
RESEARCH ARTICLE

Reactive navigation in extremely dense and

highly intricate environments

Javier Antich Tobaruela☯*, Alberto Ortiz Rodrı́guez☯

Department of Mathematics and Computer Science, University of the Balearic Islands, Palma de Mallorca,

Spain

☯ These authors contributed equally to this work.

* javier.antich@uib.es

Abstract

Reactive navigation is a well-known paradigm for controlling an autonomous mobile robot,

which suggests making all control decisions through some light processing of the current/

recent sensor data. Among the many advantages of this paradigm are: 1) the possibility to

apply it to robots with limited and low-priced hardware resources, and 2) the fact of being

able to safely navigate a robot in completely unknown environments containing unpredict-

able moving obstacles. As a major disadvantage, nevertheless, the reactive paradigm may

occasionally cause robots to get trapped in certain areas of the environment—typically,

these conflicting areas have a large concave shape and/or are full of closely-spaced obsta-

cles. In this last respect, an enormous effort has been devoted to overcome such a serious

drawback during the last two decades. As a result of this effort, a substantial number of

new approaches for reactive navigation have been put forward. Some of these approaches

have clearly improved the way how a reactively-controlled robot can move among densely

cluttered obstacles; some other approaches have essentially focused on increasing the

variety of obstacle shapes and sizes that could be successfully circumnavigated; etc. In

this paper, as a starting point, we choose the best existing reactive approach to move in

densely cluttered environments, and we also choose the existing reactive approach with

the greatest ability to circumvent large intricate-shaped obstacles. Then, we combine

these two approaches in a way that makes the most of them. From the experimental point

of view, we use both simulated and real scenarios of challenging complexity for testing pur-

poses. In such scenarios, we demonstrate that the combined approach herein proposed

clearly outperforms the two individual approaches on which it is built.

Introduction

To introduce this work, in this section, we overview robot control paradigms, distinguish

among the different kinds of reactive control approaches, consider relevant contributions in

this field, and, finally, set the goals of this research.

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 1 / 51

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Antich Tobaruela J, Ortiz Rodrı́guez A

(2017) Reactive navigation in extremely dense and

highly intricate environments. PLoS ONE 12(12):

e0189008. https://doi.org/10.1371/journal.

pone.0189008

Editor: Josh Bongard, University of Vermont,

UNITED STATES

Received: April 3, 2017

Accepted: November 16, 2017

Published: December 29, 2017

Copyright: © 2017 Antich Tobaruela, Ortiz

Rodrı́guez. This is an open access article

distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work has received research funding

from the European Union’s Seventh Framework

Programme (grant agreement no. 605200) and the

European Union’s H2020 Framework Programme

(grant agreement no. 779776). Besides, this work

is partially supported by the Spanish project

MERBOTS DPI2014-57746-C3-2-R. The funders

had no role in study design, data collection and

https://doi.org/10.1371/journal.pone.0189008
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189008&domain=pdf&date_stamp=2017-12-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189008&domain=pdf&date_stamp=2017-12-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189008&domain=pdf&date_stamp=2017-12-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189008&domain=pdf&date_stamp=2017-12-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189008&domain=pdf&date_stamp=2017-12-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189008&domain=pdf&date_stamp=2017-12-29
https://doi.org/10.1371/journal.pone.0189008
https://doi.org/10.1371/journal.pone.0189008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Brief overview of robot control paradigms

One of the fundamental challenges posed to mobile robotics is the task of navigating autono-

mously and safely from one place to another in the presence of obstacles. To face this chal-

lenge, roboticists have tried to emulate in robots the behaviors and responses to stimuli

demonstrated by living creatures. As a result of this effort, three primary paradigms for robot

control have essentially emerged, named deliberative, reactive, and hybrid. Roughly speaking,

these paradigms differ from each other in how sensory data is processed and distributed

through the control system, and also where decisions are made. In other words, each of these

paradigms describes a different relationship among the primitive functions Sense, Plan, and

Act. In the following, we detail further the essentials, as well as the strengths and weaknesses,

of the deliberative, reactive, and hybrid robot control paradigms (see [1] in case the reader

wants to learn still more about these paradigms):

• As for the deliberative paradigm, it mainly focuses on heavy reasoning and knowledge

representation. To be more precise, a deliberatively-controlled robot operates in a top-down

fashion by repeating the following sense-plan-act cycle: first of all, the robot senses the world

and integrates the sensed data into a global world model; afterwards, based on such a model,

the robot computes/plans the series of actions needed to get to the desired destination from

its current position; and, at last, the planned actions are dispatched for execution. The delib-

erative paradigm has important limitations. More specifically, it just works well when the so-

called closed-world assumption is met. This assumption requires that there are no unpre-

dictable situations, and also that large amounts of computing power are available. Unfortu-

nately, in practice, these requirements are too severe since, on the one hand, the majority of

the real-world environments are inherently dynamic and, on the other hand, the use of low-

cost robots—with low-performance computational units— is becoming mandatory to allow

robotics to enter the domestic and service markets.

Shakey [2] was one of the first general-purpose mobile robots capable of reasoning about

its own actions. This was achieved by controlling Shakey according to the deliberative

paradigm.

• As for the reactive paradigm, it advocates for a direct connection between sensing and

action, mediated neither by heavy reasoning nor by knowledge representation (that is why

the reactive paradigm is also known as the sense-act paradigm). Or in other words, under

this paradigm, the real world is considered to be its own best model; in consequence, reac-

tively-controlled robots do not operate upon abstract representation of reality, but upon the

real world itself. As a major advantage, the reactive paradigm removes the need for the afore-

mentioned closed-world assumption. Through experimentation, this paradigm has demon-

strated to provide quick reaction times in unpredictable situations—typically caused by

unknown and moving obstacles—, even when being run on low-cost robots. However, the

reactive paradigm has disadvantages as well, all of them derived from the fact that decisions

about the robot’s actions are now made using local, rather than global—as in the deliberative

paradigm—, information of the environment. In short, these disadvantages are: (1) a reac-

tively-controlled robot has difficulties to navigate in complex environments (by way of

example, these robots get frequently trapped in concave obstacle configurations such as the

typical U-shaped canyon); and (2) the path followed by a reactively-controlled robot during

the navigation is usually highly suboptimal, in terms of length and/or clearance and/or

smoothness and/or any other quality criterion.

Rodney Brooks is recognized as a forefather of the reactive paradigm. In 1986, he presented

an inspiring paper entitled “Intelligence Without Representation” [3] that questioned the

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 2 / 51

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0189008

necessity of using explicit representations and models of the world for building intelligent

autonomous robots. As a direct consequence of this, a few years later, Brooks proposed one

of the most well-known reactive control architectures [4]. This architecture, which was given

the name of Subsumption, provided robots with a set of simple stimulus-response reflexes.

From the interaction among these reflexes, robots could perform behaviors similar to those

observed in insects.

• Finally, the essence of the hybrid paradigm is to combine the reasoning capabilities of the

deliberative paradigm with the responsive capabilities of the reactive paradigm. While the

deliberative paradigm relies on the idea of sense-plan-act and the reactive paradigm follows

a sense-act philosophy, the hybrid paradigm takes the form of plan, sense-act, with the

comma meaning parallel execution. In its basic conception, a control system based on the

hybrid paradigm makes use of two decoupled layers of functionality, one deliberative and

the other reactive. The deliberative layer provides a global plan as input to the reactive layer.

Then, the reactive layer executes this global plan within its local context and according to its

local constraints. Besides, it is important to note that, during the execution of the global

plan, the deliberative layer is allowed to interrupt the reactive layer if better plans are discov-

ered. Or what is more, in order to ensure responsiveness, partial plans may also be given to

the reactive layer when there is no time to wait for the complete solution. As a key advantage,

the hybrid paradigm enables robots to perform highly complex navigation tasks, such as

those found in the area of field robotics where robots are required to move through the

real outdoor world—i.e. through environments that are unstructured, partially or totally

unknown, constantly changing, and full of uncertainty (as a successful example of the appli-

cation of the hybrid paradigm for the resolution of a complex navigation task, the winner of

the DARPA Urban Challenge, a robot called Boss [5], was able to autonomously navigate

over 60 miles of urban terrain by using a layered control system that contained both deliber-

ative and reactive components). Regarding the disadvantages of the hybrid paradigm, one of

the most problematic issues is the difficulty that exists to achieve the right compromise

between the deliberative and reactive layers. The compromise between global objectives and

local constraints is not always easy to find, and often the tradeoffs have to be empirically

“fine-tuned” by the robot software designer. This process of fine-tuning may be time-con-

suming, or what is even worse than that, it may be very dependent on the target environ-

ment—if so, such a fine-tuning process should be repeated each time the target environment

changes. As a last note, another problematic issue of the hybrid paradigm comes from the

fact of having included a layer for global/high-level deliberation. In practical terms, delibera-

tion means the need for substantial hardware resources, especially large amounts of memory

and significant computational power. Unfortunately, this necessity is not supported by the

majority of low-cost robots, which are equipped with very limited hardware resources, such

as microcontrollers.

James Albus and Anthony Barbera were two of the first roboticists in designing a control sys-

tem—known as Real-time Control System, or RCS for short— which mixed both reactive and

deliberative components [6].

Control systems operating under the deliberative, reactive, and hybrid paradigms can all be

effective depending on the context in which they are used. In this respect, nevertheless, it is

fair to point out that most modern control systems are either reactive or hybrid (the delibera-

tive paradigm has practically fallen into disuse, probably because its underlying assumptions

conflict with reality). Moreover, due to the difficult design and tuning of hybrid control sys-

tems as well as to the always-present goal of trying to find the perfect balance between effort

and results, nowadays the hybrid paradigm is strictly used just when the reactive paradigm is

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 3 / 51

https://doi.org/10.1371/journal.pone.0189008

not good enough for a satisfactory robot performance. As a general idea about the specific

domains where the reactive and hybrid paradigms are currently being applied by researches in

robotics, it can be said that: when the intended navigation task is “simple”, there is a marked

preference for the use of the reactive paradigm; however, when the task is “complex”, the use

of the hybrid paradigm becomes mandatory since the reactive paradigm does not offer a solu-

tion to the problem. Table 1 summarizes the major advantages and disadvantages of the delib-

erative, reactive, and hybrid paradigms. Furthermore, Table 2 explains in which cases it is

preferable to use one paradigm over the others.

In the light of the above discussion, one can easily imagine the benefits that will come from

extending the currently-restricted domain of application of the reactive paradigm. Following

this, it seems clear that if, for solving non-simple navigation tasks, there was not the absolute

Table 1. Main advantages and disadvantages of the three prevailing paradigms for robot control.

Deliberative Paradigm Reactive Paradigm Hybrid Paradigm

Advantages

• Navigation tasks of high complexity can

be efficiently performed, but just in

static environments

• Robots are provided with a high level of

skill and intelligence

• Use of a partial and simplified model of the world

(note that, in the pure version of this paradigm,

there is a total absence of a world model)

• Use of limited computational power and memory

• Suitable for low-cost robots

• The closed-world assumption is not necessary,

because the robot is able to quickly react to

unpredictable situations

• Navigation tasks of high complexity can be

efficiently performed, even in dynamic environments

• Robots are provided with a high level of skill,

intelligence, and responsiveness

Disadvantages

• Large amounts of memory are required

to maintain a very detailed and

accurate model of the world

• A high computational power is required

to make decisions based on the world

model

• Not suitable for low-cost robots, i.e. for

robots with limited resources

• Safe navigation is only guaranteed in

environments where the—unrealistic—

closed-world assumption is met

• Decisions are made with no global knowledge,

which may lead to situations where the robot gets to

the desired target through a poor path, or, to make

matters worse, may cause the robot to fail in

reaching the target (here, the word “poor”

essentially means: a path that is much longer and

far less smooth thanthe best possible path)

• Complex design: the control of the robot is achieved

through a complex internal structure composed of

several functional layers—the deliberative layer, the

reactive layer, and some other layers—that interact

with one another

• Large amounts of memory are required to maintain

the global world model used by the deliberative

layer, and the local world model used by the reactive

layer

• A high computational power is required to allow the

deliberative and reactive layers to make decisions

based on their world models

• Not suitable for low-cost robots

https://doi.org/10.1371/journal.pone.0189008.t001

Table 2. A set of rules to decide when to apply a particular paradigm.

Deliberative Paradigm Reactive Paradigm Hybrid Paradigm

When to use it

• When a robot equipped with high processing

and memory capabilities is available

• When the navigation task to be performed is

complex

• When it is important that the robot efficiently

performs the navigation task

• When the robot is going to navigate only in

static environments

• When a robot equipped with low processing

and memory capabilities is available

• When the navigation task to be performed is

simple

• When no matter how efficiently the robot

performs the navigation task

• When the robot is going to navigate in both

static and dynamic environments

• When a robot equipped with high processing

and memory capabilities is available

• When the navigation task to be performed is

complex

• When it is important that the robot efficiently

performs the navigation task

• When the robot is going to navigate in both

static and dynamic environments

https://doi.org/10.1371/journal.pone.0189008.t002

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 4 / 51

https://doi.org/10.1371/journal.pone.0189008.t001
https://doi.org/10.1371/journal.pone.0189008.t002
https://doi.org/10.1371/journal.pone.0189008

necessity of applying the hybrid paradigm, or equivalently, it was possible the application of

the reactive paradigm, far less time and effort—and, therefore, costs—should be spent design-

ing, developing, and testing the robot control system.

With this motivation in mind, in this paper, we propose a new method for reactive autono-

mous robot navigation whose principal objective is that of performing more complex tasks

than what has been exhibited up-to-now by state-of-the-art methods. Next, we will go deeper

into the reactive paradigm. To be more precise, we first look at the most widely-known classifi-

cation of reactive control systems. Afterwards, we describe the best currently-existing methods

within each of the classification categories.

General classification of reactive control systems

Pure versus non-pure. As we have already mentioned before, a reactive control system is

characterized by a tight coupling of sensing to action, typically involving a very small amount

of computation/reasoning, and very simple—if any—internal representations of the world

where navigation is to occur. In the robotics literature, the fact of having, or not having, inter-

nal world representations has been used as a criterion to distinguish different types of reactive

control systems. According to this criterion, there exist two types of reactive control systems,

namely pure and non-pure. In essence, a reactive control system is said to be “pure” when no

use is made of internal world representations; otherwise, the reactive control system is consid-

ered as “non-pure”. Let us now discuss these concepts in a little more detail:

• Purely reactive control systems are systems without memory, which means that they react

directly to current sensor data. That is to say, in these systems, the actions performed at time

ti are decided on the basis of, solely, the sensor readings taken at time ti.

