation. The results of the 

two datasets are shown in Figure 7, and a preliminary render of the Mycoplasma is shown in 

Figure 8.

Le Muzic et al. Page 9

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6.2. Performance Analysis

It is rather challenging to precisely evaluate the performance of our tool, as the speed of 

execution depends on many factors, such as camera position or level-of-detail parameters, 

and which are arbitrarily chosen. It is also worth mentioning that available software 

solutions are not able to deal with the amount of data presented in our largest datasets. 

Therefore we did not perform a thorough comparison with available software solutions and 

related work. We perform an intra-performance evaluation instead, using our different 

datasets.

Table 1 provides a descriptive listing of the rendering performance for each dataset, with and 

without our optimizations. The rendering tests were performed on an Intel Core i7-3930 

CPU 3.20 GHz machine coupled with a GeForce GTX Titan X graphics card with 12GB of 

video RAM. During our tests we have monitored the rendering speed with various camera 

settings, from far-out to close-up and from many angles. The measured performance 

represents the slowest render speed obtained, in frame per seconds at full HD resolution. The 

LOD parameters were carefully tuned in order to obtain the best ratio between performance 

and image quality. From these results we can clearly see the impact of the LOD in terms of 

performance for all datasets. We can also observe that the culling greatly improves the 

rendering speed when displaying a very dense dataset. Additionally, our tool is able to 

render datasets which are equivalent in size to the ones showcased in related work at higher 

framerates (> 60fps).

It is worth mentioning that it would always be possible to render larger datasets at more than 

60 fps using more aggressive LOD settings and thus trading image quality. However, one 

could question the utility of this approach to display datasets that would be one or several 

orders of magnitude larger. Indeed, when viewing our largest dataset in its entirety, the view 

starts to exhibit graining artefacts due to the very small screen-size of individual molecules. 

These arte-facts create unwanted visual clutter, and therefore another type of approach rather 

than the particle-based one should be considered in this case.

7. Expert Feedback & Discussion

Domain experts who have experimented with cellVIEW have responded favorably and with 

great enthusiasm. One of our domain experts, a core actor of the cellPACK project, wrote:

Prior to cellVIEW, visualizing this type of data was cumbersome for the experts 

and as the scale increased, it was often not possible to view large models with all 

structures turned on with a standard computer. cellVIEW now provides state-of-the-

art techniques to accomplish this task. Some experts were dismayed that cellVIEW 

could not yet be implemented in their lab’s preferred or homemade visualization 

toolsets (i.e., not simply a python or C++ library they could access), but most had 

some experience working with the Unity 3D framework, so the transition to this 

standalone tool was sufficient. For large biological structures, such as Mycoplasma 

mycoides, the cellPACK viewers are currently unable to visualize the complete 

models produced by the packing algorithm. Because cellVIEW can handle 

Mycoplasma and larger models in atomic detail and with ease, it is evident that 

Le Muzic et al. Page 10

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cellVIEW will become a critical tool for cellPACK users who wish to explore 

multi-scale modeling extremes such whole bacterial cells and ultimately whole 

mammalian cells.

cellVIEW is open source, free to use, and available online, as well as the datasets modelled 

with cellPACK (https://github.com/illvisation/cellVIEW). With cellVIEW we wanted to 

guarantee the maximum degree of accessibility as possible. Therefore, we opted for a well-

known, generic, and universal development framework to encourage third-party users to 

experiment and also to contribute to our project, such as visualization scientists, scientific 

illustrators, biologists or students. Although this solution might not have been the most 

preferred one for our main users at first, the ease of use of the tool has shown to be very 

valuable to them. The main advantage to us is that the development and maintenance of the 

core platform is already taken care of. This allows small teams of researchers to allocate 

their resources more efficiently and to focus on developing the actual technologies more 

quickly. However, the engine also presents a few drawbacks which would need to be 

addressed in the future in order to become a stronger contender as a visualization 

framework. Firstly, the advanced GPU programming features we use to develop cellVIEW 

are based on DirectX 11, which makes our tool only available to Windows platforms, at least 

until Unity3D supports advanced GPU programming with OpenGL. Another major 

drawback is that the source code of the core of the engine is not yet publicly available, 

which may be critical in case a missing core feature would need to be manually coded.

8. Conclusions and Future Work

We have introduced cellVIEW, a tool for real-time multi-scale visualization of large 

molecular landscapes. Our tool is able to load files generated by cellPACK a powerful 

modeling tool for representing entire organisms at the atomic level. cellVIEW was 

engineered to work seamlessly inside the Unity3D game engine, which allows us to 

prototype and deploy quickly and to leverage performance via advanced GPU programming. 

