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Abstract

Purpose of Review—The current standard therapy for type 1 diabetes (T1D) is insulin 

replacement. Autoimmune diseases are typically treated with broad immunosuppression, but this 

has multiple disadvantages. Induction of antigen-specific tolerance is preferable. The application 

of nanomedicine to the problem of T1D can take different forms, but one promising way is the 

development of tolerogenic nanoparticles, the aim of which is to mitigate the islet-destroying 

autoimmunity. We review the topic and highlight recent strategies to produce tolerogenic 

nanoparticles for the purpose of treating T1D.

Recent Findings—Several groups are making progress in applying tolerogenic nanoparticles to 

rodent models of T1D, while others are using nanotechnology to aid other potential T1D 

treatments such as islet transplant and islet encapsulation.

Summary—The strategies behind how nanoparticles achieve tolerance are varied. It is likely the 

future will see even greater diversity in tolerance induction strategies as well as a greater focus on 

how to translate this technology from preclinical use in mice to treatment of T1D in humans.
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Introduction

Type 1 diabetes (T1D) is an autoimmune disease in which cells of the immune system 

destroy the insulin-producing β cells located in the pancreatic islets of Langerhans. Disease 

onset can occur at any time, but most often happens at 5–7 years of age or puberty, and there 

are about 280 million cases worldwide today [1, 2]. Currently, the most common therapy for 

T1D is insulin replacement [1–3]. Unfortunately, insulin replacement is not without its 

drawbacks. The discomfort of subcutaneous injection and imperfect knowledge of patient 
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glucose levels make managing T1D difficult and suboptimal [2], with significant risk of 

severe hypoglycemia, so that there is a need for better and more efficient therapies.

Nanotechnology as a concept has been in existence for approximately 60 years, but its 

application to medical therapy dates back about half that time [4, 5•]. While nanomedicine 

may have a multitude of incarnations ranging from diagnostic devices to tissue regeneration, 

much of it has focused on the reformulation and delivery of small molecules or biologic 

drugs such as proteins or nucleic acids [2, 4, 5•]. More recently, researchers have turned to 

nanoparticles for immunomodulation and as potential therapeutics for immune-related 

diseases [4, 5•, 6]. The end goal of many of these new approaches is to reestablish immune 

tolerance. Tolerance can be defined in many ways [6] but may generally be thought of as a 

restoration of the balance between the different components of the immune system resulting 

in inability of the immune system to respond to self-antigens, a process that breaks down 

when autoimmunity arises.

In this review, we will discuss the application of tolerogenic nanoparticles to islet 

autoimmunity. We will review the latest views of T1D and some of its treatments, both 

broad-based immunosuppression and specific tolerogenic therapies, discuss the influence of 

nanoparticle properties on their ability to induce immunomodulation, and present recent 

approaches to producing tolerogenic nanoparticles, with a specific focus on those studies 

that are aimed at developing new treatments for T1D.

Islet Autoimmunity and T1D Treatment

Though it has been difficult to characterize islet autoimmunity in humans and many details 

of it remain unknown, several features are well accepted. Post-mortem examination of the 

pancreases of patients at various stages of T1D shows heterogeneous infiltration of CD8+ 

and CD4+ T cells, macrophages, and B cells [7–11]. Additionally, antibodies with 

specificities for the β cell antigens insulin, glutamic acid decarboxylase 65 (GAD65), 

insulinoma-associated protein 2 (IA-2), and zinc transporter 8 (ZnT8) are found in the serum 

of people with T1D and at risk for T1D [12–17]. In fact, detection of islet-reactive 

antibodies has become a technique for predicting development of T1D in at-risk subjects 

[18–20]. However, the islet-reactive antibodies appear to be neither cytotoxic nor pathogenic 

[21, 22].