• Non-purely reactive control systems are systems that provide robots with a short-term

memory of the most recent sensor data. This short-term memory can be seen as an internal

representation of the world in the close surroundings of the robot (although obvious, the

larger the memory, the larger the view of the robot’s surroundings). In these systems, actions

are completely determined by the information contained in the short-term memory. Or said

in other words, assuming the use of a short-term memory of size N, the actions taken at time

ti are decided on the basis of the sensor readings taken from time ti−N+1 to ti.

As a final point, it should be noted that non-purely reactive control systems usually perform

much better than their purely reactive counterparts, but at the cost of requiring some addi-

tional memory and computation time.

In the following, we discuss how the value of N influences on the performance of a non-

purely reactive control system.

The choice of N as a trade-off between effectiveness and reactiveness in non-purely reac-

tive control systems. Generally speaking, the iteration cycle of a non-purely reactive control

system consists of three main steps: first of all, data from the robot’s sensors are gathered and

temporally accumulated in a short-term memory (regarding the meaning that the word “tem-

porally” has here, it is important to note that each data will remain stored in the short-term

memory for just N iteration cycles, being N� 1); as a second step, based on both the current

situation of the robot—this is supposed to be known/estimated from the information available

in the short-term memory—and the set of goals to be reached by the robot during navigation,

it is computed the best action that should happen next; and, finally, the previously computed

action is sent to the robot’s actuators for execution. These steps are repeated over and over at a

high frequency until all navigation goals are successfully fulfilled.

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 5 / 51

https://doi.org/10.1371/journal.pone.0189008

With the above in mind, it is worth mentioning that the value given to N has a strong influ-

ence on the performance that non-purely reactive control systems exhibit when carrying out

navigation tasks. In short, the more the value of N, the richer the information on which deci-

sions are made, and, therefore, the higher the probability that these local decisions translate

into effective global actions. Merely according to this, it seems that the value of N should be

chosen as high as possible. However, the truth is that one has to choose a compromise value

for N. This is due to the fact that the more the value of N, the more the memory which is

required to hold sensor data—because the short-term memory retains all sensor data collected

over the last N iteration cycles—, and the more the expense of computation time for making

decisions—because these decisions would be made on the basis of a larger amount of informa-

tion—(note additionally that an increase of computation time does imply a loss of reactive-

ness). From all that has been said, we can briefly conclude that, in non-purely reactive control

systems, the value of N allows establishing the desired trade-off between, essentially, the two

following competing interests: effectiveness and reactiveness.

In most cases, non-purely reactive control systems treat N as an external parameter which

has to be set, by a user—with some expertise—, to any desired value before navigation begins.

On the other hand, although less common, there are also non-purely reactive control systems

that consider N as an internal parameter. In such a case, it is important to understand that the

system assumes the entire responsibility for giving a proper value to N prior to starting the

navigation task. Moreover, in their great majority, these systems manage N adaptively; i.e. the

value they initially give to N does not remain constant over time, but rather it is continually

adjusted to adapt to current circumstances of navigation. As an outstanding example of that

adjustment, note that when a system with internal and adaptive parametrization of N detects

the robot may be currently trapped by an obstacle, the value of N is immediately increased

with the aim of improving the understanding the system has about the robot’s surroundings,

or what is more, in order that this better understanding helps the system to find—if any—new

paths which allow the robot to escape from/circumnavigate the blocking obstacle (as a final

remark on this example, let us mention that N is usually upper bounded, which means its

value cannot be increased beyond a certain maximum; by doing so, a limit is actually imposed

on the amount of reactiveness a system of this type is permitted to sacrifice in favor of a more

effective behavior of the robot; as one may well imagine, such a limit should be chosen care-

fully, in a way that ensures the robot can sufficiently react to the most likely unexpected

events). As a counterpoint to the previous example, note additionally that when a system with

internal and adaptive parametrization of N detects the robot is currently surrounded by small-

sized, simple-shaped and sparse-distributed obstacles, the value of N is immediately decreased,

because it is assumed that a basic understanding of the robot’s surroundings—with the word

“basic” meaning here that N takes a low value equal to or slightly higher than 1—will be

enough so that the system can make the robot successfully navigate around all such—minor—

obstacles; or said differently, in a context where obstacle avoidance can be effectively accom-

plished with only a reduced amount of local information about the environment, the system

aims to improve reactiveness, thus making the robot more capable of handling the

unexpected.

Relevant contributions in the development of reactive robots

Here, we briefly describe some of the most outstanding approaches to autonomously control a

mobile robot conforming to the reactive paradigm. In order to facilitate this description, we

have grouped the approaches into different classes (A, B, . . .) based on their operating

principles.

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 6 / 51

https://doi.org/10.1371/journal.pone.0189008

Class A. The first class comprises those approaches that construct an artificial potential

field. This artificial potential field is defined as the sum of attractive forces, pulling

the robot towards the desired target location, and repulsive forces, pushing the

robot away from obstacles. The resultant force is expected to drive the robot to

the target through a safe path. APF (Artificial Potential Field) [7] and VFH? (star

version of the Vector Field Histogram) [8] are two representative approaches of

this class.

The approaches of A-class have proven to be a very simple, fast, and effective way

of implementing reactive control over a robot. These approaches, nevertheless,

are known to suffer from important drawbacks [9]. Among these drawbacks, we

emphasize the following: (1) oscillations occur when the robot travels in narrow

passages (this is a serious drawback that may cause the robot to collide with obsta-

cles); (2) the sum of the attractive and repulsive forces may be zero in a point

other than the target (this means that the robot may get trapped in local minima).

Recently, there have been some attempts to solve the above-mentioned drawbacks

of artificial potential fields, as evidenced by the works [10] and [11].

Class B. The second class comprises those approaches that rely on the so-called curvature

velocity assumption. Under this assumption, a robot is supposed to move exclu-

sively along circular arcs and straight lines. In each control cycle, a motion com-

mand is computed by searching the point in the velocity space (v, w) that

maximizes an objective function which trades-off speed, safety, and target-direct-

ness. CVM (Curvature-Velocity Method) [12],DWA (DynamicWindow Approach)

[13], BCM (Beam Curvature Method) [14], PBCM (Prediction-based Beam Curva-
tureMethod) [15], andDCVM (Dynamic Curvature-Velocity Method) [16] are

some approaches belonging to this class.

The B-class approaches share common advantages and disadvantages. As for the

advantages, these approaches allow robots to navigate at a high speed with no risk

of collision, since they take into account the kinematic and dynamic constraints of

the robot (more specifically, they make velocities and accelerations bounded and

compatible with those that the robot can perform). On the other hand, among the

disadvantages of these approaches, we find the following: (1) their limited scope of

application, which is essentially restricted to synchro-drive and differential-drive

robots; and (2) the difficulty in obtaining an appropriate trade-off among the three

conflicting terms—speed, safety, and target-directness—included in the objective

function (this should be done by assigning a weight to each term, but the choice of

values is purely empirically based).

Class C. The third class comprises those approaches that are founded upon the notion of

opening or gap. Shortly speaking, a gap is defined as a free space between two

obstacles large enough for the robot to cross through. In essence, these

approaches operate in two basic steps: first, they search for all gaps by analyzing

the discontinuities in the robot’s current field of view; later, they choose the gap

which is more likely to drive the robot towards the desired target location. ND
(Nearness Diagram) [17] and CG (Closest-Gap) [18] are two representative

approaches of this class.

The approaches of C-class are known to be capable of safely moving a robot

among very closely-spaced obstacles. Unfortunately, these approaches also have

disadvantages, being the most important one the fact of not guaranteeing the

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 7 / 51

https://doi.org/10.1371/journal.pone.0189008

reachability of the target in environments having obstacles bigger in size than the

robot’s local field of view.

Class D. The fourth class comprises those approaches that belong to the so-called family

of Bug algorithms. All algorithms in this family generically operate as follows: as

a first step, the robot is moved directly towards the desired target location; this is

done until finding an obstacle that prevents the robot from progressing; at that

moment, a second step starts, which consists of making the robot follow the

boundary of the blocking obstacle until a certain condition is met—this condition

is typically referred to as the leaving condition; when the leaving condition is satis-

fied, the first step is executed again. This two-step iterative process is repeated

until the robot reaches the target.

Bug algorithms fundamentally differ from each other in the way they define the

leaving condition. Bug1 was the first Bug algorithm, and was proposed by profes-

sors Lumelsky and Stepanov in 1986 [19]. Since then, the number of Bug algo-

rithms has never stopped growing. Some widely-known members of the Bug

family are [20–24].

The main advantage of Bug algorithms is that they are able to guarantee complete-
ness; that is to say, they ensure the robot will get to the target if a path exists.

Regarding the disadvantages of Bug algorithms, the following have been reported:

(1) the environment is assumed to contain just static obstacles; (2) the robot is

assumed to be a point (this actually means that the robot has no size and can fit

through any arbitrarily small gap between two obstacles); (3) the robot is assumed

to have perfect localization capabilities as well as very precise sensors for detecting

obstacles. Obviously, these three assumptions are quite unrealistic.

Class E. The fifth and last class comprises those approaches designed to be integrated

into others. Broadly speaking, an approach of E-class can be thought of as a com-

ponent which carries with it specific abilities from the viewpoint of robot naviga-

tion. When one of these components is added to an existing reactive approach,

this approach expands its abilities with those inherent to the component.

T2 is an example of E-class component [25]. More specifically, this component

gives reactive approaches the ability to move a robot through environments with

complex obstacles without getting stuck. As may be noted in [26] and [27], T2 has

been successfully integrated into approaches of A- and B-class with the aim of

avoiding both local trap situations and cyclic behaviors.

The approaches of A-, B- and C-class are purely reactive, whereas the approaches of D- and

E-class are non-purely reactive.

Research objectives and structure of the paper

In this paper, as a starting point, we choose the existing reactive approach with the greatest

ability to move in densely cluttered environments—i.e. the best approach of C-class; we also

choose the existing reactive approach with the greatest ability to avoid local trapping situations

and cyclic behaviors—in this case, the best approaches are found in classes D and E. Then, we

combine these two approaches to make the most of them.

The results presented in [28] leave no doubt about what is the best approach of C-class.

Currently, the approach named Tangential Gap Flow (TGF) outperforms any other approach

within the scope of “motion in cluttered environments”. On the other hand, the comparative

study conducted in [25] together with the task of literature review that the authors of this

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 8 / 51

https://doi.org/10.1371/journal.pone.0189008

paper have carried out of the last five years of research allow us to affirm that T2 is one of

the best approaches to significantly increase the probability that the robot gets to the target,

always under the rules dictated by the reactive paradigm and without making any unrealistic

assumption.

The rest of the paper is organized as follows: firstly, we will discuss about how the TGF and

T2 strategies operate; secondly, we will propose a way to merge the two aforementioned strate-

gies; thirdly, we will test the strategy resulting from the merging in both simulated and real sce-

narios; fourthly, we will discuss the experimental results; and, finally, we will end the paper by

drawing some conclusions and possible future research lines.

Overview of the operation of TGF and T2

The Tangential Gap Flow (TGF) strategy

Closest-Gap is the generic name of a family of reactive control strategies of pure type which

are intended to make a robot move safely in narrow spaces, i.e. in places where the distance

between obstacles is barely bigger than the physical size of the robot.

This family takes its name from its first strategy, which was published in 2006 [18]. This

strategy, briefly called CG, was proposed as an improvement of the Nearness Diagram (ND)

[17] and the Smooth Nearness Diagram (SND) [29] methods. CG, just like ND and SND, is

capable of navigating a robot through closely-spaced obstacles. Nevertheless, CG is a step

ahead of ND and SND in various aspects: first of all, from a computational point of view, CG is

less demanding—decisions are made by involving a slightly less complex reasoning; secondly,

CG produces smoother robot movements; and, finally, CG decreases the probability that the

robot is trapped in a position other than the target.

Very soon after the publication of CG, the Closest-Gap family continued to grow, and two

new strategies were put forward, named Safe Gap (SG) [30] and Tangential Closest Gap (TCG)

[31]. SG enhances the safety of the robot trajectories produced by CG. To this end, SG deeply

analyses how obstacles are distributed between the robot and the navigable opening which is

closest to the robot. After this analysis, SG drives the robot through such a navigable opening

by generating a sequence of subgoals, whose path to them is ensured to be free of obstacles. On

the other hand, TCG produces faster, shorter and less oscillatory robot trajectories than CG.

To achieve all these improvements, TCG essentially makes the robot navigate parallel to the

tangent of the closest obstacle, while progressing towards the target. What is more, TCG sends

motion commands to the robot which are proven to be stable in Lyapunov terms.

The last strategy in joining the Closest-Gap family has been Tangential Gap Flow (TGF)

[28]. This strategy tries to combine the high robot safety level provided by SG with the more

efficient and more stable robot behavior exhibited by TCG. The following sections describe

how the TGF strategy operates, and also include a discussion about what the strengths and

weaknesses of TGF are.

Some operating details. The operation of TGF can be thought of as being divided into

three sequential stages. In the first stage—S1—, TGF searches for collision-free paths (although

obvious, note that this search is local in nature, which means it is performed by using, exclu-

sively, the information about the environment that the robot’s sensors provide at the moment

in which the search is started). In the second stage—S2—, TGF chooses one collision-free path

from all of those found in the previous stage. At last, in the third stage—S3—, TGF generates

the motion commands that make the robot follow the path which was chosen in stage S2. The

execution of stages S1 to S3 is repeated until the robot completes its task, i.e. until the robot

reaches the desired target position. A more in-depth view of how TGF operates is provided

next.

