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Abstract

As longitudinal and multi-site studies become increasingly frequent in neuroimaging, maintaining 

longitudinal and inter-scanner consistency of brain parcellation has become a major challenge due 

to variation in scanner models and/or image acquisition protocols across scanners and sites. We 

present a new automated segmentation method specifically designed to achieve a consistent 

parcellation of anatomical brain structures in such heterogeneous datasets. Our method combines a 

site-specific atlas creation strategy with a state-of-the-art multi-atlas anatomical label fusion 

framework. Site-specific atlases are computed such that they preserve image intensity 

characteristics of each site’s scanner and acquisition protocol, while atlas pairs share anatomical 

labels in a way consistent with inter-scanner acquisition variations. This harmonization of atlases 

improves inter-study and longitudinal consistency of segmentations in the subsequent consensus 

labeling step. We tested this approach on a large sample of older adults from the Baltimore 

Longitudinal Study of Aging (BLSA) who had longitudinal scans acquired using two scanners that 

vary with respect to vendor and image acquisition protocol. We compared the proposed method to 

standard multi-atlas segmentation for both cross-sectional and longitudinal analyses. The 

harmonization significantly reduced scanner-related differences in the age trends of ROI volumes, 

improved longitudinal consistency of segmentations, and resulted in higher across-scanner intra-

class correlations, particularly in the white matter.
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1. Introduction

The rapid growth of investigations incorporating neuroimaging data in recent years has 

brought new opportunities for studying brain structure and function (Van Horn and Toga, 

2014). Particularly, longitudinal and multi-site magnetic resonance imaging (MRI) are 

becoming standard elements of neuroimaging studies, as they allow investigation of subtle 

progressive changes in brain structure over time and for large samples. An increasing 

number of longitudinal MRI studies are currently underway (Hedman et al., 2012; Mills and 

Tamnes, 2014), collecting image data over long time periods, sometimes going up to many 

decades. In addition, opportunities to pool data across studies provides large sample sizes 

enabling to address questions regarding interactive effects of various predictors, which is not 

possible within a single sample. However, a major challenge in longitudinal, as well as in 

multi-site, studies is the variability in scanners and image acquisition protocols. Thus, the 

development of image analysis techniques and analytical methods that are robust to such 

potential imaging variations is crucial to our ability to derive clinically useful imaging 

measurements, i.e. accurate and reliable measurements with high sensitivity to detect brain 

changes over time and across subject groups.

Automated identification and delineation of anatomical structures on MRI images is a 

fundamental task in neuroimaging. In recent years there has been a notable improvement in 

segmentation accuracy and reproducibility using multi-atlas segmentation (MAS) methods, 

which combine deformable registration and label fusion for transferring atlas labels of 

anatomical regions of interest (ROIs) to the target image space (Iglesias and Sabuncu, 2014). 

The consensus labeling increases the segmentation accuracy, as multiple warped atlases 

provide complementary information about the anatomy, and they correct each other’s errors. 

Moreover, subject-specific regional selection or weighting of different atlases provides a 

way for locally matching the atlas dictionaries to the individual anatomy. MAS is now 

considered the state-of-the-art technique for segmenting the brain into anatomical structures, 

and has been applied in various studies for assessing regional changes in brain volume, for 

deriving imaging biomarkers in a range of neurological conditions, and for elucidating 

processes like brain development or aging (Heckemann et al., 2011; Oishi et al., 2013; 

Habes et al., 2016). However, most analyses, as well as validations for diverse MAS 

methods, have been limited to relatively homogeneous datasets without significant scanner 

or image acquisition variability. Like all segmentation methods, MAS is sensitive to image 

contrast variations, which may result in systematic over- and under-segmentation of brain 

tissues in a way that is inconsistent across scanners and imaging protocols.

