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Abstract

Filarial infections of humans cause some of the most important neglected tropical diseases. The 

global efforts for eliminating filarial infections by mass drug administration programs may require 

additional tools (safe macrofilaricidal drugs, vaccines and diagnostic biomarkers). The accurate 

and sensitive detection of viable parasites is essential for diagnosis and for surveillance programs. 

Current community-wide treatment modalities do not kill the adult filarial worms effectively; 

hence, there is a need to identify and develop safe macrofilaricidal drugs. High-throughput 

sequencing, mass spectroscopy methods and advances in computational biology have greatly 

accelerated the discovery process. Here, we describe post-genomic developments toward the 

identification of diagnostic biomarkers and drug targets for the filarial infection of humans.

Recent advances in filarial infections

Parasitic nematodes have a significant impact on human and animal health caused primarily 

by filarial worms, the common roundworm, hookworms, whipworms and others [1]. Among 

the eight filarial infections of humans, those caused by Brugia malayi, Wuchereria bancrofti, 
Loa loa and Onchocerca volvulus are responsible for most of the filarial disease burden. The 

life cycles of all of the filarial parasites are similar, and each involves an intermediate vector 

host and long-lived adult parasites, that, depending on the species involved, reside in 

connective tissues (O. volvulus), the lymphatics (Brugia spp, W. bancrofti) or subcutaneous 

tissues (L. loa). These adults release microfilariae that circulate in the peripheral circulation 

(most species) or in the dermal or ocular tissues (O. volvulus) (Figure 1). The human filarial 

worms (except L. loa and some species of Mansonella) harbor an endosymbiotic bacterium 

Wolbachia that can affect the viability and sterility of the worms [2].

During the past decade, advances in sequencing technology, mass spectroscopy as well 

bioinformatic capabilities have led to a major increase in the number of helminth genomes 

available. High quality reference genomes provide a platform to investigate the underlying 

biological makeup and processes by enabling transcriptomics, proteomics, glycomics, 

metabolomics and other specialized ‘omic’ technologies (Table 1).
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While the current anti-filarial drugs have variable efficacy against the microfilariae 

(ivermectin (IVM) and diethylcarbamazine (DEC)) or against the adults (albendazole 

(ALB), DEC, and doxycycline), depending on their mode of action and stage-specificity, 

they must often be administered once or twice annually for up to 20 years for ivermectin-

based MDA for onchocerciasis and for 5-8 years for the standard two-drug regimen of 

ALB/DEC or IVM/ALB used for lymphatic filariasis elimination programs [3, 4]. Moreover, 

the development of drug resistance [5, 6] or the induction of severe adverse events following 

treatment [7-9], or contraindications for DEC in areas endemic for onchocerciasis drives the 

need for the identification and development of alternative therapeutics, along with sensitive 

diagnostic tools to assess for efficacy of these alternative treatment strategies [10].

Early genomic studies of the filarial parasites used expressed sequence tags (ESTs) derived 

from stage-specific cDNA libraries to drive the filarial genome project [11]. Following the 

elucidation of the first filarial genome (B. malayi) [12], the draft genomes of the human 

filarial parasites L. loa [13, 14], W. bancrofti [13], O. volvulus [15] and the non-human 

filarial parasites Brugia pahangi [16], Dirofilaria immitis [17] and Onchocerca ochengi [15] 

became available. Recent reviews highlight the advances and insights gained from the 

comparative analyses of the genomes, transcriptomes and proteomes of these filarial 

nematodes [18, 19].

Although the genomic revolution has been touted as a means of driving vaccine target 

discovery for filarial parasites, to date, there is currently no vaccine against any of the filarial 

infections [20], although a number of potential vaccine candidates have been identified for 

O. volvulus using an “immunonomic” approach [21] or immunoinformatics [22]. Here, we 

review the implications of the post-genomic developments towards the identification of 

novel diagnostics and additional drug targets in human filarial infections.

Diagnostic toolbox

The diagnostic toolbox for filarial infections is fairly limited and, until nucleic acid detection 

and recombinant antigen production became possible, largely relied on classic 

parasitological methods [23] or serology based on the use of crude parasite extracts [24]. 