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 9 / 51

https://doi.org/10.1371/journal.pone.0189008

In stage S1, TGF analyses the immediate surroundings of the robot in search of the so-called

gaps (as explained in [28], a gap is a space between two obstacles wide enough for the robot to

navigate through). Strictly speaking, stage S1 is made of the following steps: first—S1.1—, TGF

collects data from the environment by using the sensors that are mounted on the robot; there-

after—S1.2—, TGF makes use of the information obtained in the previous step to find gaps

(at this point, it is important to highlight that any gap is considered, regardless of its size);

finally—S1.3—, the set of gaps found in step S1.2 are filtered by removing the gaps narrower

than the physical size of the robot. Fig 1 illustrates an example of the three steps performed in

stage S1.

Stage S2 receives as input the set of gaps surviving step S1.3. Here, from all these gaps, TGF

chooses the one that is likelier to allow the robot to reach—or, at least, get a bit closer to—the

desired target position. To discuss this idea in more detail, we first need to introduce a few

concepts: let C denote the center of the robot platform, T the target point, lT the straight-line

segment that connects C to T, pi
1

and pi
2

the endpoints of gap #i, lij the straight-line segment

Fig 1. TGF in action: An example showing the execution of stage S1. (a) the environment where the robot should navigate (obstacles are

represented by the thick black lines as well as the black rectangle; the robot is assumed to be equipped with a laser scanner which measures the

distance to all surrounding obstacles in a 360-degree field of view); (b) the environment as locally perceived by the robot; (c) detection of gaps

between obstacles; (d) gaps #3 and #4 are eliminated, because these gaps are narrower than the robot.

https://doi.org/10.1371/journal.pone.0189008.g001

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 10 / 51

https://doi.org/10.1371/journal.pone.0189008.g001
https://doi.org/10.1371/journal.pone.0189008

that joins C to pij for any j 2 {1, 2}, and, lastly, dist(lA, lB) is a function that returns the angle

between the straight-line segments lA and lB, andmindisti is another function defined by:

minðdistðlT ; li1Þ; distðlT ; l
i
2
ÞÞ: ð1Þ

According to expression 1, given gap #i, themindisti function finds the minimum angular

distance between lT and each of the straight-line segments li
1

and li
2
.

After introducing these concepts, we can go back to the explanation of stage S2. In this

stage, TGF does choose the gap with the smallestmindisti. Fig 2 shows graphically how the

above-described process of gap selection really works (as a continuation of the example of

Fig 1).

Turning our attention to stage S3, TGF sends a control command to the robot as a 2-tuple:

(steering direction, speed). Roughly speaking, such a motion command tries to guide the

robot along a collision-free path towards the gap selected in stage S2. What is more, while fol-

lowing this path, the robot is constrained to be kept in the midst of the free space left by those

obstacles located at both sides, and it is also constrained to move parallel to the tangent of the

obstacle which is closest to the robot. (Further details about how TGF computes this control

command can be found in [28]).

Strengths and weaknesses. In the light of the results presented in [28], where TGF is com-

pared against the ND, SND and CG strategies in dense and cluttered environments, we can

justifiably claim that TGF presently outperforms all competitors because it is able to generate

faster, shorter and smoother robot trajectories.

Unfortunately, TGF has a major drawback, which is shared by all purely reactive

approaches. A robot controlled by TGF may become trapped in front of an obstacle or may

wander indefinitely in a confined region of the environment, being unable to get to the given

Fig 2. TGF in action: An example showing the execution of stage S2. Gap #2 is selected instead of gap

#1 because mindist2 <mindist1.

https://doi.org/10.1371/journal.pone.0189008.g002

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 11 / 51

https://doi.org/10.1371/journal.pone.0189008.g002
https://doi.org/10.1371/journal.pone.0189008

target point. By way of example, let us assume that the robot is in the environment shown in

Fig 3(a), at the position indicated by the big gray circle. In such a situation, the TGF strategy

will steer the robot towards the gap #2; or, in other words, TGF will decide to try to reach the

target by following the corridor in a clockwise direction. This decision will be effective until

the robot is at the position of Fig 3(b). At that moment, the TGF strategy will steer the robot

towards the gap #1; or, in other words, TGF will decide to try to reach the target by following

the corridor in a counterclockwise direction. This decision will change again when the robot

arrives at the position of Fig 3(a), and, consequently, the robot gets into a cyclic path.

The T2 strategy

In 2005, the authors of the present work published a paper reporting a novel control strategy

called T2 [26]. The aim of this strategy was enabling robots to rapidly make intelligent deci-

sions by exploiting the power offered by the non-pure reactive paradigm. The term T2 = TT
comes from the two basic principles which govern the operation of the strategy. More specifi-

cally, these principles are: the principle of Traversability and the principle of Tenacity. By

applying the principles of Traversability and Tenacity, a robot does acquire the ability to avoid

getting stuck against large obstacles, even when these obstacles are intricate (in this respect, let

us note that: (i) a large obstacle goes beyond the robot’s neighbourhood; or, put differently, a

large obstacle is one that can only be partially perceived through the robot’s sensors, because

the obstacle is so big in size that some parts of it are not within the detection range—this fact

constitutes a serious disadvantage since it makes difficult for the robot to take decisions that

help in overcoming such large obstacles; (ii) an intricate obstacle involves the existence of a

region in the environment that is easy to get into, but very difficult to get out of; (iii) an obsta-

cle which is both, large and intricate, suffers from all the disadvantages indicated above). The

Fig 3. A scenario where TGF fails to guide the robot to the target.

https://doi.org/10.1371/journal.pone.0189008.g003

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 12 / 51

https://doi.org/10.1371/journal.pone.0189008.g003
https://doi.org/10.1371/journal.pone.0189008

last version of the T2 strategy was published in [25] after years of improvements. This section

describes the T2 strategy as it appears in [25].

As has been previously mentioned, the T2 strategy is conceived under the principles of Tra-

versability and Tenacity. Hence, we will first introduce the Traversability and Tenacity princi-

ples, and, later, we will discuss about the behaviour that a robot exhibits when it is controlled

in accordance with these two principles. Lastly, we will address the strengths and weaknesses

of the T2 strategy.

The Principle of Traversability. The principle of Traversability materializes through the

four following features (features 1 to 3 are illustrated in Fig 4(a), while feature 4 is shown in

Fig 4(b)):

Feature 1. The local environment of the robot is divided into K angular regions, R0 . . . RK−1,

of equal size.

Feature 2. Each angular region is labelled as either allowed or banned. Given an

i 2 {0, . . ., K − 1}, the angular region Ri is said to be allowed when the robot

does not detect the presence of any obstacle within Ri based on the current sen-

sor readings. Otherwise, Ri is said to be banned.

Feature 3. Let RT be the angular region in which lT falls (lT is the straight-line segment

between the robot’s position—C—and the target point—T). Additionally, let

Sallowed be the set of all angular regions labelled as allowed. Then, Rrightallowed and

Rleftallowed are defined as follows:

Rrightallowed ¼

if RT 2 Sallowed; Rrightallowed ¼ RT

otherwise; Rrightallowed is the angular region of Sallowed

that is closest to RT clockwise:

8
>>>>>>><

>>>>>>>:

ð2Þ

Rleftallowed ¼

if RT 2 Sallowed; Rleftallowed ¼ RT

otherwise; Rleftallowed is the angular region of Sallowed

that is closest to RT counterclockwise:

8
>>>>>>><

>>>>>>>:

ð3Þ

Feature 4. A short-term memory reminds the robot of the obstacles that were detected

recently. Fig 4(b) depicts this idea assuming that the robot has moved from Ci to
Cj (note that Ci is the position where the robot was in Fig 4(a)). Looking at

Fig 4(b), the following observations can be made: (i) the obstacle O1 is sensed by

the robot at Ci; (ii) when the robot is located at Cj: (ii.a) the obstacle O1 is not

within the robot’s sensing range; (ii.b) in spite of observation (ii.a), the use of a

short-term memory allows the robot to remember the presence of the obstacle

O1—this is evidenced by the fact that regions R10 and R11 are banned.

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 13 / 51

https://doi.org/10.1371/journal.pone.0189008

Fig 4. Exemplification of the Traversability principle assuming K = 24.

https://doi.org/10.1371/journal.pone.0189008.g004

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 14 / 51

https://doi.org/10.1371/journal.pone.0189008.g004
https://doi.org/10.1371/journal.pone.0189008

By way of summary, we can say that, as a result of applying the principle of Traversability,

the T2 strategy selects two regions: Rrightallowed and Rleftallowed.
The principle of Tenacity. The second principle, known as Tenacity, aims at selecting

one of the two regions produced by the principle of Traversability: Rrightallowed or Rleftallowed.
The principle of Tenacity is defined in two different ways, which go under the names of

right-hand tenacity and left-hand tenacity. These definitions differ from one another in the cri-

terion used to choose between Rrightallowed and Rleftallowed. Simply expressed, right-hand tenacity always

chooses Rrightallowed, while left-hand tenacity always selects Rleftallowed. A user-definable parameter

determines the type of tenacity, either right-hand or left-hand, we want to apply.

Henceforth, we will generically denote by Rten the region which has been selected according

to the principle of Tenacity, and by lten the straight line with origin at C that divides Rten into

two equal parts.

The behaviour that naturally emerges from the principles of Traversability and Tenac-

ity. Let us consider the two following assumptions: [A1] the principles of Traversability and

Tenacity are integrated into the robot’s control loop (this fact actually means that these princi-

ples are applied again and again, at a sufficiently high rate, until the robot reaches T); and [A2]
the robot moves along the straight line lten. Under these assumptions, the behaviour of the

robot does fit the pattern described below (in the following, eBx stands for “emerging Behavior

number x”):

• eB1. The robot moves straight from its current position C to the desired target point T, as

long as there is no obstacle in the path. This behaviour corresponds to steps 1 and 2 in Fig 5.

• eB2. When an obstacle prevents the robot from progressing towards T, the robot immediately

switches to a boundary-following behaviour so as to circumvent the blocking obstacle.

The robot follows the boundary of the obstacle in either clockwise or counterclockwise

direction depending on the type of tenacity being used.

The boundary-following behaviour explained above is that of steps 3 to 6 in Fig 5. In this fig-

ure, it is supposed that the principle of Tenacity is applied in its left-hand form—therefore,

Rten ¼ Rleftallowed.

• eB3. Boundary-following continues until there is a clear and straight path to the target T, i.e.

until RT 2 Sallowed. This way of behaving corresponds to step 7 in Fig 5.

Finally, it is worth noting that, after eB3, the robot behaves according to eB1 again. More-

over, when this transition occurs, from eB3 to eB1, all data stored in the short-term memory

are erased. For an illustration of these two final remarks, see step 8 in Fig 5.

Strengths and weaknesses. Through extensive experimentation on both simulated and

real robots, the T2 strategy has demonstrated to be able to make robots avoid very large and

intricate obstacles, while successfully progressing towards the desired target point. As an exam-

ple of this—extracted from [25]—, Fig 6 shows the trajectory generated by the T2 strategy in an

environment with three main obstacles (the reader can find many more experiments in [25]).

As can be observed, several cardboard boxes were strategically placed to build two canyons—

one U-shaped and the other L-shaped—and a wall. The robot used in this experiment was a

Pioneer 3-DX platform fitted with sixteen ultrasonic sensors, which were arranged to provide

a 360-degree coverage. The sensing range of all these ultrasonic sensors was limited, by soft-

ware, to just 0.75 metres. The reason behind this was to make the experiment more challeng-

ing, in the sense of ensuring that obstacles were never fully detected by the robot’s sensors (i.e.

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 15 / 51

https://doi.org/10.1371/journal.pone.0189008

when an obstacle was detected by the ultrasonic sensors, some parts of it lied outside their

maximum detection range).

Unfortunately, the T2 strategy also has serious limitations, which may cause either the robot

never reaches the target point or the robot chooses a long path to get to it. We discuss next

these limitations in detail (in the following, Lx stands for “Limitation number x”):

• L1. As a consequence of the use of the short-term memory—that is to say, as a consequence

of remembering obstacles which were detected in the past (Fig 4(b))—, the T2 strategy may

not allow the robot to directly progress towards the target point when no obstacle is really

present between them.

Fig 5. Behavior that emerges when the Traversability principle and the Tenacity principle are jointly

applied.

https://doi.org/10.1371/journal.pone.0189008.g005

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 16 / 51

https://doi.org/10.1371/journal.pone.0189008.g005
https://doi.org/10.1371/journal.pone.0189008

The situation illustrated in Fig 7(a) is an example of the aforementioned problem. As can

be observed, after step 6, the robot is not allowed to head for the target because in the past

it detected obstacles in that direction. Nevertheless, those obstacles are behind the target,

and, therefore, they are not relevant at all for the navigation task. Despite this, in such a

situation, the T2 strategy is unable to realize that the target is directly reachable by the

robot.

• L2. The T2 strategy may fail to detect narrow passages/gaps between obstacles where the

robot actually fits in. For some scenarios—such as the one of Fig 7(b)—, this gap-detection

failure entails the loss of opportunities to reach the target point through a shorter path.

As shown in Fig 7(b), none of the two possible motion directions computed by the T2 strat-

egy at point Q—these directions are given by the Rrightallowed and Rleftallowed regions—move the

robot towards the central passage, which represents the shortest way to the target. In the

above scenario, the robot would follow the path marked in green if the T2 strategy was con-

figured in its right-hand tenacity mode, or alternatively, the robot would follow the purple

path if the left-hand tenacity mode was employed.

Fig 6. The T2 strategy escaping from several dead-end traps. The T2 strategy was configured in its left-hand tenacity mode. As can be seen, the robot

needed to move away from the target in order to avoid the two canyon-like obstacles. (a) Plot of the path followed by the robot (over 28 meters in length).

(b) Multiple views of the navigation environment.

https://doi.org/10.1371/journal.pone.0189008.g006

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 17 / 51

https://doi.org/10.1371/journal.pone.0189008.g006
https://doi.org/10.1371/journal.pone.0189008

Escape Gap as a new reactive control strategy

As shown in [28] and [25], TGF and T2 make the robot gain new capabilities/skills for naviga-

tion. To be precise, the former of these strategies does allow the robot to go through very nar-

row passages without collision (in this context, “very narrow” means just a few millimetres

bigger than the size of the robot). On the other hand, with the T2 strategy, the robot does

acquire the skill of being able to overcome large and complex obstacles (here: “large” means

much larger in size than the area of sensing around the robot—as given by the maximum

detection range of the robot’s sensors; and, by “complex”, we mean an obstacle that features

twisting passages and dead-ends as well as places with only one way in and out).