The influence of scanner differences on MR image contrast and their effect on tissue 

segmentation has been previously reported (Clark et al., 2006). Han et al. (2006) evaluated 

the precision of an automated cortical thickness measurement within- and across-scanner 

platforms and field strengths, and found that the thickness measurements across field 

strengths (specifically between 1.5T and 3T scans) were slightly biased, suggesting that this 

measurement bias must be taken into account in the design of multi-site or longitudinal 

studies. Jovicich et al. (2009) assessed the impact of various image acquisition variables on 

the volumes of anatomical structures computed through atlas based segmentation, and 

similarly concluded that combining data across platforms and across field-strengths 
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introduces a bias that should be considered in the design of multi-site studies. A 

comprehensive analysis in Kruggel et al. (2010) investigated the influence of scanner 

hardware and imaging protocol on the variability of morphometric measures using 1073 

multi-site MRI examinations of 843 subjects. In agreement with previous findings, this study 

showed that using different acquisition conditions in the same subject, the variance of 

volumetric measures was up to 10 times greater, which is mainly explained by scanner-

dependent differences in the tissue contrast between GM and WM.

In this paper, we address this important challenge, and we present a new MAS framework 

that is specifically designed to achieve a consistent parcellation of anatomical brain 

structures in longitudinal MRI datasets with inter-scanner and/or imaging protocol 

differences. A typical example that motivates our work is shown in Figure 1. This example 

highlights tissue contrast differences between two consecutive scans of the same subject 

acquired using a 1.5T SPGR protocol in a GE scanner and using a 3T MPRAGE protocol in 

a Philips scanner. The proposed method is founded on a relatively recent multi-atlas 

segmentation method that utilizes a rich ensemble of warped atlases (Doshi et al., 2016). We 

extend the common MAS framework, however, by introducing a site-specific atlas creation 

strategy, by which a different set of atlases is computed for each different MRI site3. These 

atlases are subsequently used for segmenting all images from the same site. The site-specific 

atlases share the same ROI labels, imposing the consistency of segmentations, while each 

atlas set preserves the image intensity characteristics of the specific site. We should note 

that, after the atlas creation, which is performed only once for a dataset, the segmentation is 

performed individually for each image using the standard MAS framework. In this regard, 

our method is considerably different from 4D image registration and segmentation methods 

(Xue et al., 2006; Fan et al., 2007; Roy et al., 2013; Csapo et al., 2013) for which a model is 

calculated using all time series of a subject, thus requiring recalculation of the model for 

each new scan. Our method is also different from Han and Fischl (2007), one of the few 

methods that addressed the same problem within the atlas-based segmentation framework, as 

in their work an atlas renormalization procedure was applied for each new target image, and 

adjustment of the intensity model was performed individually for each ROI.

The development of our segmentation method, which is available in our image processing 

portal as a web-accessible application4, was motivated by data and the scientific objectives 

of the neuroimaging substudy of the Baltimore Longitudinal Study of Aging (BLSA) 

(Resnick et al., 2000, 2003), which has collected a variety of longitudinal datasets since 

1994 to investigate age related changes in brain structure as early markers of cognitive 

decline and Alzheimer’s disease. BLSA has acquired longitudinal MRI images of aging 

adults (2 to 15 time points) using either 1.5T SPGR or 3T MPRAGE protocols that also 

varied with respect to scanner vendor (GE and Philips respectively). We hypothesized that 

the proposed method would improve the longitudinal consistency of the segmentations of 

anatomical regions, suggesting that it could be a useful tool for the harmonization of brain 

volume measurements in longitudinal studies.

3In the rest of the text the term “site” is used as a shorthand to denote datasets with systematic differences in acquisition due to the use 
of different scanner types and/or imaging protocols.
4CBICA Image Processing Portal: https://ipp.cbica.upenn.edu
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2. Materials and Methods

2.1. MRI Dataset Description

The BLSA study is a prospective longitudinal study of aging and early markers of 

Alzheimer’s Disease. The neuroimaging component of BLSA has followed individuals since 

1994 with annual or semi-annual imaging and clinical evaluations (Resnick et al., 2000, 

2003). At the time of our analysis the BLSA data sample included 2036 scans from 721 

subjects, for the most part acquired using two different scanners and acquisition protocols. 

Specifically, from February 1994 through July 1999, MR scanning was performed on two 

similarly configured GE Signa 1.5 Tesla scanners, to acquire a high-resolution volumetric 

“spoiled grass”(SPGR) series. A third GE 1.5 T Signa scanner with a slightly different 

configuration was used between 1999 and 2005. From 2009 on, all scans were acquired on a 

single Philips 3T scanner using a 3D “magnetization prepared rapid gradient echo” 

(MPRAGE) sequence.