An important requirement for the development of tolerance therapies is precise identification 

of the antigenic targets of autoreactive T cells. CD4+ cells specific for the C-peptide of 

proinsulin, the precursor to insulin, have been found in the pancreas of a patient with T1D 

[23]. CD8+ cells specific for the beta cell antigens insulin, islet-glucose-6-phosphatase 

catalytic subunit-related protein (IGRP), IA-2, GAD65, and prepro islet amyloid protein 

(ppIAP) have also been found [10]. It has also been found that CD8+ T cells specific for β 
cell antigens, isolated from the blood of patients with T1D, can kill beta cells [24–26]. Thus 

far, however, no epitope has been found to be solely responsible for T1D pathogenesis [27] 

and it is likely that multiple autoantigens are targeted. A recent study of 50 T cell lines from 

human donors found reactivity to “a broad range of studied native islet antigens and to 

posttranslationally modified peptides” [28••].
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Safety issues prevent obtaining pancreas biopsies from living patients, and fewer people 

dying of ketoacidosis results in fewer pancreases available post-mortem [1]. The 

establishment of the Network for Pancreatic Organ Donors with Diabetes (nPOD) in 2007 

has increased research access to human pancreas from patients with active disease, which 

prior to that was a very rare event. Therefore, the vast majority of research on the 

pathogenesis of T1D has relied on a number of mouse models. Since its development in the 

1980s, the non-obese diabetic (NOD) mouse has become a favored model for studying T1D, 

with spontaneous disease incidence of up to 80–90% in females [1, 29, 30]. Many different 

T cell autoantigens have been discovered in NOD mice, though insulin, and particularly the 

Ins B9–23 peptide, seems to be the dominant and initial target [29, 30, 31••, 32••, 33]. While 

many of these antigens overlap with those found in humans, it is important to note that there 

are many significant differences between T1D in humans and NOD mice, including disease 

onset time and amount and morphology of islet infiltration [1, 20]. The utility of the NOD 

mouse can be seen by the many potential T1D therapies developed using it that have been 

tested in clinical trials, as has been reviewed elsewhere [29, 34•]. However, it has also been 

noted that many treatments that were successful in NOD mice have shown little efficacy in 

humans [1, 29, 34•]. Several groups have also made use of models involving the adoptive 

transfer of diabetogenic cells into either young NOD or immunocompromised mouse strains, 

i.e., NOD.Scid, in certain cases leading to a more time-efficient, accelerated model of T1D 

[35–38]. In these studies, cells with the BDC2.5 T cell receptor (TCR), specific for the beta 

cell protein chromogranin A (CHrA), are often used [39–41].

Many studies suggest that patients with T1D may retain a significant number of β cells at the 

time of diagnosis [1], a time when a substantial amount of insulin is still produced [3]. This 

represents a “window of opportunity” for therapeutic intervention [1]. Clinical trials with 

immunosuppressants such as cyclosporine, prednisone, and azathioprine near time of T1D 

onset led to remission, although all have associated adverse effects [27]. Safer methods are 

being explored, among them monoclonal antibodies against CD3 (teplizumab and 

otelixizumab) and CD20 (rituximab), and a fusion protein of portions of CTLA-4 and IgG1 

(abatacept) [27]. Another potential approach is targeting microbiota and the related 

interaction with the innate immune system [30], including, for example, administration of 

the antibiotic vancomycin [42]. It has been noted that general immunosuppression does not 

cure underlying autoimmunity [43–45]. Therefore, antigen-specific tolerance that does not 

affect the rest of the immune system and would avoid side effects is a preferable alternative 

[46].

Several tolerance approaches used for the treatment of T1D are summarized in Table 1. One 

involves the administration of soluble antigens, as has been done with GAD, insulin, and 

proinsulin, delivered through a variety of routes, including intraperitoneal (i.p.), intravenous 

(i.v.), intranasal (i.n.), oral, and subcutaneous (s.c.) [43]. Preclinical and clinical trials using 

tolerance approaches have proven largely ineffective [47–58]. Significantly, s.c. or i.v. 

infusion of BDC2.5 mimotopes to either NOD mice or BDC2.5 transgenic mice was able to 

protect against T1D development [60, 61]. Another approach is DNA vaccination, using 

either plasmid DNA or viral vectors. Thus far, their clinical progress has been limited, 

though at least plasmid vaccination is noted for its economy and safety [43]. Finally, cell-

based therapies have shown potential as T1D therapies. Regulatory T cells (Tregs) have been 
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shown to be effective in NOD mice [62–64] and recent clinical trials show they are well 

tolerated in humans [65•], but there is still concern with the plasticity of Tregs and their 

possible reversion to effector cell phenotypes. Another cell-based technique is to use 

diabetogenic antigens linked to apoptotic cells targeting the body’s natural tolerogenic 

clearance pathways. These have proven protective in NOD [32••, 59, 66], transgenic NOD 

[67], and adoptive transfer T1D mouse models [66].