With the advent of recombinant antigen production, polymerase chain reaction (and other 

methods of nucleic acid detection), based mainly on pre-genomic information [25, 26], 

sensitive and species-specific diagnostics became available [27-34].

Post-Genomic Protein Biomarker Discovery

When the draft genomes of B. malayi, W. bancrofti, O. volvulus and L. loa became 

available, they were used quite successfully to identify species-specific antigens [12-15]. An 

example of this was the identification of Wb123 as a marker of early W. bancrofti infection 

[35] that was subsequently used for surveillance efforts following mass drug administration 

(MDA) [36-43]. Nevertheless, there remained a need for new tools with even greater 

specificity and sensitivity, especially in areas where multiple filarial species were co-

endemic.
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Having the genome of L. loa allowed for comparative proteomic analysis of both urine and 

sera from Loa-infected individuals that resulted in the identification of novel proteins 

(antigens) that could be detected in infected individuals. Among several Loa-derived 

proteins detected using mass spectrometry and genome-based identification in body fluids of 

infected patients, we were able to identify LOAG_16297 as a potential biomarker for L. loa 
microfilarial loads in infected individuals [44]. Likewise, the use of microfilarial RNA-seq 

data and comparative bioinformatics led to the identification of LOAG_14221 as another 

quantitative biomarker for Loa-microfilarial density [45].

The genomes of filarial parasites exhibit a range (12,000 – 15,000) of protein-coding genes 

that can also be found in multiple proteoforms as a result of polymorphisms, post-

translational modifications and alternative splicing events [13, 15, 46, 47]. For most 

genomes (including the filarial genomes), there is a large proportion of uncharacterized or 

hypothetical genes that have orthologues in other related species. Clearly, most of these 

hypothetical proteins, whether conserved or unique, are detectable as proteins [21, 48-52] 

and could be useful biomarkers of infection [21]. The proteins (in the thousands) can be 

gridded on to high-density arrays. High-throughput protein microarrays, though currently 

quite expensive, have become a valuable tool in translational research towards discovering 

and validating potential biomarkers and identifying vaccine candidates. The availability of 

different protein array formats (protein fragment, peptide, full-length) provides platforms for 

different queries [53]. For example, the sero-reactivity to a peptide (on a peptide-array) can 

be MHC- restricted and thus not be recognized by antibody, whereas the full-length protein 

containing multiple B cell epitopes would be more suitable for protein arrays.

Post-Genomic Nucleotide-based Biomarkers

Nucleic acid-based tools often offer better sensitivity and specificity than parasitological or 

serological methods. In the peri-genomic era, these nucleic acid-based tools were identified 

empirically [54-56], and were primarily based on the use of interspersed repeats and internal 

transcribed spacer sequences [57-62] as genetic markers. Strategies have been designed to 

utilize qPCR and loop-mediated isothermal amplification (LAMP) methods for the detection 

of parasite DNA [25]. However, they are not yet applicable in the field and often not 

deployable in low-resource settings. Isothermal amplification methods circumvent the need 

for expensive and bulky instrumentation, requiring a simple heat block or water bath. 

Among the various isothermal-based technologies, loop-mediated isothermal amplification 

(LAMP) methods have been reported for a variety of filariae in humans [63-67] or in the 

vectors [66, 68, 69].

The nucleic-acid based tools in the post-genomic era have been largely focused on small 

RNAs [70, 71]. Among the various small RNAs, microRNAs (miRNA) have been garnering 

increasing interest not only as important regulators of nematode development but also as 

diagnostic markers of infection [72-77]. The detection of miRNAs and their potential for use 

as biomarkers is influenced by: i) sensitivities in depth of coverage, ii) miRNA identification 

methodology employed, iii) niche of the parasite (blood versus other tissues), and iv) the 

nature of the miRNA (conserved or unique) itself. For example, while the detection of 

heartworm specific miRNAs in Dirofilaria-infected (but not from uninfected) dogs 
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demonstrated the utility and specificity of miRNAs [74], the detection of conserved miRNAs 

in the serum of O. volvulus-infected individuals [73] was not uniform across populations 

from differing geographic locations [75, 76].