In our validation experiments, we used two samples derived from the complete BLSA 

dataset. Sample-A was obtained by using the first 1.5T SPGR and first 3T MPRAGE scan of 

each participant, and was used for assessing cross-sectional age trends of calculated ROI 

volumes for the two scanner types. Sample-B was used for evaluating longitudinal 

consistency of MRI volumes and was obtained by including all scans from participants for 

whom both 1.5T SPGR and 3T MPRAGE scans were acquired. The sample characteristics 

of these two datasets are presented in table 1.

2.2. Multi-atlas segmentation of ROIs

Atlas-guided segmentation of anatomical regions involves deforming (warping) an atlas 

image into the target space to establish spatial correspondences between the two images, and 

then transferring the atlas ROI labels to the target image. In the multi-atlas setting, labels 

from multiple warped atlases are fused together to determine the final labels. We apply a 

new consensus labeling framework (Doshi et al., 2016) for ROI segmentation, called 

MUSE5, which was the top-ranking method in an extensive challenge (Doshi et al., 2013). 

This method uses a broad ensemble of warps that reflects variations due to the choice of the 

atlas, as well as the registration method and deformation parameters.

In the ensemble construction, we use two extensively validated registration algorithms, 

“Deformable Registration via Attribute Matching and Mutual-Saliency Weighting” 

(DRAMMS, v1.4.1) (Ou et al., 2011) and Advanced Normalization Tools (ANTS, v1,9.x 

with symmetric normalization transformation and with the probability mapping as the 

similarity metric) (Avants et al., 2008), as well as an ensemble of 35 atlases. For both 

methods, the main parameter that regulates the smoothness of the deformation field is 

sampled at two operational points (DRAMMS: regularization weights of 0.1 and 0.2, ANTS: 

gradstep of 0.25 and 0.5), combining both a smooth and a more aggressive registration, 

trading the deformation smoothness with higher matching between the warped atlas and the 

target images.

5MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters
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The reference atlas dataset consists of 35 3T MPRAGE brain MRI scans from 30 subjects 

scanned as part of the OASIS project and their corresponding ROI labels, which were 

provided as publicly available data in the 2012 MICCAI Challenge on Multi-Atlas 

Labeling6. ROI labels on atlas images were created semi-automatically using the 

brainCOLOR labeling protocol7.

2.3. Site-specific atlas generation

The ROI segmentation via multi-atlas label fusion is preceded by an atlas creation procedure 

that essentially aims to create a collection of mutually-consistent site-specific atlases from 

the image dataset. The first step of this process is the selection of a representative subset of 

subjects (k=32 in our experiments) whose scans will be used to create scanner-specific 

atlases. In atlas harmonization, a major challenge is to establish the correspondences 

between images from distinct sites, as the differences between images are both due to inter-

subject variations in anatomy and due to scanner and protocol related image contrast 

differences. In our atlas construction procedure, we take advantage of the existence (in a 

longitudinal study) of multiple images from the same person in order to minimize inter-

subject anatomy differences. Let I = {Is,t ∈ {SITE1, SITE2} | s = 1, …, n ; t = 1, …, ts} 

denote a set of longitudinal images acquired using two different scanners and with a variable 

number of time points for each subject, where Is,t : Ω ⊂ R3 → R represents the 3D image 

acquired from subject s at time point t. Let τ(Is,t) be the scan date of image Is,t, such that 

∀(Is,t∈{SITE1}, Is,t′∈{SITE2}) τ(Is,t′) > τ(Is,t). Also, let SITE2 be selected as the “reference 

site”, for instance because SITE2 scanners are more recent and have better tissue contrast. 

We determine k subjects with the shortest inter-scan date difference between consecutive 

scans from different sites:

(1)

where S is the set of indexes for all scans from SITE1 for which the consecutive scan is from 

SITE2.

The selection procedure aims to maximize correspondences between selected image pairs. 