Nanoparticles and the Immune System

An examination of tolerogenic nanoparticles requires understanding of their inherent 

properties which determine how they interact with the immune system. Notable ones include 

size, charge, and shape, as well as composition of the resulting protein corona. An additional 

consideration concerns the route of nanoparticle administration.

The biodistribution of administered particles in the “nano-” range (1–1500 nm) [5•] depends 

largely on a convolution of particle size and route of administration. Subcutaneous, 

intramuscular, intradermal, and mucosal injection leads to interaction with the lymphatic 

system and, ultimately, transport to the draining lymph nodes. Smaller particles (< 100–200 

nm) drain there freely. Larger particles (> 100–200 nm) must be transported there by APCs 

[4, 5•, 68, 69]. Particles less than 30 nm seem to be able to escape the lymph node once there 

[70].

Systemic administration of nanoparticles (Fig. 1) favors accumulation in the organs and 

tissues such as the spleen, bone marrow, liver, lungs, and kidneys [6, 71]. The site of 

accumulation is also dependent on particle size as particles < 100 nm can evade clearance by 

the reticuloendothelial system (RES), a.k.a. the mononuclear phagocyte system [72]. 

Particles < 5.5 nm undergo renal filtration and may be excreted via the urine [73]. 

Nanoparticle size also impacts which cells nanoparticles interact with. Dendritic cells 

preferentially internalize smaller-sized particles, while macrophages tend to take up larger 

ones [72].

Nanoparticle charge can be influenced by surfactants and other coating materials, thereby 

allowing manipulation of their interaction with the immune system [4]. Cationic particles are 

more likely to elicit a Th1 response, be taken up by dendritic cells, and engage the MHC 

class I loading pathway following phagocytosis [4, 74–78], but they have also potentially 

toxic properties [79, 80]. Conversely, anionic particles exhibit low toxicity in a number of 

studies [81–86] and associate with the macrophage scavenger receptor MARCO favoring 

tolerance induction [4, 87].

Various studies have shown that nanoparticle shape and structure are also important in 

determining the favorability and nature of nanoparticle uptake by cells [88, 89]. 

Furthermore, the shape/structure of a nanoparticle can also be important for interaction with 

the immune system, especially in terms of proper conformational display of an antigen in 

vaccine particles [90–94].

Lastly, the interaction of nanoparticles with biomolecules following administrations is 

important to consider. For instance, it is thought that the corona can have an effect on 
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important characteristics such as cellular uptake and biodistribution [95]. Though multiple 

models of the protein corona have been proposed, one recent study suggests that it forms 

early and is mostly stable in composition 2 min following formation [96]. Another study 

stressed the influence of nanoparticle size and charge on the corona’s protein composition 

[97]. Additionally, nanoparticles decorated with antigen may attract antibodies in pre-

sensitized individuals, leading to anaphylaxis in certain cases [98•].

Tolerogenic Nanoparticles

The tolerogenic nanoparticles we review here can be broadly separated into two categories: 

(1) carrier particles that target or reformulate immunomodulatory agents and (2) antigen or 

disease-specific nanoparticles. Many of the former have been reviewed elsewhere [6, 71, 

99], but certain examples merit repeating here. Phillips et al. were able to incorporate 

antisense oligonucleotides for the costimulatory molecules CD40, CD80, and CD86 within 

PEG/PVP nano/microparticles, in order to convert DCs uptaking them to a suppressive 

phenotype [100]. Leuschner et al. used small lipid nanoparticles to deliver small interfering 

ribonucleic acid (siRNA) to inflammatory monocytes, in order to silence expression of the 

chemokine receptor CCR2, thus limiting their recruitment to tissues [101]. Wang et al. 