A recent study [78] points out the feasibility and diagnostic power of using plasma-derived 

miRNA as diagnostic biomarkers. Among the suggested ways to optimize the detection of 

miRNAs were to use: a) a higher volume of plasma; b) a pre-amplification step to boost 

sensitivity; c) miRNAs from fractions enriched in exosomes. While each of these options are 

likely to enhance detection, the practical feasibility of handling larger volumes of plasma 

and/or purification of exosomes in the field or even in a centralized regional laboratory need 

to be considered. This is especially important because small amounts of parasite-derived 

miRNAs were detected in plasma in individuals infected with the skin-tissue dwelling O. 
volvulus, when compared to individuals infected with blood-tissue dwelling L. loa, W. 
bancrofti or B. malayi [74]. Nevertheless, adopting small RNA-based biomarkers for 

inexpensive assays for applications in the field or at point-of-care still requires technological 

advancements.

Post-Genomic Metabolite-based Biomarkers

Prior to the genomic era, metabolite mapping was used to understand the composition of the 

filarial worms [79]. Metabolic reconstructions at the genome-level utilizing flux balance 

analysis (FBA) of the genomes of B. malayi, L. loa, O. volvulus and the relative contribution 

of Wolbachia highlighted potential metabolic chokepoints [15, 80]. Metabolomic approaches 

identified urine-derived N-acetyltyramine-O-b-glucuronide (NATOG) as a potential 

biomarker for O. volvulus [81], though the utility of NATOG measurements is somewhat 

controversial [82, 83].

Using a slightly different approach, metabolite profiling of O. volvulus-infected individuals 

resulted in the identification of many unknown metabolites as potential biomarkers of 

infection [84]. Because metabolite profiling of the parasites is largely limited by availability 

of live worms, it would be important to leverage the metabolic composition identified 

empirically to fill the holes in the metabolic maps based on genomic information. 

Furthermore, because filarial worms source their nutrients from their host(s) or from the 

Wolbachia endosymbiont, the significantly depleted levels of metabolites in the infected 

individuals suggests the likely dependence of the filarial worms on specific metabolites [84].

Therapeutic targets

Current control measures, as part of the MDA campaigns, are largely based on annual or bi-

annual distribution of ivermectin (IVM) (onchocerciasis endemic areas) or 

diethylcarbamazine citrate (DEC; areas non-endemic of onchocerciasis) either alone or in 

combination with albendazole. At the individual patient level, a number of drugs, including 

DEC, albendazole, ivermectin, and doxycycline, are in use and have demonstrated efficacy 

against a number of the filarial infections [85, 86]. However, there have been substantial 

efforts in the past 10 years to identify more effective macrofilaricides [87]. Although 

biochemical extracts from medicinal plants have been explored for bioactive compounds 

Bennuru et al. Page 4

Trends Parasitol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with filaricidal activity [88], current efforts are largely focused on repurposing approved 

drugs that could accelerate more effective therapies.

Post-Genomic Drug Targets

Comparative genomics of the parasite(s) and human host provide a dataset of potential 

targets. The process of comparing the genomes and their inferred biochemical pathways 

yields features that are evolutionarily conserved and features that are divergent between 

organisms. Currently, considering the logistics and length of time between drug discovery 

and market introduction, the use of existing natural, synthetic or semi-synthetic compounds 

with known target and safety profiles are being identified and explored as potential 

alternatives. When targeting metabolic networks present in both the parasite and the host, 

selectivity for the parasite is the most important property.

Wolbachia appear to be essential for the development and survival of the filarial parasites 

that harbor them. Depletion of Wolbachia by antibiotics (e.g., the tetracyclines) disrupts 

embryogenesis, microfilariae (mf) development and worm survival [2], but, despite the loss 

of Wolbachia, filarial worms can survive for long periods of time [89]. This longevity, the 

length of time needed for antibiotic treatment (4-6 weeks) and contraindications in children 

under 8 years of age and in pregnant women, has led to the search for novel anti-Wolbachia 
agents [90]. Repurposing drugs such as minocycline [91] and rifampicin [92] as anti-

Wolbachia therapy could potentially reduce the treatment duration from 6 weeks to 1-2 

weeks, allowing for more ease in delivering these regimens on a community-wide basis.