However, the registration process may not be straightforward, since intervals may be present 

between scan times, thereby posing a challenge emanating from brain changes occurring 

during these intervals. To overcome this challenge, we propose next a robust registration 

strategy. We construct the image sets , where 

and (sn,tn) ∈ s*. Note that for the reference site (SITE2) a single scan is directly designated 

as the atlas image for each selected subject. For creating the SITE1 atlases, in the other hand, 

multiple (i.e. p + 1) SITE1 scans are selected for each subject, which are deformably 

6Available for download at https://masi.vuse.vanderbilt.edu/workshop2012
7http://Neuromorphometrics.com
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registered to the corresponding SITE2 scan using multiple transformations, and fused into a 

single atlas image:

(2)

where  is a deformable transformation that maps every voxel of a source image Is to a 

target image It space, Θ is the parameter vector that combines important parameters for 

variations of the deformation, specifically the deformation algorithm and the amount of 

regularization, and ∪ is the data fusion operator. For data fusion, we used here the voxelwise 

average of all warped images. We used two different deformable registration algorithms, 

specifically DRAMMS and ANTS, and two smoothness parameters (DRAMMS: 

regularization weights of 0.1 and 0.2, ANTS: gradstep of 0.25 and 0.5), similar to Doshi et 

al. (2016), and p was set to 1, resulting in 8 different warped images in total in the creation 

of each SITE1 atlas. It’s important to note that the use of multiple warps, as well as multiple 

SITE1 images in the atlas image creation procedure was motivated by the objective of 

obtaining a robust registration to SITE2 image space.

ROI label images for ASITE2 are calculated through MUSE using external atlases as 

described in section 2.2. For ASITE1, the ROI label images are not computed, but the ROI 

labels that were calculated for ASITE2 are used as reference segmentations, with the aim of 

harmonizing the ROI definitions for the two different sites. An outline of the creation of a 

site-specific atlas pair is shown in figure 2. The same procedure is applied on all selected 

scans in S* for creating a site-specific atlas set with k pairs of mutually-consistent atlases, 

which are subsequently used for parcellation of all scans in the dataset using MUSE.

3. Results

From the complete BLSA sample we selected k = 32 subjects for the site-specific atlas 

creation. The average age of the selected subjects at the time of the first MPRAGE scan was 

81.6 ± 6.9 (69.0 – 95.0) years. The average time between the last SPGR and the first 

MPRAGE scan was 4.2 ± 0.4 (2.7 – 4.9) years. The procedure described in section 2.3 was 

applied to create site-specific BLSA atlas datasets with 32 pairs of (SPGR and MPRAGE) 

atlas images and their ROI label images.

Figure 3 presents an example of the final SPGR and MPRAGE atlases. As shown in the 

figure, the two atlas images have different image contrasts, reflecting the differences in the 

intensity profiles of the original scans. Also, the SPGR-atlas image is smoother than the 

MPRAGE-atlas image, as it was constructed through the combination of multiple warps. 

Importantly, the MPRAGE-atlas image, which was used to determine ROI labels for both 

atlases, has higher image contrast, and thus can guide the segmentation of difficult-to-

segment low-contrast areas on SPGR scans, while also enforcing consistency.

Each T1-weighted scan in the complete BLSA dataset, including scans used for constructing 

the site-specific atlases, has been segmented into ROIs by applying MUSE using the site-

specific atlases. A direct quantitative evaluation of the segmentation accuracy is not possible, 
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as there are no ground-truth ROI labels available for the BLSA scans. Hence, we performed 

a comparative analysis of the cross-sectional and longitudinal age trends of ROI volumes 

obtained from the two scanner types. We compared the “harmonized” ROI volumes, i.e. 

those extracted by applying MUSE with harmonized site-specific atlases, against the 

“unharmonized” ROI volumes that were obtained using standard MUSE with external 

atlases. We included in this analysis the values for 23 large ROIs that correspond to a lobar-

level parcellation of the brain.

3.1. Cross-sectional age effects

We first investigated cross-sectional relationships with age for the SPGR and MPRAGE 

scans, using the baseline SPGR and MPRAGE scans (Sample-A). In the cross-sectional 

analyses our main assumption was that regardless of the scanner type, subjects in similar age 

and disease conditions should have similar brain volumes. Figure 4 shows plots of sex-

adjusted cross-sectional associations between age and volumes of total brain, WM, GM, and 

the frontal lobe (GM and WM together). As shown in the figure, SPGR and MPRAGE 

results were more similar for harmonized than unharmonized data.