As one can easily understand, both of the above-mentioned capabilities/skills are essential

for any autonomous mobile robot which is intended to behave intelligently. In view thereof, it

is clear that the combination of the skill provided by TGF and the skill provided by T2 is to

provide enhanced navigation abilities to the robot. Consistently with this observation, this sec-

tion proposes integrating TGF and T2 into a new reactive control strategy capable of manoeu-

vring a robot through tight passages and making a robot escape from huge maze-like obstacles

while moving to the target T quickly. This new strategy goes under the name of Escape Gap or,

simply, EG.

Below, we will start with a short description of EG. After that, we will discuss specific details

about the operation of this new strategy.

Fig 7. Some limitations of the T2 strategy. (a) The robot never converges to the target; (b) Narrow passages/gaps are missed (as a general remark, it is

important to say that T2 inherently favors the navigation of the robot across the open spaces of the environment, where naturally there is less risk of

collision).

https://doi.org/10.1371/journal.pone.0189008.g007

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 18 / 51

https://doi.org/10.1371/journal.pone.0189008.g007
https://doi.org/10.1371/journal.pone.0189008

General overview of EG

A block diagram of the EG strategy is sketched in Fig 8(a). As can be observed, only two blocks

appear: one of them—the first block at the top—represents the T2 strategy as described in [25];

the other block represents a variant of the TGF strategy (as we will explain further on, the

main difference between the TGF strategy presented in [28] and the one integrated into EG

lies in how they do define themindisti function).

In order to work properly, the T2 strategy needs to know the final destination of the robot

and the location of those obstacles which have recently been detected by the robot (as is clear

from Fig 8(a), the information about the robot’s destination is passed through the input lT,

while the information about the location of all recently detected obstacles is retrieved from an

internal short-term memory which is continuously fed with sensory data). The two pieces of

information listed above are used by the T2 strategy to compute the output lten. Here, it is

worth stepping back to remember that lten is a line which indicates a suitable direction of

motion for the robot for the current time instant. By moving along lten, the robot is expected to

not get stuck against any obstacle; or, what is still more important, the robot is expected to suc-

ceed in finding a path to reach its final destination T.

Fig 8. A schematic view of the components of EG. (a) first proposal; (b,c,d) some improvements to (a) (in these figures, Inum is used as a shorthand

term of Improvement #num).

https://doi.org/10.1371/journal.pone.0189008.g008

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 19 / 51

https://doi.org/10.1371/journal.pone.0189008.g008
https://doi.org/10.1371/journal.pone.0189008

In its original version [28], the TGF strategy requires two inputs: on the one hand, the first

input is the final destination of the robot (just like the T2 strategy, TGF assumes that such a

destination is determined by the straight-line segment lT); on the other hand, the second input

corresponds to the location of all nearby obstacles (by the expression “nearby obstacles”, we

mean the obstacles that are currently visible to the robot’s sensors). Using these two inputs, the

TGF strategy chooses the gap through which the robot should pass, and generates a control

command accordingly.

The TGF strategy integrated into EG differs from the original in two primary aspects:

the value of one of their inputs and the internal definition of themindisti function (this func-

tion is of great importance, because it is in charge of choosing the best gap for the robot to go

through; for the sake of clarity, from now on, we will refer to the original version of TGF as

TGF and to the modified version of TGF—i.e. the one used in EG—as TGF?).
As for the first of the above differentiating aspects, both TGF and TGF? have an input that

allows them to know in which direction the target that the robot should reach lies. This input

is what we have previously called “the destination of the robot”. As has been already explained,

the destination of the robot is represented by lT in TGF. Rather, in TGF?, such a destination is

supposed to be given by lten, as is evident from the fact that the output of the T2 strategy is con-

nected to TGF? in Fig 8(a) (plainly speaking, lten is a line which coincides with lT when there

are no obstacles to overcome; alternatively, when the robot faces an obstacle, lten points in the

direction of the avoidance route to be followed).

The second differentiating aspect between TGF and TGF? is themindisti function. In TGF,

the expression for this function is the one of eq 1. By contrast, TGF? defines themindisti func-

tion as follows (the reader is referred to the section where the TGF strategy was described for a

definition of the terms li
1

and li
2
, as well as the function dist):

minðdistðlten; li1Þ; distðlten; l
i
2
ÞÞ: ð4Þ

With this new expression of themindisti function, we cause TGF? to drive the robot towards

the gap which is closest to the direction suggested by the T2 strategy.

We conclude this section with an easy-to-understand way of interpreting Fig 8(a). With

respect to this figure, we can say that: (i) the T2 component of EG provides a rough estimate of

the free-obstacle path that the robot should traverse in order to reach the target T; (ii) the

TGF? component of EG takes the previous path, refines it—mainly in those parts where the

path goes through narrow passages—, and, finally, makes the robot follow it. Here, it is of

utmost importance to note that everything in (i) and (ii) is done in accordance with the spirit

of the reactive paradigm, which means that EG—or, equivalently, its two components: T2 and

TGF?—does work by means of only a partial/local view of the environment.

Shortcomings and improvements of EG

The EG strategy, as has been stated in the previous section, makes the robot behave in an unde-

sirable manner in some cases. Next, these cases are examined in detail, and an appropriate

solution is given for each of them.

Case A: Some gaps are ignored. Fig 9(a) shows a first case where EG fails in guiding the

robot to the desired target point T. From this figure, several observations can be made: first of

all, the environment is such that the only way to escape from the interior of the obstacle O1 is

by going through the exit marked with the dashed arrow (for simplicity, in the following lines,

we will refer to this exit as X); on the other hand, taking a look at the trajectory followed by the

robot—see the red line which is partly hidden by blue rectangles—, one can realize that the

robot has passed very close to X, but has ignored it. Thus, a natural question arises: why has

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 20 / 51

https://doi.org/10.1371/journal.pone.0189008

Fig 9. A comparison of the performance of EG. (a,b) before and (c,d,e) after adding the sensor data filter.

https://doi.org/10.1371/journal.pone.0189008.g009

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 21 / 51

https://doi.org/10.1371/journal.pone.0189008.g009
https://doi.org/10.1371/journal.pone.0189008

this happened? Fig 9(b) reveals that the above problem is due to an incorrect behaviour of the

T2 component of EG: as can be appreciated, when the robot is in front of X, T2 suggests that

the robot continues following the boundary of the obstacle O1 as if the exit X did not exist, and

therefore moves away from X.

To solve the problem of Fig 9(b) (which is exactly the same problem as the one of Fig 7(b)),

we propose to add a new sensor data filter into EG. Roughly speaking, such a filter builds on

the idea that not all the information provided by the robot’s sensors should be stored in the

short-term memory of the T2 strategy. To bring this idea to life, the sensor data filter has been

connected to the other components of EG as illustrated in Fig 8(b). By connecting it this way,

the sensor data filter acquires the power to decide which data, among those collected by the

robot’s sensors, are—temporarily—memorized by T2 and which are not. Before elaborating on

the details of the filtering criterion, we want to remark the following: (i) EG makes the robot

adopt a boundary-following behaviour each time a blocking obstacle is found (this is a func-

tionality inherited from the T2 strategy); (ii) the sensor data filter is active only when the robot

is performing the aforesaid boundary-following behaviour (note additionally that all data are

allowed to pass through the filter when it is not active); (iii) when we refer to “the data col-

lected by the robot’s sensors”, we actually mean the data coming from the proximity sensors of

the robot, i.e. the data concerning—nearby—obstacles. With remarks i to iii in mind, we are

now in a position to describe the sensor data filter, which proceeds as follows: let Ob be the

blocking obstacle that the robot is trying to avoid, and let �@Ob be the portion of the Ob’s
boundary followed by the robot from the start of the boundary-following behaviour; then, the
sensor data filter does block all obstacles which are not contiguous to �@Ob.

To make things more clear, we give an example of how the sensor data filter works. To this

end, we will use Fig 9(c), for which it is important to consider the following: the environment

is the same as that of Fig 9(a) and 9(b) (there is just one obstacle named O1); the robot is

assumed to be located at the same position as in Fig 9(b) (hereafter, we will refer to this posi-

tion as C); the obstacles sensed by the robot at position C are all displayed in dark-violet colour

(these obstacles are labelled using the notation Olocaln , where n is a sequential number); the rest

of the obstacles—i.e. those outside the robot’s sensing area—are displayed in brown colour

and in greenish-yellow colour; finally, the brown colour is also used to represent the portion of

the O1’s boundary followed by the robot from the starting point to C (hereafter, we will refer to

this portion as �@O1). In the situation of Fig 9(c), the sensor data filter would work as follows:

once the obstacles Olocal
1

and Olocal
2

were received as input, the filter would block obstacle Olocal
2

.

The reason to do that is because obstacle Olocal
1

extends �@O1 by one of its ends, while obstacle

Olocal
2

does not. Now, to complete the above discussion, let us say a few words about the impli-

cations that the blocking of obstacle Olocal
2

would have on navigation: at position C, the T2 strat-

egy would advise the robot to move directly towards the exit X (see the pointing direction of

lten in Fig 9(d)); after taking this exit, the robot would be capable of reaching T, as shown in

Fig 9(e).

Case B: No progress to T. Just like the T2 strategy, EG is also susceptible to the problem

of Fig 7(a). This situation shows that, occasionally, remembering the past—i.e. remember the

position of the obstacles which were previously detected by the robot’s sensors—may prevent

the robot from progressing to the target point, when there is no obstacle blocking the straight-

line path that joins the robot and the target.

With the above in mind, it is clear that, for solving the problem highlighted in Fig 7(a), EG

should forget some information from the past, specifically that information which is no longer

necessary for the task of obstacle avoidance. In order to make this happen, a data removal

mechanism has been added to EG, as reflected in Fig 8(c). In essence, such a data removal

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 22 / 51

https://doi.org/10.1371/journal.pone.0189008

mechanism searches for inconsistencies between the information which is currently stored in

the short-term memory and the information which is currently provided by the robot’s sen-

sors. For the data removal mechanism, the term inconsistency exclusively refers to the fact

that: the short-term memory indicates that there are obstacles in a certain region (R0. . .RK−1),

but the sensors of the robot say just the opposite. When an inconsistency is found, the data

removal mechanism removes those data from the short-term memory which are causing the

inconsistency.

Finally, it should be noted that the search for inconsistencies performed by the data removal

mechanism is restricted to a small area of the short-term memory. Before going any further on

this point, let us define Rchecked as the banned-labelled region that is closest to Rten (look at Fig

10(a)). According to this, we can state that the data removal mechanism only checks whether

the Rchecked region is inconsistent or not, in the sense given above. In case Rchecked is inconsis-

tent, its state will be changed to allowed. For the same environment as in Figs 7(a) and 10(b)

depicts the path the robot would follow after incorporating our data removal mechanism.

Case C: Inability to escape from obstacles with multiple loops. Let us imagine an envi-

ronment where there is an obstacle with a spiral-like shape, such as the one of Fig 11(a). In this

environment, EG is unable to compute lten at step 5, because there are no regions labelled as

Fig 10. Removing the information about obstacles from the short-term memory which unnecessarily restricts the motion of the robot. (a) A

graphical representation of what Rchecked means. (b) The data removal mechanism in action: at step 6a, the Rchecked region is considered to be

inconsistent; accordingly, the Rchecked region is relabelled as allowed at step 6b; at step 6c, the robot goes directly towards T.

https://doi.org/10.1371/journal.pone.0189008.g010

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 23 / 51

https://doi.org/10.1371/journal.pone.0189008.g010
https://doi.org/10.1371/journal.pone.0189008

allowed (Sallowed = ;). Consequently, from step 5 onwards, EG does not know in which direc-

tion the robot should move in order to reach the target point T.

To solve the problem described above, we propose to introduce the concept of layer into

the short-term memory of EG. As diagrammed in Fig 8(d), the short-term memory may now

comprise several layers. Briefly speaking, a layer is the compact view of the surroundings of the

robot which was inherited from the T2 strategy (remember that this compact view consists of a

360-degree circle which is divided into K angular regions (R0 . . . RK−1), where each angular

region can be labelled as either banned or allowed, depending on whether or not the robot has

recently detected obstacles in the range of directions covered by the angular region—see Fig

4). Our solution to the problem of Fig 11(a) is to convert EG into a strategy able to support

multiple layers organized as a LIFO memory.

When the navigation task starts, EG merely has one layer available (hereinafter, this layer

will be indistinctly referred to as either main layer or layer #1). New layers are created accord-

ing to the navigation needs. To be more precise, a second layer will be created when layer #1

becomes fully banned,—or, said differently, when the situation of step 5 in Fig 11(a) happens.

In more general and formal words, we could state that: let layer #i be the last layer which has

been created, and let Siallowed denote the set of all angular regions labelled as allowed in layer #i;

then, the layer #i+1 will be created if and only if Siallowed ¼ ;. When a layer is created, it immedi-

ately turns into the currently-active layer (by default, the currently-active layer is layer #1; no

more than one layer may be currently-active, which means that: if layer #i+1 is created, it will

become the currently-active layer and layer #i will stop being currently-active). At this point,

it should be noted that the information captured by the robot’s sensors is only incorporated

into the currently-active layer (the rest of layers do not receive any information). Fig 11(b)

shows an example of creation of a new layer. As can be seen, from steps 1 to 5, layer #1 is the

currently-active layer. At step 5, the above-stated condition for layer creation is met. In

Fig 11. Problems and solutions for successfully avoiding spiral-like obstacles. (a) At step 5, the robot does not know where to go. (b) At step 6, a

new layer is added to the short-term memory (in the figure, Li stands for layer #i).

https://doi.org/10.1371/journal.pone.0189008.g011

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 24 / 51

https://doi.org/10.1371/journal.pone.0189008.g011
https://doi.org/10.1371/journal.pone.0189008

consequence, layer #2 is created at step 6. From that moment on, layer #2 will be the currently-

active layer and will receive as input all the data coming from the robot’s sensors.

By analyzing Fig 11(b) in detail, one can quickly realize that a new problem arises at step 6.