The method which we presented also features notable improvements over previous works. 

We provide the means for efficient occlusion culling, which is crucial when dealing with 

such large scale datasets. We also implemented a level-of-detail scheme, which allows both 

acceleration of rendering times and provides a clear and accurate depiction of the scene. 

Finally, we demonstrated the use of dynamic tessellation to generate biolmolecular 

structures on-the-fly based on scientific modeling rules.

In future work we would like to tighten the collaboration with domain experts and achieve 

interactive viewing of more complex organisms and bacteria such as E. coli. As the scale 

increases the view exhibits highly grainy results due to the very small size of molecules. In 

the future we would like to focus on better representation for this case, and perhaps find new 

semantics that could be integrated in our level-of-detail continuum. We also would like to 

use our rendering to experiment with in-situ simulations as a visual exploration tool for 

scientists, and also as an educational tool to showcase the machinery of life to a lay 

audience.

Le Muzic et al. Page 11

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/illvisation/cellVIEW


Acknowledgments

This project has been funded by the Vienna Science and Technology Fund (WWTF) through project VRG11-010 
and also supported by EC Marie Curie Career Integration Grant through project PCIG13-GA-2013-618680. 
Additionally, this work has been carried out within the PhysioIllustration research project 218023, which is funded 
by the Norwegian Research Council. Autin, L. received support from the National Institutes of Health under award 
number P41GM103426.

References

[DeL02]. DELANO WL. The pymol molecular graphics system. 

[DN09]. DECAUDIN, P., NEYRET, F. Computer Graphics Forum. Vol. 28. Wiley Online Library; 
2009. Volumetric billboards; p. 2079-2089.

[ESH13]. EICHELBAUM S, SCHEUERMANN G, HLAWITSCHKA M. Pointao improved ambient 
occlusion for point-based visualization. 

[FKE13]. FALK, M., KRONE, M., ERTL, T. Computer Graphics Forum. Vol. 32. Wiley Online 
Library; 2013. Atomistic visualization of mesoscopic whole-cell simulations using ray-casted 
instancing; p. 195-206.

[GBP04]. GUENNEBAUD, G., BARTHE, L., PAULIN, M. Computer Graphics Forum. Vol. 23. Wiley 
Online Library; 2004. Deferred splatting; p. 653-660.

[GKM93]. GREENE, N., KASS, M., MILLER, G. Proceedings of the 20th annual conference on 
Computer graphics and interactive techniques. ACM; 1993. Hierarchical z-buffer visibility; p. 
231-238.

[GKM*15]. GROTTEL S, KRONE M, MULLER C, REINA G, ERTL T. Megamol a prototyping 
framework for particle-based visualization. Visualization and Computer Graphics, IEEE 
Transactions on. 2015; 21(2):201–214.

[GKSE12]. GROTTEL, S., KRONE, M., SCHARNOWSKI, K., ERTL, T. Pacific Visualization 
Symposium (PacificVis), 2012 IEEE. IEEE; 2012. Object-space ambient occlusion for molecular 
dynamics; p. 209-216.

[GRDE10]. GROTTEL, S., REINA, G., DACHSBACHER, C., ERTL, T. Computer Graphics Forum. 
Vol. 29. Wiley Online Library; 2010. Coherent culling and shading for large molecular dynamics 
visualization; p. 953-962.

[HDS96]. HUMPHREY W, DALKE A, SCHULTEN K. Vmd: visual molecular dynamics. Journal of 
molecular graphics. 1996; 14(1):33–38. [PubMed: 8744570] 

[HLLF13]. HORNUS S, LÉVY B, LARIVIÈRE D, FOUR-MENTIN E. Easy dna modeling and more 
with graphitelifeexplorer. PloS one. 2013; 8(1):53609.