We used ordinary least squares regression to model cross-sectional relationships between 

age and ROI volumes for the SPGR and MPRAGE data. The model we used in the linear 

regression was:

(3)

In this model, age was centered at 55, sex was coded as −0.5 for female and 0.5 for male, 

and the MPRAGE variable was used as a binary variable that coded the scanner type, i.e. 

with value 1 for MPRAGE scans and 0 for SPGR scans. This kind of coding implies that the 

intercept value is the average volume between males and females at age 55 for SPGR, and 

β2 with age is the average age effect across males and females for SPGR data. β3 is the 

difference in intercept values between MPRAGE and SPGR, and was used to evaluate the 

amount of shift between the scanners. β5 is the difference between MPRAGE and SPGR in 

the slopes of the age trends and was used to evaluate differences between scanners in age 

associations.

The percentage difference in intercept and the difference in slope between SPGR and 

MPRAGE for unharmonized and harmonized samples for the 24 ROIs are presented in 

Tables 2 and 3. At the intercept, harmonized data showed smaller differences between SPGR 

and MPRAGE compared with unharmonized data for 22 of 24 regions. For 5 of 24 regions 

unharmonized data showed significant differences between SPGR and MPRAGE in the 

slope of age trends. In contrast, only 1 of the 24 regions based on harmonized data showed 

significant differences between SPGR and MPRAGE in age associations.
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3.2. Longitudinal analyses

For the longitudinal analyses, we used all time points from participants that had both SPGR 

and MPRAGE scans (Sample-B). The unharmonized and harmonized datasets were based 

on exactly the same subjects and time points. Longitudinal age trajectories of major ROIs for 

unharmonized and harmonized datasets are shown in figure 5.

3.2.1. Intra-class correlations—We used intra-class correlations (ICC) to assess the 

within-subject consistency of ROIs derived from SPGR and MPRAGE scans. A separate 

linear mixed effect model was fit with each ROI as a dependent variable. The intercept was 

used both as the fixed effect and the random effect to partition the variance into between-

subject and within-subject variance. We calculated the intra-class correlation (ICC) for each 

ROI independently using:

(4)

where σ2(b) is the between-subject variance and σ2(w) is the within-subject variance. The 

ICC was calculated for SPGR scans only and across SPGR and MPRAGE scans. The 

summary statistics of ICC values over the 24 regions for harmonized and unharmonized 

datasets are shown in table 4. Consistent with the results of the cross-sectional analysis, the 

harmonization greatly improved the longitudinal consistency of the data with significantly 

increased ICC values across SPGR and MPRAGE scans. In 22 of 24 regions ICC values 

were higher in harmonized than unharmonized datasets, and ICC values were unchanged in 

other 2 regions. On average, the ICC increased from 0.75 to 0.85. The effect was particularly 

significant in the white matter (WM) regions, with ICC increasing from 0.69 to 0.91 for total 

WM, and from 0.56 to 0.88 for occipital WM.

3.2.2. Longitudinal difference in intercept from SPGR to MPRAGE—To 

investigate the effect of the scanner change on the longitudinal trajectories of MRI volumes, 

i.e. to estimate the difference in the levels of MRI volumes after the scanner change, we used 

linear mixed effect models with each ROI volume as a dependent variable. The predictors 

included intercept, scanner (SPGR/MPRAGE), interval and scanner × interval. The interval 

variable was anchored at the beginning of the MPRAGE (interval = 0), so that follow-ups for 

SPGR scans are negative and followups for MPRAGE scans are positive. Please note that in 

this analysis we did not evaluate the differences in the slopes of MRI volumes, because the 

average number of time points for the MPRAGE scans was low (n=2.4 ± 1.2). The model 

was estimated for all 24 regions, and we report the percentage difference in intercept values 

in table 5. The results were in agreement with the cross-sectional analysis, showing a 

consistent reduction in the intercept shift from SPGR to MPRAGE, with the most significant 

effect in the WM.

4. Discussion

In this paper we addressed a major challenge of volumetric brain analyses in longitudinal 

MRI studies. In many longitudinal studies changes in scanners and imaging protocols 
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between time points are unavoidable due to the duration of the study and rapid changes in 

scanner hardware and software technology. In addition to the importance of harmonization 

in longitudinal studies, harmonization of MRI images is also a critical task for multi-site 

analyses, where multiple MRI datasets are pooled and analyzed together (Van Horn and 

Toga, 2014). Common approaches for addressing this challenge are to analyze volumetric 

measurements from different studies independently, or to “correct” them by including the 

scanner type or site as a covariate in the final statistical analysis. In the former case the data 

are not used to their full potential, while in the latter case the correction may capture 

spatially specific patterns of scanner related variations in the data only at a level limited by 

the resolution of the ROI definitions. To over-come these obstacles, we proposed a new 

method to harmonize MRI scans with inter-scanner differences, and we showed that the 

proposed approach achieved consistent segmentations of anatomical structures. We believe 

that our method will be a valuable analysis tool for long-duration longitudinal studies and 

multi-site studies, as well as for facilitating post-hoc efforts to combine data across multiple 

studies.