Post-Genomic Drug Targets: High-Throughput Screens

Using a yeast-based model, screening of 400 drugs available from the Malaria Box project 

[93] yielded filarial-specific active compounds that affected adult females of B. pahangi 
(used as surrogate for human infections) in vitro and did not affect the corresponding human 

homologues [94]. Repurposing of approved drugs also led to the identification of auranofin, 

approved for the treatment of rheumatoid arthritis, as a lead candidate for treating lymphatic 

filariasis and onchocerciasis, whose likely target is thioredoxin reductase (TrxR) [95]. It is 

likely that auranofin treatment renders the parasite susceptible to oxidative damage allowing 

for subsequent clearance of the parasite by the host immune system. Likewise, screening for 

developmental inhibitors of filarial parasites identified closantel, a known anthelmintic drug 

that acts like a proton ionophore, and targets L3-expressed chitinase [96, 97]. Further, 

proteomic studies resulted in the identification of 62 gender-associated proteins expressed 

during embryogenesis or spermatogenesis [98]. Most of these gender-associated proteins 

have homologues in C. elegans with severe RNAi phenotypes and, hence, might be targets 

for new drugs or vaccines. High-throughput drug screening for repurposing approved drugs 

targeting Wolbachia yielded effective compounds from the tetracycline, fluoroquinolone and 

rifamycin classes [99].

Post-Genomic Drug Targets: Genome-wide Screens

Predictive genome-wide screening of drugs approved for human use with the potential use as 

anthelmintics led to the identification of 16 O. volvulus proteins (predominantly enzymes 

and proteins involved in ion transport and neurotransmission) as likely targets [15]. 
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Information gained from the filarial genome projects identified other protein kinases in the 

filarial genomes —EGFR, Src, Raf/Raf, FRAP and AGC/DMPK/ROCK —for which there 

are orally available small molecule inhibitors on the commercial market [13]. Aside from 

kinases, other targets found based on genome mining of the O. volvulus genome, that link to 

FDA-approved drugs with likely activity include well-known and commonly used drugs 

such as metformin, baclofen, acetaminophen, and sertraline [15].

Proteins that are unique to nematodes and sufficiently distinct from homologous human 

proteins are particularly attractive as drug targets. Comparison of filarial and non-filarial 

nematodes revealed the presence of filarial-nematode specific kinases which could be 

targeted using existing approved drugs for human use. Of the 205 conventional and 10 

atypical protein kinases encoded in the B. malayi genome, 142 are deemed essential based 

on the RNAi phenotype in C. elegans [12]. Similarly, 168 kinases of O. volvulus have no 

significant human matches [15]. One of the post-genomic insights from L. loa genome was 

the existence of a tyrosine kinase c-Abl like protein in filarial worms. Moving from a 

theoretical basis, the applicability of repurposing drugs based on L. loa genome, was tested 

with the tyrosine kinase inhibitors (TKI) imatinib, nilotinib and dasatinib [100]. The TKIs 

were able to effectively affect all life-stages of B. malayi at concentrations that are 

physiologically achievable. Given the structural similarity of these c-Abl like proteins in the 

filarial nematodes, and the conserved binding site of the TKI, it is likely to be successful in 

targeting the parasites that cause lymphatic filariasis, loiasis and onchocerciasis [100]. 

Because the expression of c-abl-like protein localized predominantly to the reproductive 

organs, muscle and intestine of the adult B. malayi worms, an effort to perform clinical trials 

in humans (e.g., NCT02644525) with drugs such as these TKIs that are effective as both 

micro- and macrofilaricides might greatly shorten the length of MDA treatment and 

significantly boost elimination efforts [101].

The availability of stage-specific transcriptional and proteomic data, coupled to comparative 

genomics identified potential genes and pathways of Wolbachia that can be targeted. This 

focus has largely arisen from work on the metabolic pathways of the parasites [102] that are 

perceived to be complemented by the Wolbachia-containing filarial parasite and its 

endosymbiont [15]. However, given that the genetic makeup of L. loa (filarial parasite 

devoid of Wolbachia) is the same as other filarial worms, the nature of the metabolic 

provisioning in the symbiotic relationship remains enigmatic [13]. Further, the observed 

heterogeneity and extreme variations in Wolbachia copy numbers within and between 

populations in O. volvulus raises the issue of how metabolic provisioning by Wolbachia is 

balanced, and a complicating factor in finding an efficacious antibiotic for MDA programs 

[103]. Another genome-based approach relies on the prediction of essential Wolbachia genes 

that have experimental evidence or verified genes in other bacterial taxa and 

phylogenetically conserved in Rickettsiales [104]. Incidentally, many of the potential 

inhibitors identified by the A-WOL screens target these essential genes/gene products [105].