[JAAA*15]. JOHNSON GT, AUTIN L, AL-ALUSI M, GOOD-SELL DS, SANNER MF, OLSON AJ. 
cellpack: a virtual mesoscope to model and visualize structural systems biology. Nature methods. 
2015; 12(1):85–91. [PubMed: 25437435] 

[JAG*11]. JOHNSON GT, AUTIN L, GOODSELL DS, SANNER MF, OLSON AJ. epmv embeds 
molecular modeling into professional animation software environments. Structure. 2011; 19(3):
293–303. [PubMed: 21397181] 

[JGA*14]. JOHNSON GT, GOODSELL DS, AUTIN L, FORLI S, SANNER MF, OLSON AJ. 3d 
molecular models of whole hiv-1 virions generated with cellpack. Faraday discussions. 2014; 
169:23–44. [PubMed: 25253262] 

[KPV*14]. KOLESAR I, PARULEK J, VIOLA I, BRUCKNER S, STAVRUM A-K, HAUSER H. 
Illustrating polymerization using three-level model fusion. arXiv preprint arXiv:1407.3757. 2014

[LBH12]. LINDOW, N., BAUM, D., HEGE, H-C. Computer Graphics Forum. Vol. 31. Wiley Online 
Library; 2012. Interactive rendering of materials and biological structures on atomic and 
nanoscopic scale; p. 1325-1334.

[LMPSV14]. LE MUZIC, M., PARULEK, J., STAVRUM, A-K., VIOLA, I. Computer Graphics 
Forum. Vol. 33. Wiley Online Library; 2014. Illustrative visualization of molecular reactions 
using omniscient intelligence and passive agents; p. 141-150.

Le Muzic et al. Page 12

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[LMWPV15]. LE MUZIC, M., WALDNER, M., PARULEK, J., VIOLA, I. Visualization Symposium 
(PacificVis), 2015 IEEE Pacific. IEEE; 2015. Illustrative timelapse: A technique for illustrative 
visualization of particle-based simulations; p. 247-254.

[LO08]. LU X-J, OLSON WK. 3dna: a versatile, integrated software system for the analysis, 
rebuilding and visualization of three-dimensional nucleic-acid structures. Nature protocols. 2008; 
3(7):1213–1227. [PubMed: 18600227] 

[LTDS*13]. LV Z, TEK A, DA SILVA F, EMPEREUR-MOT C, CHAVENT M, BAADEN M. Game 
on, science-how video game technology may help biologists tackle visualization challenges. PloS 
one. 2013; 8(3):57990.

[LVRH07]. LAMPE OD, VIOLA I, REUTER N, HAUSER H. Two-level approach to efficient 
visualization of protein dynamics. Visualization and Computer Graphics, IEEE Transactions on. 
2007; 13(6):1616–1623.

[MC98]. MACKE TJ, CASE DA. Modeling unusual nucleic acid structures. 

[PGH*04]. PETTERSEN EF, GODDARD TD, HUANG CC, COUCH GS, GREENBLATT DM, 
MENG EC, FERRIN TE. Ucsf chimera a visualization system for exploratory research and 
analysis. Journal of computational chemistry. 2004; 25(13):1605–1612. [PubMed: 15264254] 

[PJR*14]. PARULEK, J., JÖNSSON, D., ROPINSKI, T., BRUCKNER, S., YNNERMAN, A., 
VIOLA, I. Computer Graphics Forum. Vol. 33. Wiley Online Library; 2014. Continuous levels-
of-detail and visual abstraction for seamless molecular visualization; p. 276-287.

[S*99]. SANNER MF, et al. Python: a programming language for software integration and 
development. J Mol Graph Model. 1999; 17(1):57–61. [PubMed: 10660911] 

[SLJ*98]. SUSSMAN JL, LIN D, JIANG J, MANNING NO, PRILUSKY J, RITTER O, ABOLA E. 
Protein data bank (pdb): database of three-dimensional structural information of biological 
macromolecules. Acta Crystallographica Section D: Biological Crystallography. 1998; 54(6):
1078–1084. [PubMed: 10089483] 

[SLM04]. SCHROEDER, WJ., LORENSEN, B., MARTIN, K. The visualization toolkit. Kitware; 
2004. 

[SZA*14]. SHEPHERD JJ, ZHOU L, ARNDT W, ZHANG Y, ZHENG WJ, TANG J. Exploring 
genomes with a game engine. Faraday discussions. 2014; 169:443–453. [PubMed: 25340329] 

Le Muzic et al. Page 13

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Real-time screen-shot of an illustrative cross-section of the HIV virus surrounded by blood 

plasma. Our rendering tool is directly integrated in the Unity3D game engine and is able to 

render datasets with up to 15 billion atoms smoothly at 60Hz and in high resolution. 

Because these datasets exhibit high visual complexity, we opted for an illustrative rendering 

style to improve shape perception, inspired by the style of scientific illustrators.

Le Muzic et al. Page 14

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
An illustration of David Goodsell depicting a cross section of a Mitochondrion. Given the 

complexity of the scene the artist deliberately chose to render molecules with highly 

abstracted shapes.