One way to harmonize images would be to apply a transformation on each target image to 

make them consistent with the intensity profile of a common reference model, for example 

applying histogram matching techniques, either globally, or using more advanced local 

alignment techniques. In Roy et al. (2010) an atlas based image synthesis technique using 

patch-based matching was applied for generating a synthetic high-resolution MPRAGE 

image from its low-resolution SPGR acquisition. However, these approaches change the 

input images, and hence should be viewed as complementary to our approach, which does 

not modify the image data itself but rather creates mutually-consistent inter-scanner atlases. 

The fact that a multitude of such atlases are used in the final labeling might add robustness, 

relative to an approach that is based on a single image harmonization of each subject’s scan.

Another advantage of our method is that the site-specific atlas creation is done only once for 

every scanner type. Consequently, processing of new images does not necessitate any further 

computation, as long as there are no further changes in the scanner and image acquisition 

approaches.

Our method was motivated by the needs of our longitudinal neuroimaging program and 

leverages the existence of multiple scans from the same subject in the construction of 

scanner-specific atlases. Thus, a direct application of the method in multi-site data analyses, 

i.e. for pooling MRI images from different datasets and analyzing them together, may not be 

possible. However, to overcome this limitation a small set of subjects may be scanned in 

multiple sites/scanners to be used for atlas creation. Importantly, our results indicate that this 

multi-site scanning of the same person procedure does not need to be completed in a very 

short time period, since our registration process can account for brain changes between 

consecutive scans, as it did herein with a scanning interval of more than 4 years, on average. 

Alternatively, the method can also be extended by relaxing this dependency and selecting as 

atlases subjects with the highest image similarity, after matching them, for example based on 

age and sex. Such an extension is beyond the scope of this work and will be investigated in 

future work.

Erus et al. Page 9

Neuroimage. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The robustness of our approach in generating longitudinally consistent segmentations is 

highlighted in the statistical analyses we performed. Significant differences between the two 

scanner types were observed in cross-sectional and longitudinal age trends of unharmonized 

ROI volumes, both in the slope of age-related brain volume changes and in the intercept 

values. Harmonization reduced the observed differences to a great extent and additional 

statistical adjustment for scanner will further reduce scanner-associated variation.

Some limitations of our work should be noted. Our method significantly alleviates the 

scanner change problem, but does not totally eliminate it. A scanner term still needs to be 

included as a covariate in statistical analyses. Second, the final ROI segmentations are 

performed using scanner and protocol specific atlases, for which the ROI labels were 

obtained through multi-atlas segmentation using external reference atlases. Any errors in the 

computation of the reference atlases will be propagated into subsequent segmentations. To 

address this issue, we performed a visual quality verification on the ROI labels of study-

specific atlases. Furthermore, the multi-atlas framework is generally very robust in 

correcting errors in individual atlases and in local areas. Third, the harmonization was 

limited to the use of computed harmonized atlases within a general MAS framework, and 

thus did not benefit from further processing of input images, such as intensity harmonization 

of each individual input image, or more sophisticated 4D processing that would involve all 

time series from a subject. While these alternative techniques might have helped in 

harmonization, more complex models would bring the risk of over-fitting, as well as the 

need for costly re-processing with addition of new data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An example that illustrates differences in tissue contrast between GM/WM and GM/CSF in 

two consecutive scans of the same BLSA participant acquired in scanners with different 

field strengths, protocols and manufacturers (left 1.5T GE SPGR, right 3T Philips 

MPRAGE). The SPGR image was linearly aligned to the MPRAGE image space.
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Figure 2. 
Illustration of the the site-specific atlas creation procedure. The figure shows the creation of 

“one pair of atlases” for a longitudinal dataset with a change in scan protocol from 1.5T 