On the one hand, in accordance with eqs 2 and 3, Rleftallowed ¼ R
right
allowed ¼ RT . On the other hand,

taking into account the assumption made by Fig 11 of using EG in its left-hand tenacity mode,

Rten ¼ R
left
allowed ¼ RT . Practically speaking, this means that the robot will stop following the

boundary of the O1 obstacle and will move directly towards the target point, T. However, this

is not the best thing the robot can do in such a situation. Cyclic behaviors may occur if the

robot leaves off doing boundary-following in an inner loop of a spiral-like obstacle. By way of

illustration, the robot would perform the cyclic path in gray of Fig 11(b), if EG would decide to

leave the O1’s boundary at step 6. Our objective is to make the robot continue following the

O1’s boundary until point Q of Fig 11(b), because this point ensures the definitive avoidance of

the O1 obstacle. To attain our objective, we have to change the way how EG computes Rrightallowed

and Rleftallowed. In view of that, we propose to rewrite eqs 2 as 5 and 3 as 6.

Rj;rightallowed ¼

if MAINCNDj; Rj;rightallowed ¼ R
j
T

if :MAINCNDj and RjT 2 S
j
banned; Rj;rightallowed is the angular region

of Sjallowed that is closest to

RjT clockwise

otherwise; Rj;rightallowed is the angular region

of Sjallowed that is closest to

Rj;rightbanned clockwise:

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð5Þ

Rj;leftallowed ¼

if MAINCNDj; Rj;leftallowed ¼ R
j
T

if :MAINCNDj and RjT 2 S
j
banned; Rj;leftallowed is the angular region

of Sjallowed that is closest to

RjT counterclockwise

otherwise; Rj;leftallowed is the angular region

of Sjallowed that is closest to

Rj;leftbanned counterclockwise:

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð6Þ

Before discussing the meaning of eqs 5 and 6, let us introduce the notation employed in

both equations. In short: LjCA denotes the layer which is currently-active at step j; Sj refers to

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 25 / 51

https://doi.org/10.1371/journal.pone.0189008

the set of all angular regions of LjCA; Sjallowed is the subset of Sj that contains all angular regions

labelled as allowed; Sjbanned is the subset of Sj that contains all angular regions labelled as banned;

Cj represents the position of the robot at step j; ljT denotes the straight-line segment that joins

Cj to T; RjT designates the angular region of Sj in which ljT falls; Rj;rightbanned is the angular region of

Sjbanned that is closest to RjT counterclockwise; Rj;leftbanned is the angular region of Sjbanned that is closest

to RjT clockwise; and, finally, the so-called MAINCNDj condition is defined by eq 7.

MAINCNDj ¼ “a new layer is not created at step j” and

Rj� 1

T 2 S
j� 1

banned and RjT 2 S
j
allowed

ð7Þ

We now make use of Fig 12 to explain, in clear and practical terms, eq 6 (the forthcoming

discussion can be easily extrapolated to the case of eq 5). This figure assumes that the robot is

at step 6 of Fig 11(b). Next, we will see that, by means of eq 6, EG ensures the robot keeps on

doing its boundary-following behavior until reaching point Q. Let us analyze Fig 12(a) and

12(b) step by step:

Step 6. As has been mentioned before, EG creates layer #2 at step 6. As a consequence of

this, the MAINCNDj = 6 condition is not satisfied (see eq 7). Additionally, Rj¼6
T is

an allowed-labelled region. Therefore, taking into consideration all the above

(:MAINCNDj¼6 and Rj¼6
T 2 Sj¼6

allowed), Rj¼6;left
allowed is calculated using the otherwise

part of eq 6. This part of eq 6 suggests computing Rj¼6;left
allowed as illustrated in Fig 13.

Fig 12. Continuation of the navigation task initiated in Fig 11(a) and 11(b). The situation depicted makes clear that EG allows the robot to progress

directly towards the target point (meanwhile, the robot persists in performing boundary-following) just when the robot reaches the outermost loop of the

spiral-like obstacle and the currently-active layer of the short-term memory indicates that there is a free-obstacle path to T. (a) At step 12, layer #2 is

destroyed, and layer #1 is recovered and used for deciding where to move the robot. (b) At step 17, the robot leaves the O1’s boundary and moves

following the thick gray line. In both figures, (a) and (b), Li stands for layer #i. Lastly, it is also important to note that the legend of this figure gives a different

meaning to some colors as compared to the legend of Fig 11(a) and 11(b). Essentially, now the RjT angular region is painted in either dark-blue or soft-blue

depending on how it is labelled: dark-blue/soft-blue is used when RjT is labelled as allowed/banned.

https://doi.org/10.1371/journal.pone.0189008.g012

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 26 / 51

https://doi.org/10.1371/journal.pone.0189008.g012
https://doi.org/10.1371/journal.pone.0189008

Plainly speaking, here EG forces the robot to continue following the O1’s bound-

ary, despite there is an apparent free-obstacle path to T (as indicated by the fact

that Rj¼6
T 2 Sj¼6

allowed).

Step 7. This step is very similar to step 6, since the same condition holds:

:MAINCNDj¼7 and Rj¼7
T 2 Sj¼7

allowed. The only difference with respect to step 6

is the reason why MAINCNDj = 7 is not satisfied. To be precise, MAINCNDj = 7

is not met because R6
T is an allowed-labelled region, which is contrary to

Rj� 1¼6
T 2 Sj� 1¼6

banned (refer to eq 7 again).

As a conclusion of step 7, we can say that Rj¼7;left
allowed is obtained according to the oth-

erwise part of eq 6, as was the case at step 6.

Step 8. Let us take a step back to remember that R7
T is an allowed-labelled region. At step

8, the above implies the non-fulfillment of the MAINCNDj = 8 condition (note

Fig 13. One of the three different ways of calculating Rj;right
allowed and Rj;left

allowedthat eqs 5 and 6 do propose. The

use of this way of calculatingRj;rightallowed and Rj;leftallowed is restricted to the case in which the robot is navigating inside

a spiral-like obstacle and the EG’s short-term memory detects a false free-obstacle path towards the target

point.

https://doi.org/10.1371/journal.pone.0189008.g013

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 27 / 51

https://doi.org/10.1371/journal.pone.0189008.g013
https://doi.org/10.1371/journal.pone.0189008

that Rj� 1¼7
T 2 Sj� 1¼7

banned is not true). In addition, Rj¼8
T is a banned-labelled region. All

this means that: :MAINCNDj¼8 andRj¼8
T 2 Sj¼8

banned. Therefore, Rj¼8;left
allowed is calcu-

lated through the second part of eq 6. This part of eq 6 computes Rj¼8;left
allowed as

explained earlier in Fig 4(a). Plainly speaking, here EG does not detect any free-

obstacle path to T (Rj¼8
T 2 Sj¼8

banned), and, in consequence, EG has no choice but to

make the robot continue following the O1’s boundary.

Step 9. This step is very similar to step 8, since the same condition holds:

:MAINCNDj¼9 and Rj¼9
T 2 Sj¼9

banned. The only difference regarding step 8 is the

reason why MAINCNDj = 9 is not satisfied. To be precise, MAINCNDj = 9 is not

met because Rj¼9
T is a banned-labelled region, which goes against the condition

imposed by eq 7 that Rj¼9
T 2 Sj¼9

allowed. In short, Rj¼9;left
allowed is obtained in the same way

as Rj¼8;left
allowed, i.e. by applying the second part of eq 6.

Next, steps 10 and 11 are omitted because they are identical to step 9.

Step 12. Here, we have the first step where the MAINCNDj=12 condition is satisfied (by

observing Fig 12(a), one can realize that the three conditions of eq 7 are actually

met: on the one hand, Sj¼12

allowed is not an empty set and, in consequence, EG does

not need to create a new layer at step 12; on the other hand, Rj� 1¼11
T 2 Sj� 1¼11

banned ;

and, finally, Rj¼12
T 2 Sj¼12

allowed). When the above happens, a set of actions is carried

out: (1) layer #2—i.e. the currently-active layer—is destroyed (each layer stores

information about the obstacles that the robot has found while following the

boundary of a certain loop of the spiral-like obstacle; or in other words, layer #i

contains information related to the i-th loop of the spiral-like obstacle, being the

1-st loop the outermost one; when the robot gets to circumnavigate the i-th loop

of the spiral-like obstacle, EG decides to destroy layer #i since the information

that this layer has is no longer necessary—besides, in this way, the use of memory

is reduced); (2) layer #1 is turns into the currently-active layer (through this

action, EG recovers all the information regarding the next loop of the spiral-like

obstacle); and, as a last action, (3) Rj¼12;left
allowed is set to Rj¼12

T in conformity with the

first part of eq 6 (in this respect, several observations should be made: first of all,

the reason why the first part of eq 6 is applied is that MAINCNDj=12 holds;

and, secondly, when we do Rj¼12;left
allowed ¼ R

j¼12
T , we are supposing that Rj¼12

T is an

allowed-labelled region; however, this is not true since action (2) recovered layer

#1 as it appears at step 5 of Fig 11(a), and, therefore, all its regions are banned-

labelled; in order to solve this problem, Rj¼12
T is re-labelled as allowed, as shown

by Fig 12(b)—look just at step 12.

Step 13. There are no differences between this step and step 7. One noteworthy aspect of

step 13 is that more regions have been labelled as allowed in comparison with step

12. This is caused by the data removal mechanism which was previously added to

EG—see Fig 8(c).

Some of the following steps are identical to others which have already been dis-

cussed. More specifically: step 14 is equivalent to step 8; and, steps 15 and 16 are

the same as steps 9, 10 and 11.

Step 17. At this step, the MAINCNDj=17 condition is satisfied again. When this occurs

being layer #1 the currently-active layer, some special actions are taken:

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 28 / 51

https://doi.org/10.1371/journal.pone.0189008

(1) layer #1 is emptied, i.e. all data in it are deleted (note that layer #1 is not

destroyed because it is the default layer of the short-term memory); (2) EG

makes the robot stop following the O1’s boundary (this is because EG knows

that the O1 obstacle has been definitively avoided); and, to finish, (3) EG moves

the robot along a straight-line path to T, as evidenced by the thick gray line of

Fig 12(b).

EG in pseudocode

This section provides a comprehensive description in pseudocode of the EG strategy.

Specifically, algorithm 1 shows how EG calculates Rjten. Recall that Rjten represents the

angular region which is selected after applying the principles of Traversability and Tenacity.

Or said differently, Rjten ¼ R
j;left
allowed when the principle of Tenacity is applied in its left-hand

form, and

Rjten ¼ R
j;right
allowed when the principle of Tenacity is applied in its right-hand form.

To implement algorithm 1, several auxiliary functions and procedures have been used. All

these functions and procedures are described in algorithm 2, and Tables 3 and 4.

Table 3. A brief description of the auxiliary functions and procedures used in algorithms 1 and 2.

Name Description

NOTES: STM stands for Short-Term Memory

MtT stands for Motion to Target

BF stands for Boundary Following

readSensorData() This function reads the data provided by the obstacle detection sensors

attached to the robot.

filterSensorData(pa, pb) This function returns a subset of the data contained in pb. To be more

precise, this function implements the functionality of the sensor data filter;

consequently, it returns those data in pb which are contiguous to the data

stored in the STM layer pa.

addDataToSTM(pa, pb) This function adds the data contained in pb to the STM layer represented by

pa.

removeDataFromSTM(pa,

pb)

This function removes the data contained in the angular region pb from the

STM layer represented by pa.

removeAllDataFromSTM

(pa)

This function removes all data contained in the STM layer represented by pa.

createLayerInSTM() This function adds a new layer to the Short-Term Memory and returns a

reference to it.

(Layers are organized according to a LIFO rule)

destroyLayerInSTM() This function destroys the currently-active layer of the Short-Term Memory—

i.e. the layer which is at the top. Additionally, this function returns the layer

located just below the one previously destroyed.

getMode() This function returns the operating mode in which the EG strategy is at

present. Only two operating modes are considered: MtT and BF. When the

EG strategy is in MtT mode, the robot is moved directly to the target point.

When the EG strategy is in BF mode, the robot is moved around a blocking

obstacle.

setMode(pa) This function is used to set the operating mode of the EG strategy.

(The default operating mode is assumed to be MtT)

computeRt(pa, pb) This function determines in which angular region of pa—pa is a STM layer—

the line pb lies.

isLayer#1(pa) This function returns true if pa is the STM layer #1; otherwise, it returns false.

https://doi.org/10.1371/journal.pone.0189008.t003

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 29 / 51

https://doi.org/10.1371/journal.pone.0189008.t003
https://doi.org/10.1371/journal.pone.0189008

Algorithm 1 Calculation of Rten at step j (Rjten)
1: function CALCRJTEN(Rj� 1

T ; ljT ; toTenacity)
INPUT PARAMETERS:
• Rj� 1

T is the value computed in line 5 of the CALCRJTEN function at
the previous step j − 1

• ljT is the line joining the position of the robot at step j and the
target point T

• toTenacity determines the type of tenacity to be applied (possible
values are either LEFT or RIGHT)
⊳ Lines 2 to 4 implement the functionality of the sensor data
filter

2: rawSensorData readSensorData();
3: filteredSensorData filterSensorDataðLjCA; rawSensorDataÞ;
4: addDataToSTM ðLjCA; filteredSensorDataÞ;

⊳ Lines 5 to 12 make the robot move straight towards the target
5: RjT computeRtðLjCA; l

j
TÞ;

6: if getMode() == MtT then
7: if isAllowedðRjTÞ then
8: Rjten RjT ;

9: else
10: setMode(BF);
11: end if
12: end if

⊳ Lines 13 to 15 make the robot follow the boundary of a blocking
obstacle

13: if getMode() == BF then
14: Rjten FLWBOUNDARY(Rj� 1

T ; ljT ; toTenacity ; filteredSensorData);
15: ⊳ See algorithm 2
16: end if
17: return Rjten;
18: end function

Algorithm 2 Auxiliary function that calculates Rjten when the robot is in BFmode

1: function FLWBOUNDARY(Rj� 1

T ; ljT ; toTenacity ; filteredSensorData)
INPUT PARAMETERS:
• The first three parameters are exactly the same as for CALCRJTEN
• filteredSensorData are the data sensed by the robot at step j
after the filtering step applied by the sensor data filter
⊳ Lines 2 to 31 allow the short-term memory to support multiple
layers

⊳ Lines 2 to 8 control the creation of a new layer

Table 4. A brief description of the auxiliary functions and procedures used in algorithms 1 and 2. This table is a continuation of Table 3.