From the endosymbiont perspective, Filobase [106] — a database derived from post-

genomic insights from B. malayi and its Wolbachia endosymbiont (wBm) using a 

combination of bioinformatic tools, pathway analyses and data mining -- provides a list of 

essential proteins that could be potential drug-targets for the parasites that cause lymphatic 
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filariasis. This approach, however, requires de novo drug development, a time consuming 

and costly endeavor with uncertainty about safety.

Based on a curated set of ‘essential genes’ across bacteria, archaea and eukaryotes [107] and 

sequence homology to humans, a subset of B. malayi predicted genes have been postulated 

as potential drug targets [108]. This strategy is, however, limited to genes that exhibit 

sequence homology with genes of known functional characteristics; they are not applicable 

to the gene families restricted to filarial parasites that are probably essential [21, 46, 48].

Concluding Remarks

Comparative genomic and post-genomic investigations have provided a vast amount of 

molecular information. Through these studies, sets of genes, proteins or critical pathways 

have been identified and can be further exploited to develop improved diagnostic and 

therapeutic tools. Moreover, the availability of stage-specific expression data allows for the 

identification of parasite-derived biomarkers that can reflect different periods of parasite 

development. These in turn can be exploited for various point-of-care tools that may be 

needed for support of intervention strategies aimed at control and elimination of filarial 

infections. For example, we now have the ability to identify markers of: 1) early infection or 

of recrudescence (L3-L4 based); 2) active patent infection (adults and microfilariae based); 

or 3) ongoing transmission (vector stages). Whatever the approach, good point-of-care tools 

are needed for aiding and evaluating the priorities towards intervention strategies aimed at 

control and elimination of filarial infections [109, 110].

Rational design-based approaches toward the identification of biomarkers and toward the 

development of rapid format assays is now of primary importance if the goals of the MDA 

programs are to be achieved. Moreover, it is important to have the political will to provide to 

the global health community the resources needed for testing and validating these 

biomarkers and therapeutic targets along with models that can be used to predict drug 

efficacy in human infection (see Outstanding Questions).
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Trends

• Current diagnostic methods are not sufficient to reliably detect active filarial 

infection once transmission is controlled.

• Accurate detection of viable filarial parasites requires diagnostic tools with 

better specificity and sensitivity to detect low to very low-level infections.

• Diagnostic tools should preferentially be point-of-care, be able to distinguish 

among related filarial species or detect the presence of multiple infections.

• Current treatment strategies are not adequately effective against the adult 

filarial worms. Triple drug therapy looks promising.

• Identification and development of novel and safe macrofilaricides is largely 

focused on repurposing existing approved drugs and those that target 

metabolic chokepoint reactions.
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Outstanding Questions

• What is the in vivo efficacy of the FDA-approved drugs identified through 

post-genomic approaches in human filarial infection?

• Can POC tests for filarial infections be made more sensitive and specific?

• Can we develop an animal model to test drug efficacy reflective of human 

responses?

• Can there be community wide resources such as:

1. banked material that includes sera/plasma/urine from filarial-

infected individuals pre- and post-treatment

2. parasite material for genomics/transcriptomics for population 

biology and drug resistance studies

3. arrayed proteins or glycans or metabolites for screening for 

discovery and validation of promising biomarkers?
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Figure 1. Life cycle of filarial parasites
The human filarial parasites are digenetic with a primary human host and an intermediate 

vector stage. Infection occurs during the blood meal when the infective L3 larvae enter the 

human host. The larvae develop into adults that reside in subcutaneous tissue or vasculature 

(blood or lymph). The microfilariae produced by the adults are found in the skin or in the 

peripheral circulation from which they can be picked up by the vector during a blood meal. 

In the vector, the ingested microfilariae develop into infective L3 larvae that migrate to the 

head and proboscis.
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