SPGR to 3T MPRAGE. The MPRAGE ROI label image is computed by applying the 

standard multi-atlas segmentation using external atlases. SPGR-atlas image is generated by 

deformably warping multiple SPGR images to MPRAGE image space and data fusion. The 

two atlas images in the same image space share the same ROI label definitions, while 

preserving the site-specific intensity characteristics of the original scan.
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Figure 3. 
Example of SPGR and MPRAGE atlases and the ROI labels. Left: The MPRAGE image; 

Middle: The ROI labels overlaid on the MPRAGE-atlas image (only the WM/GM boundary 

is shown); Right: The ROI labels overlaid on the SPGR-atlas image that was generated using 

the atlas creation procedure.
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Figure 4. 
Cross-sectional age trends for total brain, GM, WM and the frontal lobe (GM and WM 

together) for the two scanner types, and for harmonized and unharmonized values. The 

values in y axis are in cm3.
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Figure 5. 
Longitudinal age trajectories for total brain, GM and WM using standard multiatlas 

segmentation (left) and using the proposed harmonization method (right). SPGR scans are 

shown with blue color and MPRAGE scans are shown with red color.
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Table 1

Demographic characteristics of the BLSA samples used in validation experiments.

Sample-A: Cross-sectional

Total 1.5T GE SPGR (1999–2005) 3T Philips MPRAGE (2008 onwards)

Number of subjects 650 154 496

Number of females 338 63 275

Age 70.2 (7.9) 71.4 (8.1)

56.0–85.9 55.0–86.0

Race (White,Black,Other) 453 (69.7%) 139 (90.3%) 314 (63.3%)

168 (25.9%) 15 (9.7%) 153 (30.9%)

29 (4.5%) 0 (0%) 29 (5.9%)

Education 16.8 (2.5) 16.5 (2.7) 16.9 (2.4)

8.0–21.0 8.0–21.0 8.0–21.0

Sample-B: Longitudinal

Total 1.5T GE SPGR (1999-2005) 3T Philips MPRAGE (2008 onwards)

Number of subjects 63 63 63

Number of females 30 30 30

Race (White,Black) 51 (81.0%)

12 (19.0%)

Education 17.0 (2.3)

12.0–21.0

Number of scans 671 519 152

Number of scans per subject 11.3 (3.2) 8.2 (2.4) 2.4 (1.2)

2–17 1–11 1–5

Follow up time (years) 17.7 (1.9) 8.6 (2.7) 3.2 (2.0)

13.2–20.6 0–11.7 0–6.2

Age at first MPRAGE scan 80.6 (6.2)

69.1–95.1

Age at last SPGR scan 74.7 (7.4)

56.2–91.1

Interval (yrs) between last SPGR and first MPRAGE 5.9 (3.2)

2.1–17.3
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Table 2

Percentage difference in intercept between SPGR and MPRAGE in the cross-sectional sample

Unharmonized Harmonized

ROI % difference in intercept p-value % difference in intercept p-value

TOTALBRAIN −8.8 <0.0001 −3.83 0.014

GM −9.49 <0.0001 −5.62 <0.0001

WM −7.88 <0.0001 −1.48 0.38

FRONTAL −8.28 <0.0001 −3.44 0.04

LIMBIC −6.87 <0.0001 −0.36 0.85

OCCIPITAL −11.44 <0.0001 −4.71 0.012

PARIETAL −11.51 <0.0001 −5.63 0.0006

TEMPORAL −8.27 <0.0001 −4.13 0.013

DEEP WM GM −0.6 0.69 0.42 0.78

CEREBELLUM −9.64 <0.0001 −4.58 0.0065

VENTRICLE −1.35 0.95 −4.01 0.85

BASAL GANGLIA −0.61 0.76 0.08 0.97

CORPUS CALLOSUM −4.41 0.076 −4.05 0.1

FRONTAL GM −8.16 <0.0001 −4.86 0.0049

LIMBIC GM −6.87 <0.0001 −0.36 0.85

OCCIPITAL GM −11.54 <0.0001 −6.51 0.0006

PARIETAL GM −12.02 <0.0001 −7.29 <0.0001

TEMPORAL GM −10.08 <0.0001 −6.92 <0.0001

DEEP GM −3.93 0.011 −3.01 0.05

FRONTAL WM −8.4 <0.0001 −1.95 0.29

OCCIPITAL WM −11.27 <0.0001 −1.46 0.5

PARIETAL WM −11 <0.0001 −3.91 0.029

TEMPORAL WM −6.44 0.0003 −1.21 0.51

DEEP WM 6.99 0.0003 8.49 <0.0001
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Table 3