Name Description

isAllowed(pa) This function returns true if the angular region pa is labelled as allowed; otherwise, it returns false.

isBanned(pa) This function returns true if the angular region pa is labelled as banned; otherwise, it returns false.

isFullyBanned(pa) This function returns true if all angular regions in pa—pa is a STM layer—are labelled as banned; otherwise, it returns

false.

isInconsistent(pa, pb) This function returns true if the angular region pa is labelled as banned and the data contained in pb indicate that

there are no obstacles in the range of directions covered by pa; otherwise, it returns false.

getAllowedRegionClosestTo(pa, pb,

pc)

This function searches for the allowed-labelled angular region in pa—pa is a STM layer—that is closest to the angular

region pb clockwise or counterclockwise depending on the value of pc.

getBannedRegionClosestTo(pa, pb,

pc)

This function searches for the banned-labelled angular region in pa—pa is a STM layer—that is closest to the angular

region pb clockwise or counterclockwise depending on the value of pc.

https://doi.org/10.1371/journal.pone.0189008.t004

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 30 / 51

https://doi.org/10.1371/journal.pone.0189008.t004
https://doi.org/10.1371/journal.pone.0189008

2: if ðisFullyBannedðLjCAÞ ¼¼ trueÞ then
3: LjCA createLayerInSTM ðÞ;
4: addDataToSTM ðLjCA; filteredSensorDataÞ;
5: newLayer true;
6: else
7: newLayer false;
8: end if
⊳ Lines 9 to 31 solve eq 5 when toTenacity is RIGHT and eq 6 when
toTenacity is LEFT. In addition, note that the MAINCNDj condition is
evaluated in line 17

9: RjT computeRtðLjCA; l
j
TÞ;

10: if toTenacity == RIGHT then
11: toSearchA clockwise;
12: toSearchB counterclockwise;
13: else
14: toSearchA counterclockwise;
15: toSearchB clockwise;
16: end if
17: if newLayer ¼¼ false& isBannedðRj� 1

T Þ& isAllowedðR
j
TÞ then

18: if isLayer#1ðLjCAÞ ¼¼ false then
19: LjCA destroyLayerInSTM ðÞ;
20: removeDataFromSTMðLjCA;R

j
TÞ;

21: else
22: removeAllDataFromSTMðLjCAÞ;
23: setMode(MtT);
24: end if
25: Rjten RjT ;

26: else if isBannedðRjTÞ then
27: Rjten getAllowedRegionClosestToðLjCA;R

j
T ; toSearchAÞ;

28: else
29: Rjbanned getBannedRegionClosestToðLjCA;R

j
T ; toSearchBÞ;

30: Rjten getAllowedRegionClosestToðLjCA;R
j
banned ; toSearchAÞ;

31: end if
⊳ Lines 32 to 36 implement the functionality of the data removal
mechanism

32: Rchecked getBannedRegionClosestToðLjCA;R
j
ten; toSearchBÞ;

33: if (isInconsistent(Rchecked, filteredSensorData) == true) then
34: removeDataFromSTMðLjCA;RcheckedÞ;
35: Rjten Rchecked ;
36: end if
37: return Rjten;
38: end function

Results

This section is structured into three main blocks: in the first block, we evaluate the ability of

the EG strategy to solve complex navigation problems through a set of simulated experiments;

in the second block, we compare the performance of the TGF, T2 and EG strategies while navi-

gation takes place within several simulated environments of gradually increasing difficulty;

and, finally, in the third block, we move from simulated to real experiments.

Next, we present and briefly discuss the results of the experiments performed in each of the

above-mentioned blocks.

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 31 / 51

https://doi.org/10.1371/journal.pone.0189008

Blocks 1 and 2: Simulated experiments

In blocks 1 and 2, all the experiments have been conducted using the so-calledMobileSim sim-

ulator, which is a free software developed by the Omron Adept MobileRobots company. Mobi-

leSim currently supports many models of robots. Among these models, we have chosen a

Pioneer 3-AT platform (we have taken this decision with the aim of testing the EG strategy

on a robot different to the ones employed in block 3). A Pioneer 3-AT robot is essentially

equipped with four wheels—each with one motor for both steering and moving—, sixteen

ultrasonic sensors—eight forward-facing and eight rear-facing—, and a SICK laser scanner. It

is worth noting that, in all our simulations, the detection of obstacles has been exclusively car-

ried out by means of the Pioneer 3-AT’s laser scanner. Besides, this laser has been configured

to provide a maximum detection range of—solely—2.0 meters as well as a 180-degree viewing

angle with an angular resolution of 1 degree. The reason why we have restricted so much the

maximum detection range of the laser scanner is just to face the navigation strategies against

more challenging conditions. In the forthcoming experiments, the size of the obstacles will be

far bigger than 2.0 meters. This means that these big obstacles will only be partially detected by

the laser scanner; or, in other words, the EG strategy will have to take obstacle-avoidance deci-

sions without fully knowing the shape of the obstacles.

Regarding block 1. This first block consists of the six experiments/missions depicted in

Figs 14, 15 and 16 (in the plots of these three figures, the x- and y-axis units are in meters).

These missions have been specifically designed to make a reactively-controlled robot fall in a

trap situation.

Along the following lines, we briefly talk about the difficulties that there are behind each of

the six missions included in block 1:

• In mission #1, the robot has to avoid three long walls of increasing size to get to the target

point T.

• In mission #2, the robot has to circumnavigate a very deep box-shaped canyon.

• Mission #3 can be thought of as an extension of mission #2. Now, the robot has to escape

from three box-shaped canyons of increasing size.

• In missions #4 and #5, the robot has to navigate along the boundary of an obstacle with a spi-

ral-like shape. In mission #4, the robot is initially outside the spiral-shaped obstacle. In mis-

sion #5, the robot is initially located in the innermost loop.

• In mission #6, the robot has to find a path to T in a maze.

By observing the path followed by the robot in Figs 14, 15 and 16 (the red line), one quickly

realizes that the EG strategy has been able to successfully drive the Pioneer 3-AT robot to the

target point in all the missions which have been proposed.

Regarding block 2. The purpose of this second block is to compare the performance of

the TGF, T2 and EG strategies in two different environments.

The first environment we have considered is shown in Fig 17(a). As can be seen, this envi-

ronment merely comprises four long straight walls. Two of these walls create a passage labelled

with letter A. This passage is not narrow, since its width is approximately three times the size

of the Pioneer 3-AT robot. Fig 17(b), 17(c) and 17(d) depict the path taken by the Pioneer

3-AT robot while navigating according to, respectively, the TGF, T2 and EG strategies. As can

be appreciated, the three strategies led to a quite similar path. To be precise, with T2, the robot

exhibited a more oscillating behavior while traversing the passage A. On the other hand, with

TGF and EG, the robot followed a relatively smooth path with no obvious oscillations. It is also

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 32 / 51

https://doi.org/10.1371/journal.pone.0189008

important to highlight that TGF and EG moved the robot along exactly the same path; i.e.

there is no difference between Fig 17(b) and 17(d). The reason for this is essentially two-fold:

firstly, despite TGF and EG perform gap selection in a different way (remember that TGF

chooses the gap which is closest to lT, while EG chooses the gap which is closest to lten), both

strategies selected the same gap at each simulation step as a consequence of the simplicity of

the environment; secondly, both strategies guided the robot towards each selected gap by

Fig 14. Test of the EG strategy in several scenarios where reactively-controlled robots get typically trapped when attempting to

reach the target point.

https://doi.org/10.1371/journal.pone.0189008.g014

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 33 / 51

https://doi.org/10.1371/journal.pone.0189008.g014
https://doi.org/10.1371/journal.pone.0189008

Fig 15. Test of the EG strategy in a scenario with a double-loop spiral-shaped obstacle. The path followed by the robot

has been divided into four parts to make such a path clearer by avoiding any overlap.

https://doi.org/10.1371/journal.pone.0189008.g015

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 34 / 51

https://doi.org/10.1371/journal.pone.0189008.g015
https://doi.org/10.1371/journal.pone.0189008

executing the same control commands (note that, owing to the way the EG strategy has been

built, EG guides the robot to a given gap just like TGF does). Finally, Table 5 contains some

quantitative data regarding the quality of the paths produced by the TGF, T2 and EG strategies.

More precisely, these data provide information about the number of simulation steps that

were necessary to move the robot to the target, and about the length and smoothness of the

resultant path. To compute the smoothness of a path, we apply the so-called Spectral Arc
Lengthmetric [32]. This metric uses the robot’s velocity profile to quantify the smoothness of

the robot’s movement. As a last point, it should be noted that the less the value for this metric,

the less the smoothness of the movement.

The second environment we have considered can be found in Fig 18(a). As can be observed,

this environment contains a large spiral-like obstacle. To get out from this spiral, the robot is

forced to pass through a long passage, which is labelled with the letter A. Besides, the entrance

to this passage—see letter B—is very narrow (just a few centimeters wider than the Pioneer

Fig 16. Test of the EG strategy in a large-scale scenario containing more than sixty obstacles which

jointly give rise to a large maze-like obstacle.

https://doi.org/10.1371/journal.pone.0189008.g016

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 35 / 51

https://doi.org/10.1371/journal.pone.0189008.g016
https://doi.org/10.1371/journal.pone.0189008

Fig 17. Comparing the performance of the TGF, T2 and EG strategies in a simple environment.

https://doi.org/10.1371/journal.pone.0189008.g017

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 36 / 51

https://doi.org/10.1371/journal.pone.0189008.g017
https://doi.org/10.1371/journal.pone.0189008

3-AT’s body). Attached to the top-right side of the spiral, there is another passage—now,

with a meandering shape—, which is labelled with the letter C. The entrance and exit points

to this passage—see letters D and E, respectively—are as narrow as B. Fig 18(b), 18(c) and

18(d) show the path taken by the Pioneer 3-AT robot while navigating according to the TGF,

T2 and EG strategies, respectively. We next discuss these results briefly. On the one hand,

when the TGF strategy was used—look at Fig 18(b)—, the robot kept going round and round

in circles at the bottom-right corner of the spiral-like obstacle (this result is due to the fact

that the TGF strategy is generally unable to make the robot overcome an obstacle which is

bigger in size than the maximum detection range of the laser scanner; in this experiment, the

maximum detection range of the Pioneer 3-AT’s laser was set to 2.0 metres, whereas the size

of the spiral in height and width was approximately 12×10 meters—note that, in all the plots

appearing in Fig 18, the x- and y-axis units are in meters). On the other hand, with the T2

strategy—look at Fig 18(c)—, the robot stopped at point F and did not continue moving any-

more (the reason for this is that the robot was at the same situation as the one of Fig 11(a),

where all angular regions in the short-term memory were labelled as banned; consequently,

the robot did not know where to go). Lastly, concerning the EG strategy, it successfully

moved the robot to the target point, as evidenced by Fig 18(d) and S1 Video. For this experi-

ment, we have not used metrics to quantitatively compare the performance of the TGF, T2

and EG strategies. In this case, we think this comparison would be unfair since the strategy

which allows reaching the target point is penalized by our metrics due to the fact that it has

made the robot traverse a longer path and circumnavigate more obstacles, as compared to

the other two strategies for which the robot gets stuck.

Block 3: Two real-world experiments

As a last set of experiments, the EG strategy has been implemented and tested on both a real

Pioneer 3-DX robot and a real low-cost robot called Eyebot. Next, we present and briefly dis-

cuss, one by one, the results obtained in these two experiments.

An experiment using the Pioneer 3-DX robot. As seen in Fig 19(a), our Pioneer 3-DX is

a differential two-wheeled robot equipped with an onboard computer, a laser scanner, and six-

teen ultrasonic sensors. With regard to the laser scanner, we employ a HOKUYO URG-04LX

unit mounted on the front of the robot and configured for a maximum detection range of 1.7

meters as well as a 240-degree viewing angle with an angular resolution of 0.36 degrees. With

regard to the ultrasonic sensors, they are arranged around the robot. In this experiment, the

EG strategy has not taken into account the information provided by the ultrasonic sensors.

Fig 20 shows the environment where this experiment took place. As can be observed, boxes

and panels have been strategically spread over the environment to form a large spiral with

three narrow passages (these passages are labelled with the letters A, B, and C in Fig 20(a);

additionally, it is important to stress that, when we say “narrow” here, we mean that the pas-

sage is just a few centimeters wider than the robot’s footprint).

Table 5. A set of metrics to quantitatively evaluate the performance of the TGF, T2 and EG strategies

for the experiment of Fig 17. All lengths are expressed in meters.

Metric T2 TGF and EG

number of simulation steps 705 430

path length 12.37 11.51

path smoothness using the linear velocity profile −18.65 −5.72

path smoothness using the angular velocity profile −43.25 −17.05

https://doi.org/10.1371/journal.pone.0189008.t005

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 37 / 51

https://doi.org/10.1371/journal.pone.0189008.t005
https://doi.org/10.1371/journal.pone.0189008

Fig 18. Comparing the performance of the TGF, T2 and EG strategies in a complex environment.

https://doi.org/10.1371/journal.pone.0189008.g018

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 38 / 51

https://doi.org/10.1371/journal.pone.0189008.g018
https://doi.org/10.1371/journal.pone.0189008

Moving on to the results, Fig 21 plots the path—red line—that the Pioneer 3-DX robot has

followed under the guidance of the EG strategy in the environment of Fig 20. From these

results, we can conclude that the robot has been able to successfully attain the target point

without experiencing any collision. To this end, the robot has had to circumnavigate a large

spiral-shaped obstacle; what is more, the robot has had to pass through three very narrow pas-

sages (Fig 19(b) is a snapshot of the robot when it was traversing the narrow passage labelled

with the letter A in Fig 20(a)).

An experiment using the Eyebot robot. Finally, a real experiment using a low-cost robot

called Eyebot was carried out with a dual purpose: on the one hand, to make evident that the

computational cost of the EG strategy is small enough to be run, in real time, on a microcon-

troller; and, on the other hand, to demonstrate that good navigation results can be obtained

even with robots having cheap and inaccurate sensors for obstacle detection, such as infrared

range sensors (IR).