Le Muzic et al. Page 15

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Depth conservative sphere impostors, in order to benefit from early depth culling for depth 

impostors we must guaranty that the output depth will be greater than the depth of the 

billboard.

Le Muzic et al. Page 16

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Our level-of-detail scheme allows to reduce the number of sphere primitives from 10182 to 

50 while preserving the overall shape of the protein. From left to right, the protein is shown 

with (i) full-atomic detail, (ii) only 15 percent of the overall sphere count, (iii) 5 percent and 

(iv) 0.5 percent.

Le Muzic et al. Page 17

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Side-by-side comparison of our illustrative LOD compared with full atomic details. Our 

illustrative LOD provides smoother and elegant shapes, while also reducing the processing 

load.

Le Muzic et al. Page 18

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Procedural generation of B-DNA structures via GPU dynamic tessellation. In the first image 

we can see the position of the individual bases. The color gradient highlights the individual 

segments. In the second image we draw the smooth normals along the curve, the color 

desaturation shows the direction of the vector. The third image shows the rotation offset of 

the normal vector along the tangent, and the last image shows the final result.

Le Muzic et al. Page 19

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
The results of our rendering test, showing DNA from Mycoplasma on the left and HIV in 

blood plasma on the right. The first dataset has approximatively 11 million atoms and the 

second one approximatively 15 billion

Le Muzic et al. Page 20

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Preliminary results of the Mycoplasma model. The model additionally features proteins, 

RNA and lycosomes.

Le Muzic et al. Page 21

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Le Muzic et al. Page 22

Ta
b

le
 1

Pe
rf

or
m

an
ce

 c
om

pa
ri

so
n 

fo
r 

ea
ch

 d
at

as
et

 u
se

d 
in

 o
ur

 s
tu

dy
. D

ur
in

g 
ou

r 
te

st
s 

w
e 

ha
ve

 m
on

ito
re

d 
th

e 
re

nd
er

in
g 

sp
ee

d 
w

ith
 v

ar
io

us
 c

am
er

a 
se

tti
ng

s,
 f

ro
m

 

fa
r-

ou
t t

o 
cl

os
e-

up
 a

nd
 f

ro
m

 m
an

y 
an

gl
es

. T
he

 m
ea

su
re

d 
pe

rf
or

m
an

ce
 r

ep
re

se
nt

s 
th

e 
sl

ow
es

t r
en

de
r 

sp
ee

d 
ob

ta
in

ed
, i

n 
fr

am
e 

pe
r 

se
co

nd
s 

at
 f

ul
l H

D
 

re
so

lu
tio

n.
 T

he
 f

ir
st

 c
ol

um
n 

sh
ow

s 
th

e 
si

ze
 o

f 
th

e 
da

ta
se

t i
n 

te
rm

s 
of

 n
um

be
r 

of
 a

to
m

s,
 th

en
 f

ro
m

 le
ft

 to
 r

ig
ht

: w
ith

ou
t o

pt
im

iz
at

io
ns

, w
ith

 L
O

D
 o

nl
y,

 w
ith

 

oc
cl

us
io

n 
cu

lli
ng

 o
nl

y 
an

d 
fi

na
lly

 w
ith

 L
O

D
 a

nd
 o

cc
lu

si
on

 c
ul

lin
g.

D
at

as
et

Si
ze

R
aw

L
O

D
O

. C
ul

lin
g

L
O

D
 +

 O
. C

ul
lin

g

H
IV

15
M

80
13

0
11

0
14

0

H
IV

 +
 b

lo
od

 p
la

sm
a

60
M

25
90

60
12

0

H
IV

 +
 b

lo
od

 p
la

sm
a 

×
 2

50
15

B
<

1
15

<
1

60

M
yc

op
la

sm
a 

D
N

A
12

M
70

n/
a

n/
a

n/
a

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2017 December 29.


	Abstract
	1. Introduction
	2. Related Work
	Large-scale Molecular Visualization
	Occlusion Culling
	Illustrative Molecular Visualization
	Modelling of Nucleic Acids Chains
	Game Engines and Biomolecular Visualization

	3. Efficient Occlusion Culling
	3.1. Temporal coherency
	3.2. Accelerating Texture Writes

	4. Twofold Level-of-Detail
	5. Dynamic DNA Generation
	5.1. Smooth Normals Computation
	5.2. Double Helix Instancing
	5.3. Control Points Resampling

	6. Results
	6.1. Use cases
	HIV Virus + Blood Plasma
	Mycoplasma

	6.2. Performance Analysis

	7. Expert Feedback & Discussion
	8. Conclusions and Future Work
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Table 1