Difference in slope of the age trends between SPGR and MPRAGE in the cross-sectional sample

Unharmonized Harmonized

ROI difference in slope p-value difference in slope p-value

TOTALBRAIN 0.22 0.83 0.24 0.83

GM 1.18 0.048 0.48 0.41

WM −0.96 0.055 −0.35 0.47

FRONTAL 0.14 0.72 0.10 0.79

LIMBIC 0.07 0.086 0.04 0.29

OCCIPITAL −0.19 0.17 −0.21 0.14

PARIETAL 0.13 0.50 0.08 0.68

TEMPORAL 0.02 0.93 0.08 0.72

DEEP WM GM 0.03 0.56 0.03 0.56

CEREBELLUM −0.01 0.94 −0.03 0.84

VENTRICLE 0.07 0.74 0.09 0.68

BASAL GANGLIA 0.01 0.76 0.01 0.52

CORPUS CALLOSUM 0.04 0.046 0.04 0.051

FRONTAL GM 0.53 0.008 0.24 0.22

LIMBIC GM 0.07 0.086 0.04 0.29

OCCIPITAL GM 0.05 0.57 −0.08 0.38

PARIETAL GM 0.25 0.015 0.11 0.29

TEMPORAL GM 0.19 0.10 0.10 0.36

DEEP GM 0.02 0.16 0.02 0.14

FRONTAL WM −0.40 0.059 −0.14 0.49

OCCIPITAL WM −0.24 <.0001 −0.13 0.026

PARIETAL WM −0.12 0.23 −0.03 0.77

TEMPORAL WM −0.17 0.15 −0.03 0.82

DEEP WM 0.00 0.85 −0.01 0.26
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Table 4

Intra-class correlations (ICC) of the volumes of 24 ROIs for the longitudinal sample

Unharmonized Harmonized

SPGR SPGR and
MPRAGE

SPGR SPGR and
MPRAGE

Mean 0.95 0.75 0.95 0.85

Max 0.99 0.95 0.99 0.96

3rd Qu 0.97 0.81 0.98 0.89

Median 0.96 0.73 0.96 0.87

1st Qu 0.92 0.70 0.94 0.80

Min 0.89 0.56 0.89 0.72

Neuroimage. Author manuscript; available in PMC 2019 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Erus et al. Page 21

Table 5

Percentage difference in intercept between SPGR and MPRAGE for the longitudinal sample

Unharmonized Harmonized

ROI % difference in intercept p-value % difference in intercept p-value

TOTALBRAIN −8.18 <.0001 −2.29 <.0001

GM −2.99 <.0001 −2.02 <.0001

WM −14.23 <.0001 −3.71 <.0001

FRONTAL −8.34 <.0001 −2.69 <.0001

LIMBIC −1.43 0.0049 3.63 <.0001

OCCIPITAL −15.8 <.0001 −8.63 <.0001

PARIETAL −10.9 <.0001 −4.99 <.0001

TEMPORAL −7.17 <.0001 −1.81 <.0001

DEEP WM GM 4.2 <.0001 5.26 <.0001

CEREBELLUM −6.65 <.0001 −1.67 <.0001

VENTRICLE 5.34 0.0019 5.71 0.0008

BASAL GANGLIA 4.17 <.0001 6.63 <.0001

CORPUS CALLOSUM 3.81 <.0001 3.34 <.0001

DEEP GM 1.62 <.0001 3.2 <.0001

FRONTAL GM 0.85 0.0587 −0.21 0.62

LIMBIC GM −1.43 0.0049 3.63 <.0001

OCCIPITAL GM −9.07 <.0001 −8.53 <.0001

PARIETAL GM −3.71 <.0001 −3.45 <.0001

TEMPORAL GM −4.13 <.0001 −2.86 <.0001

FRONTAL WM −16.2 <.0001 −5.08 <.0001

OCCIPITAL WM −25.29 <.0001 −8.81 <.0001

PARIETAL WM −17.13 <.0001 −6.45 <.0001

TEMPORAL WM −9.87 <.0001 −0.81 0.0035

DEEP WM 9.92 <.0001 7.14 <.0001
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