Eyebot is a miniature mobile robot designed to meet the regulations of the RoboCup and

FIRA small size leagues. Fig 19(c) shows the aspect of this robot and enumerates, at the same

time, its more relevant characteristics. Among these characteristics, we highlight the following:

Eyebot fits within a circle of 18 cm diameter; it has a differential drive actuator design consist-

ing of two DC motors with encapsulated gears and encoders; it is essentially equipped with a

32-bit microcontroller that works at a clock frequency of 25 Mhz (the Eyebot’s microcontroller

is a Motorola MC68332), 1 MB of RAM, and six IR sensors which are used to measure the dis-

tances to the obstacles (these sensors are distributed in groups of two among the left, front,

and right sides of the robot; it is also important to point out that they offer a detection range

which goes from 15 cm to 80 cm).

The experiment was performed in the office-like environment outlined in Fig 22(b)

(Fig 22(a) also shows some real images of the environment). The mission consisted in going

from one end of the office to the main corridor. The Eyebot robot found many obstacles on its

way to the target point, being, some of them, artificially created by means of planks. The resul-

tant trajectory is drawn as a red line in Fig 22(b). As can be seen, the Eyebot robot was able to

successfully reach the target without hitting any obstacle.

Fig 19. Robots used in our experiments. (a) A real Pioneer 3-DX robot. (b) A snapshot of the Pioneer 3-DX robot while performing the mission of Fig 20.

(c) A real Eyebot robot.

https://doi.org/10.1371/journal.pone.0189008.g019

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 39 / 51

https://doi.org/10.1371/journal.pone.0189008.g019
https://doi.org/10.1371/journal.pone.0189008

Fig 20. A representation of the environment where the experiment with the Pioneer 3-DX robot was

conducted. (a) The environment itself (obstacles are colored in black as usual). (b) Four different views of the

environment (a number has been assigned to each view; by looking for this number in Fig (a), the reader can

know the approximate position from where each view was taken).

https://doi.org/10.1371/journal.pone.0189008.g020

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 40 / 51

https://doi.org/10.1371/journal.pone.0189008.g020
https://doi.org/10.1371/journal.pone.0189008

Further discussion on the results

Here, we are going to discuss a series of questions that may arise after examining the results

presented in the previous section (in the following, Qx stands for “Question number x”).

• Q1. The EG strategy makes use of a reasonable amount of memory while moving the robot

to the desired target point. To demonstrate this, we are going to analyze the memory con-

sumption of the EG strategy in the experiment of Fig 21. We have chosen this case among

the many and different experiments run, because it took place on a real mobile robot, and

because the robot had to cover a long path to get to the target.

Fig 21. Results for the experiment with the Pioneer 3-DX robot (S2 Video). This figure shows both the path

followed by the robot (over 37 meters in length), and the environment as perceived by the robot’s laser scanner.

https://doi.org/10.1371/journal.pone.0189008.g021

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 41 / 51

https://doi.org/10.1371/journal.pone.0189008.g021
https://doi.org/10.1371/journal.pone.0189008

Fig 23(a) plots the memory consumption of the EG strategy along the 180 seconds elapsed

since the robot started to move until the robot reached the target. In this figure, the x-axis

units are in seconds and the y-axis units are in KB (kilobytes). As can be seen, the memory

consumption was always below 350 KB; to be more precise, the memory consumption had a

maximum peak of 314 KB at second 170. It can also be observed that the memory consump-

tion dropped sharply on some occasions; specifically, at seconds 19, 84, and 170. The reasons

for that were the following: on the one hand, at seconds 19 and 170, the EG strategy emptied

Fig 22. Results for the experiment with the Eyebot robot (S3 Video). In Fig (b), the x- and y-axis units are in meters.

https://doi.org/10.1371/journal.pone.0189008.g022

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 42 / 51

https://doi.org/10.1371/journal.pone.0189008.g022
https://doi.org/10.1371/journal.pone.0189008

its short-term memory because it believed that the obstacle had been avoided and that there

was a free-obstacle straight-line path to the target (note that this was not true at second 19);

on the other hand, at second 84, the EG strategy destroyed a layer—layer #2—which was

strictly created to allow the robot to follow the boundary of the spiral-shaped part of the

obstacle.

On the basis of the above results, we can conclude that the EG strategy is able to successfully

avoid large intricate-shaped obstacles by using far less than 1 MB of RAM.

• Q2. The EG strategy keeps the robot at a safe distance from obstacles while navigating. To

demonstrate this, we have computed the distance to the closest obstacle at each point on the

robot’s path for the experiment of Fig 21 (the reason for choosing this experiment is the

same as that given in Q1).

Fig 24(a) plots the above-mentioned distances (the x-axis units are in seconds and the y-axis

units are in centimeters). Peaks and valleys labelled with numbers 1 to 6 in Fig 24(a) are

essentially due to the following: peaks 1 and 6 correspond to situations where the EG strategy

stops following the boundary of the obstacle and moves the robot directly towards the target;

valleys 2 and 3 are caused by the robot passing through the passage labelled with letter A in

Fig 20(a) (the minimum value for valley 2 is 5.1 centimeters and for valley 3 is 6.8 centime-

ters); valley 4 represents the moment in which the robot traverses the passage labelled with

letter B in Fig 20(a) (the minimum value for this valley is 2.4 centimeters); and, finally, valley

5 occurs when the robot navigates through the passage labelled with letter C in Fig 20(a)

(the minimum value for this valley is 12.2 centimeters). It is important to highlight that the

Fig 23. EG’s memory usage regarding the experiment of Fig 21. During this experiment, two layers were created in the short-term memory. The

amount of data—expressed in KB—stored in each layer at every time instant is represented in Fig (a). This amount of data is drawn in blue color for layer

#1, and in red color for layer #2. Labels 1, 2, and 3 in Fig (a) and (b) correlate memory consumption with specific points of the trajectory followed by the

robot.

https://doi.org/10.1371/journal.pone.0189008.g023

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 43 / 51

https://doi.org/10.1371/journal.pone.0189008.g023
https://doi.org/10.1371/journal.pone.0189008

extremely-low minimum values for valleys 2, 3, and 4 stem from the fact that the size of pas-

sages A and B is only slightly larger than the size of the Pioneer 3-DX robot.

If we calculate the average, the standard deviation, and the minimum value of the distances

of Fig 24(a) without taking into account the six aforementioned peaks and valleys, we obtain

values of, respectively, 23.8 centimeters, 5.2 centimeters, and 12.0 centimeters. From all this,

we can conclude that, when the robot is performing its boundary following behavior and is

not traversing a narrow passage, the robot keeps a safe distance of more than 20 centimeters

from any obstacle with a reasonably low variation over time; furthermore, in the most dan-

gerous situation of collision—given by the minimum distance value—, the robot is more

than 10 centimeters from obstacles.

• Q3. In the section of experimental results, we have not compared the performance of the EG

strategy against any Bug-like algorithm, such as Bug1 [19], Bug2 [19], Tangent Bug [21], or

many others. The reason for not doing so is because we consider that this comparison would

be inappropriate due to the large number of drawbacks associated with Bug-like algorithms.

As is widely known, Bug-like algorithms make several assumptions which are quite unrealis-

tic for real robots. What is more, they do not provide a complete solution to the problem of

reactive navigation. All these drawbacks are discussed next in more detail.

• Generally speaking, Bug-like algorithms assume that the robot is a point. In practical

terms, this means that the robot is supposed to pass through any passage, even when this

passage is narrower than the physical size of the robot. By way of example, Fig 25 depicts

the path that the Bug2 algorithm would eventually generate in the environment of Fig 21.

As can be observed, the path crosses the passage labelled with letter D, although this

Fig 24. A measure of the robot’s safety regarding the experiment of Fig 21. Labels 1 to 6 in Fig (a) and (b) correlate the distance to the closest

obstacle with specific points of the trajectory followed by the robot.

https://doi.org/10.1371/journal.pone.0189008.g024

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 44 / 51

https://doi.org/10.1371/journal.pone.0189008.g024
https://doi.org/10.1371/journal.pone.0189008

passage is not wide enough to let the real Pioneer 3-DX robot pass through.

As opposed to Bug-like algorithms, the EG strategy takes into account only the passages/

gaps which are wider than the robot’s footprint.

• Generally speaking, Bug-like algorithms assume that the robot is equipped with perfect

sensors for obstacle detection.

In contrast to Bug-like algorithms, the TGF strategy applies different techniques for reduc-

ing the inherent uncertainty of sensor data (refer to [28] for a description of all these tech-

niques). Thanks to this, the TGF strategy is able to perform smooth maneuvers when the

robot travels through narrow passages.

Since TGF is part of the proposed EG strategy, we can affirm that EG—just like TGF—is

robust to noisy sensor data.

• Generally speaking, Bug-like algorithms do not provide a complete solution to the problem

of reactive navigation. Let us consider a situation where a certain Bug-like algorithm is

intended to move a robot through a passage which is just a few centimeters wider than the

robot’s footprint. How does the Bug-like algorithm make the robot pass through this pas-

sage without colliding? To achieve this goal, a specific algorithm, such as ND [17], SND

[29] or TGF [28], should be inevitably implemented and used.

Unlike Bug-like algorithms, the EG strategy offers all that is needed to make a robot suc-

cessfully solve complex navigation tasks in a reactive manner. More precisely, the EG

Fig 25. Path—in red—Generated by the Bug2 algorithm in the environment of Fig 21. Note that Bug2

was configured to follow the boundary of the obstacles to the right.

https://doi.org/10.1371/journal.pone.0189008.g025

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 45 / 51

https://doi.org/10.1371/journal.pone.0189008.g025
https://doi.org/10.1371/journal.pone.0189008

strategy provides specific algorithms for (1) avoiding obstacles with intricate shapes, and

(2) moving between very closely-spaced obstacles with no risk of collision. Besides, points

(1) and (2) are fulfilled under the guideline of the Lyapunov theory [33], which ensures the

stability of the robot’s behavior at any time during navigation (all motion commands com-

puted by EG are proven to be stable in the Lyapunov sense; it is important to note that this

feature of EG has been inherited from the TGF strategy).

• Q4. With respect to the performance of the TGF, T2, and EG strategies, we can generally state

the following:

• The performance of any reactive navigation strategy largely depends on how the corre-

sponding strategy chooses the direction—either left or right—to circumnavigate the obsta-

cles that are blocking the robot’s intended path. By way of example, Fig 26(a) shows an

environment with a long wall. In such a situation, the robot will initially progress to the

target by following a straight-line path. At a certain point along this path, the robot will

detect the long wall, and the robot will have to decide between moving to the left or to the

right. On this occasion, it is preferable for the robot to move to the left, because, in this

Fig 26. Comparing different criteria to decide in which direction the robot should circumnavigate an obstacle.

https://doi.org/10.1371/journal.pone.0189008.g026

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 46 / 51

https://doi.org/10.1371/journal.pone.0189008.g026
https://doi.org/10.1371/journal.pone.0189008

way, the robot will be able to get to the target through a shorter path.

The TGF and EG strategies apply a different criterion to choose the direction for circum-

navigating an obstacle. More specifically, the TGF strategy makes the robot move in the

direction which is closest to the target direction. Taking Fig 26(a) as an example again and

assuming that the robot has detected for the first time the long wall at point Q, TGF would

choose the “left”-labelled direction to go around the wall, and, as a result, TGF would pro-

duce a path similar to the one illustrated in Fig 26(c). On the other hand, in EG, the above-

mentioned decision is made according to the toTenacity parameter of the CALCRJTEN

function (see algorithm 1). Let us now assume that: the value of the toTenacity parameter

has been set to LEFT, the environment is the one of Fig 26(a), and the robot is located at

point Q. Under these circumstances, EG would choose the “left”-labelled direction to

avoid the wall, and, as a result, EG would produce a path equal to the one of Fig 26(c). If,

by contrast, the value of the toTenacity parameter had been set to RIGHT, EG would

choose the “right”-labelled direction to circumnavigate the wall, producing thus a path

similar to the one represented in Fig 26(d).

In our opinion, it is always possible to find an environment where the criterion used for

choosing the circumnavigation direction does fail. Note that, in this context, a failmeans

that the criterion has suggested the robot to avoid the obstacle in the direction with a lon-

ger path to reach the target (here are just two examples: in Fig 26(a), a fail means choosing

the “right”-labelled direction; on the contrary, in Fig 26(b), a fail means choosing the

“left”-labelled direction). The above fact is the main reason why we have not programmed

any specific criterion into EG to decide in which direction the robot should circumnavi-

gate an obstacle; we have preferred to add a new parameter to the strategy in order to pro-

vide control for this.

As opposed to EG, the TGF strategy makes a robot get stuck on large concave-shaped

obstacles. In environments without this kind of obstacles, the performance of the TGF

strategy in terms of path length is virtually identical to the one of the EG strategy, as long

as both strategies have decided to circumnavigate each blocking obstacle in the same

direction.

• Just like EG, the T2 strategy makes use of the aforementioned toTenacity parameter to take

the decision about whether a blocking obstacle should be circumnavigated in either the left

or right directions.

In contrast to EG, the T2 strategy is not able to safely move a robot through narrow pas-

sages. Moreover, T2 makes a robot get stuck on spiral-shaped obstacles. In environments

without neither narrow passages nor spiral-shaped obstacles, the performance of the T2

strategy in terms of path length is virtually identical to the one of the EG strategy, provided

that both strategies have set the toTenacity parameter to the same value.

• Q5. Generally speaking, strategies developed under the reactive paradigm are well-suited to

move a robot in environments with dynamic obstacles without colliding. The above is defi-

nitely true in the case of the pure reactive paradigm, because these strategies have no mem-

ory, which means that they make their decisions based on data that are consistent with the

current reality of the environment (as was pointed out in the introduction, strategies of pure

type react directly to current sensor data). In the case of the non-pure reactive paradigm, it is

not so clear that these strategies can be applied to dynamic environments. The reason for

this is found in the fact that these strategies incorporate a small short-term memory, which is

used to temporarily retain data from the environment. All decisions are guided by the data

stored in such a short-term memory. To sum up, strategies of non-pure type partially base

their current decisions on past information, which may lead to undesirable robot behaviors,

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 47 / 51

https://doi.org/10.1371/journal.pone.0189008

mainly when the robot is navigating in an environment that continuously changes.

Contradicting what we have generally said before, we think the EG strategy, despite its non-

pure nature, is quite suitable for moving a robot among dynamic obstacles. Usually, dynamic

obstacles are small in size and they have a non-intricate shape. As a direct consequence,

these obstacles are expected to be quickly avoided by the EG strategy; or in other words, the

task of avoidance of a dynamic obstacle is expected to last a short period of time, which in

turn means that the EG’s short-term memory is not expected to contain data from this obsta-

cle collected long time ago. All the above make us realize that, in the presence of a dynamic

obstacle, the EG strategy will take decisions based on information which has been very

recently gathered from the environment, and, therefore, the behavior of the robot will be

largely consistent with the current reality of the environment.

Finally, it is important to recall that, each time a dynamic—or static—obstacle is successfully

avoided, the EG strategy empties its short-term memory with the aim of removing past

information which is no longer necessary for completing the navigation task.

Conclusions and future work

This work has presented a novel reactive control strategy that allows a robot both to safely nav-

igate through narrow spaces and to escape from large obstacles, even when these obstacles

have a shape which makes very difficult to find a way out—i.e. even when these obstacles are

intricate. This novel strategy, called Escape Gap—or EG for short—, has been obtained by

properly merging two other existing strategies, namely TGF and T2.

TGF [28] is a reactive control strategy of pure type whose major feature is to be capable of

moving a robot in tight spaces without collisions. Alternatively, T2 [25] is a non-purely reactive

control strategy which stands out for giving robots the ability to avoid obstacles of a big size,

regardless of the maximum measuring range of the sensor used for obstacle detection. Accord-

ing to the above, it is clear that TGF and T2 are two strategies which offer complementary fea-

tures, and also have complementary limitations. Getting to merge these two strategies so that

their features are inherited and their limitations are removed has not been an easy task. As an

example of this, in our first try to bring TGF and T2 together (represented by Fig 8(a)), the way

the T2 strategy operates prevented the robot from approaching to narrow passages, essentially

because such a strategy banned all small gaps (refer to Fig 9(b)). In consequence, the potential-

ity of the TGF strategy was fully wasted. Our solution to this problem has been to improve EG

by adding a new component to it, consisting in a sensor data filter (see Fig 8(b)).

Apart from solving the problems that typically arise when merging strategies which work

under different principles, new features have been included in EG which not were originally

neither in TGF nor in T2. In this respect, the EG strategy has been enhanced with a multi-layer

short-term memory (look at Fig 8(d)). Thanks to that, any robot controlled by EG has gained

the skill needed to avoid obstacles which have a multi-level nesting shape, as is the case of a

multi-loop spiral-shaped obstacle.

Finally, the realization of a carefully selected set of simulated and real experiments has dem-

onstrated that: (1) EG significantly outperforms TGF and T2; and (2) EG takes the reactive par-

adigm a step further, in the sense of being able to successfully solve navigation tasks of very

high complexity.

As a future work, we are planning to continue improving the EG strategy. To be more pre-

cise, such improvements will mainly focus on two key aspects. On the one hand, it is important

to note that EG implicitly assumes that the mobile robot is holonomic. However, this is often

not the case. By adopting the solution proposed in [34], we will ensure that EG explicitly takes

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 48 / 51

https://doi.org/10.1371/journal.pone.0189008

non-holonomic constraints into account. On the other hand, as a natural development, the EG

strategy should end up being part of an advanced hybrid control system. In this way, we will

achieve the goal of moving the robot to the target point along better/shorter paths—at the cost

of more computation time.

Supporting information

S1 Video. The EG strategy moving a simulated Pioneer 3-AT robot in an environment

with a spiral-shaped obstacle and several narrow passages. This video can be downloaded

from http://srv.uib.es/EG-simulated-exp/.

(MP4)

S2 Video. The EG strategy moving a real Pioneer 3-DX robot in an environment of similar

complexity to the one appearing in S1 Video. This video can be downloaded from http://srv.

uib.es/EG-real-exp-pioneer/.

(MP4)

S3 Video. The EG strategy moving a real Eyebot robot in an office-like environment com-

prising a U-shaped obstacle. This video can be downloaded from http://srv.uib.es/EG-real-

exp-eyebot/.

(MP4)

Acknowledgments

This work has received research funding from the European Union’s Seventh Framework Pro-

gramme (grant agreement no. 605200) and the European Union’s H2020 Framework Pro-

gramme (grant agreement no. 779776). It reflects only the author’s views and the European

Union is not liable for any use that may be made of the information contained herein. Besides,

this work is partially supported by the Spanish project MERBOTS DPI2014-57746-C3-2-R.

Author Contributions

Conceptualization: Javier Antich Tobaruela, Alberto Ortiz Rodrı́guez.

Data curation: Javier Antich Tobaruela, Alberto Ortiz Rodrı́guez.

Formal analysis: Javier Antich Tobaruela, Alberto Ortiz Rodrı́guez.

Funding acquisition: Alberto Ortiz Rodrı́guez.

Investigation: Javier Antich Tobaruela, Alberto Ortiz Rodrı́guez.

Methodology: Javier Antich Tobaruela, Alberto Ortiz Rodrı́guez.

Resources: Javier Antich Tobaruela, Alberto Ortiz Rodrı́guez.

Software: Javier Antich Tobaruela, Alberto Ortiz Rodrı́guez.

Validation: Javier Antich Tobaruela, Alberto Ortiz Rodrı́guez.

Visualization: Javier Antich Tobaruela, Alberto Ortiz Rodrı́guez.

Writing – original draft: Javier Antich Tobaruela, Alberto Ortiz Rodrı́guez.

Writing – review & editing: Javier Antich Tobaruela, Alberto Ortiz Rodrı́guez.

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 49 / 51

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0189008.s001
http://srv.uib.es/EG-simulated-exp/
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0189008.s002
http://srv.uib.es/EG-real-exp-pioneer/
http://srv.uib.es/EG-real-exp-pioneer/
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0189008.s003
http://srv.uib.es/EG-real-exp-eyebot/
http://srv.uib.es/EG-real-exp-eyebot/
https://doi.org/10.1371/journal.pone.0189008

References
1. Jakimovski B. In: Biologically inspired robot control architectures. Berlin, Heidelberg: Springer Berlin

Heidelberg; 2011. p. 23–34.

2. Nilsson NJ. Shakey the robot. SRI International; 1984.

3. Brooks RA. Intelligence without representation. Artificial Intelligence. 1986; 47(1–3):139–159.

4. Brooks RA. A robust layered control system for a mobile robot. IEEE Journal on Robotics and Automa-

tion. 1991; 2(1):14–23. https://doi.org/10.1109/JRA.1986.1087032

5. Urmson C, Baker CR, Dolan JM, Rybski P, Salesky B, Whittaker WRL, et al. Autonomous driving in traf-

fic: Boss and the urban challenge. AI Magazine. 2009; 30(2):17–29. https://doi.org/10.1609/aimag.

v30i2.2238

6. Albus JS, Barbera AJ. RCS: A cognitive architecture for intelligent multi-agent systems. Annual

Reviews in Control. 2005; 29(1):87–99. https://doi.org/10.1016/j.arcontrol.2004.12.003

7. Khatib O. In: Cox IJ, Wilfong GT, editors. Real-time obstacle avoidance for manipulators and mobile

robots. New York, NY: Springer New York; 1990. p. 396–404.

8. Ulrich I, Borenstein J. VFH?: local obstacle avoidance with look-ahead verification. In: IEEE Interna-

tional Conference on Robotics and Automation. vol. 3; 2000. p. 2505–2511.

9. Koren Y, Borenstein J. Potential field methods and their inherent limitations for mobile robot navigation.

In: IEEE International Conference on Robotics and Automation; 1991. p. 1398–1404.

10. Biswas K, Kar I. On reduction of oscillations in target tracking by artificial potential field method. In: Inter-

national Conference on Industrial and Information Systems; 2014. p. 1–6.

11. Tharindu W, Kazuo I, Forough NAA. An artificial potential field based mobile robot navigation method to

prevent from deadlock. Journal of Artificial Intelligence and Soft Computing Research. 2015; 5(3):189–

203.

12. Simmons R. The curvature-velocity method for local obstacle avoidance. In: IEEE International Confer-

ence on Robotics and Automation. vol. 4; 1996. p. 3375–3382.

13. Fox D, Burgard W, Thrun S. The dynamic window approach to collision avoidance. IEEE Robotics Auto-

mation Magazine. 1997; 4(1):23–33. https://doi.org/10.1109/100.580977

14. Fernández JL, Sanz R, Benayas JA, Diéguez AR. Improving collision avoidance for mobile robots in

partially known environments: the beam curvature method. Robotics and Autonomous Systems. 2004;

46(4):205–219. https://doi.org/10.1016/j.robot.2004.02.004

15. Shi C, Wang Y, Yang J. A local obstacle avoidance method for mobile robots in partially known environ-

ment. Robotics and Autonomous Systems. 2010; 58(5):425–434. https://doi.org/10.1016/j.robot.2010.

02.005

16. Molinos E, Llamazares, Ocaña M, Herranz F. Dynamic obstacle avoidance based on curvature arcs. In:

IEEE/SICE International Symposium on System Integration; 2014. p. 186–191.

17. Minguez J, Montano L. Nearness Diagram (ND) navigation: collision avoidance in troublesome scenar-

ios. IEEE Transactions on Robotics and Automation. 2004; 20(1):45–59. https://doi.org/10.1109/TRA.

2003.820849

18. Mujahed M, Fischer D, Mertsching B, Jaddu H. Closest Gap based (CG) reactive obstacle avoidance

navigation for highly cluttered environments. In: IEEE international conference on Intelligent RObots

and Systems; 2010. p. 1805–1812.

19. Lumelsky VJ, Stepanov AA. Path-planning strategies for a point mobile automaton moving amidst

unknown obstacles of arbitrary shape. Algorithmica. 1987; 2(1):403–430. https://doi.org/10.1007/

BF01840369

20. Lumelsky VJ, Skewis T. Incorporating range sensing in the robot navigation function. IEEE Transac-

tions on Systems, Man, and Cybernetics. 1990; 20(5):1058–1069. https://doi.org/10.1109/21.59969

21. Kamon I, Rimon E, Rivlin E. TangentBug: A range-sensor-based navigation algorithm. The International

Journal of Robotics Research. 1998; 17(9):934–953. https://doi.org/10.1177/027836499801700903

22. Laubach S, Burdick J. In: RoverBug: Long range navigation for mars rovers. London: Springer London;

2000. p. 339–348.

23. Kamon I, Rimon E, Rivlin E. Range-sensor-based navigation in three-dimensional polyhedral environ-

ments. The International Journal of Robotics Research. 2001; 20(1):6–25. https://doi.org/10.1177/

02783640122067246

24. Taylor K, LaValle SM. I-Bug: An intensity-based bug algorithm. In: IEEE International Conference on

Robotics and Automation; 2009. p. 3981–3986.

25. Antich J. New reactive and path-planning methods for mobile robot navigation. University of the Balearic

Islands; Ph.D. thesis; 2012.

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 50 / 51

https://doi.org/10.1109/JRA.1986.1087032
https://doi.org/10.1609/aimag.v30i2.2238
https://doi.org/10.1609/aimag.v30i2.2238
https://doi.org/10.1016/j.arcontrol.2004.12.003
https://doi.org/10.1109/100.580977
https://doi.org/10.1016/j.robot.2004.02.004
https://doi.org/10.1016/j.robot.2010.02.005
https://doi.org/10.1016/j.robot.2010.02.005
https://doi.org/10.1109/TRA.2003.820849
https://doi.org/10.1109/TRA.2003.820849
https://doi.org/10.1007/BF01840369
https://doi.org/10.1007/BF01840369
https://doi.org/10.1109/21.59969
https://doi.org/10.1177/027836499801700903
https://doi.org/10.1177/02783640122067246
https://doi.org/10.1177/02783640122067246
https://doi.org/10.1371/journal.pone.0189008

26. Antich J, Ortiz A. Extending the potential fields approach to avoid trapping situations. In: IEEE interna-

tional conference on Intelligent RObots and Systems; 2005. p. 1386–1391.

27. Antich J, Ortiz A. In: A convergent dynamic window approach with minimal computational requirements.

IOS Press; 2008. p. 183–192.

28. Mujahed M, Fischer D, Mertsching B. Tangential Gap Flow (TGF) navigation: A new reactive obstacle

avoidance approach for highly cluttered environments. Robotics and Autonomous Systems. 2016;

84:15–30. https://doi.org/10.1016/j.robot.2016.07.001

29. Durham JW, Bullo F. Smooth nearness-diagram navigation. In: IEEE international conference on Intelli-

gent RObots and Systems; 2008. p. 690–695.

30. Mujahed M, Fischer D, Mertsching B. Safe Gap based (SG) reactive navigation for mobile robots. In:

European Conference on Mobile Robots; 2013. p. 325–330.

31. Mujahed M, Jaddu H, Fischer D, Mertsching B. Tangential Closest Gap based (TCG) reactive obstacle

avoidance navigation for cluttered environments. In: international symposium on Safety, Security and

Rescue Robotics; 2013.

32. Balasubramanian S, Melendez-Calderon A, Burdet E. A robust and sensitive metric for quantifying

movement smoothness. IEEE Transactions on Biomedical Engineering. 2012; 59(8):2126–2136.

https://doi.org/10.1109/TBME.2011.2179545 PMID: 22180502

33. Lyapunov AM. The general problem of the stability of motion. University of Moscow; Ph.D. thesis; 1892.

34. Minguez J, Montano L. Extending collision avoidance methods to consider the vehicle shape, kinemat-

ics, and dynamics of a mobile robot. IEEE Transactions on Robotics. 2009; 25(2):367–381. https://doi.

org/10.1109/TRO.2009.2011526

Reactive navigation in extremely dense and highly intricate environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0189008 December 29, 2017 51 / 51

https://doi.org/10.1016/j.robot.2016.07.001
https://doi.org/10.1109/TBME.2011.2179545
http://www.ncbi.nlm.nih.gov/pubmed/22180502
https://doi.org/10.1109/TRO.2009.2011526
https://doi.org/10.1109/TRO.2009.2011526
https://doi.org/10.1371/journal.pone.0189008