synthesized nanoparticles consisting of a dextran-coated iron oxide core labeled with Cy5.5 

and conjugated to siRNA targeting β2 microglobulin to downregulate MHC class I 

expression as well as acting as a fluorescent and magnetic detection probe [102]. Lastly, 

Shah et al. loaded diblock polymer-based nanoparticles with the soluble immunosuppressant 

molecule rapamycin in order to limit its exposure to the kidneys and provide slow release, 

thereby reducing its toxicity [103]. Although not directly related to T1D, the rapamycin-

loaded nanoparticles showed signs of being as or more effective than free rapamycin as a 

therapeutic for Sjogren syndrome, another autoimmune disease that uses the NOD mouse as 

a spontaneous model, with the additional effect of reduced toxicity.

Other studies have made use of nanoparticle strategies that are specific or related to 

particular autoantigens (Table 2 and Fig. 2). One approach made use of iron oxide 

nanoparticles coated with major histocompatibility complex (MHC) class I or II molecules 

loaded with peptides related to autoimmune disease [104, 105••, 106]. This resulted in the 

expansion of cognate cells with regulatory potential present as part of a negative feedback 

loop in response to the autoantigen [104] or conversion of effector/memory T cells into 

regulatory TR1-like cells [105••]. An advantage of this technique is that, while it requires the 

presence of cells specific for and experienced with the antigen/peptide loaded onto the MHC 

molecule, it is not antigen specific. Instead, the authors classify it as “disease specific.” This 

can be seen as a benefit because it requires no knowledge of the antigen’s role in disease 

pathogenesis or progression. When the particles were coated with MHC II molecules, they 

showed efficacy in multiple disease models, including experimental autoimmune 

encephalomyelitis (EAE) and collagen-induced arthritis (CIA) [105••]. Both the MHC I and 

MHC II approach were also tested in models of T1D [104, 105••], as will be described in the 

next section. An added benefit is that the degradation of the iron oxide particles will fold 

into natural iron metabolism pathways and, indeed, initial tests show that the particles have 

low potential for dangerous side effects [106] and do not suppress the ability of the immune 

system to clear a pathogen [105••].
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Another approach used gold particles surrounded by polyethylene glycol (PEG) and loaded 

with both the EAE T cell epitope myelin oligodendrocyte glycoprotein residues 35 to 55 

(MOG35–55) and a small molecule aryl hydrocarbon receptor (AhR) ligand [111]. DCs were 

shown to take up the nanoparticles and subsequently expanded Foxp3+ Tregs in vitro. This 

approach was shown to reduce severity in EAE and the mechanism of action was shown to 

be related to the presence of Foxp3+ Tregs. It was later extended to tolerance induction in 

the NOD model of T1D [112••], also described in the next section.

Other studies employing antigen-specific tolerogenic nanoparticles have made use of such 

diverse strategies as co-encapsulation of autoantigens with rapamycin in poly(lactide-co-

glycolide) (PLG) nanoparticles [109, 110], decoration of liposomal nanoparticles with 

antigen and inhibitory co-receptor ligands [113, 114], coating PLG nanoparticles with red 

blood cell membranes [115], and coupling both peptide-loaded HLA and apoptosis-inducing 

IgM to epoxy beads [107, 108].

Lastly, our group and collaborators have used highly negatively charged biodegradable PLG 

nanoparticles to treat a variety of mouse models of immune-related diseases. Both antigen-

conjugated and antigen-encapsulating particles have been used in Th1/Th17-mediated EAE 

[116••, 117••, 118••], Th2-mediated allergic airway inflammation [98•], and minor antigen 

mismatched bone marrow transplant [119•]. The exact mechanisms behind the tolerance 

induction in this model are still under investigation, but it is thought that intravenous 

administration leads to uptake of the carboxylated PLG nanoparticles by splenic marginal 

zone macrophages via the MARCO scavenger receptor, thereafter triggering various 

tolerogenic pathways including cell-intrinsic anergy and the activation of Foxp3+ Tregs and 

IL-10-producing Tr1 cells. A recent study, however, has highlighted the importance of liver 

macrophages in addition to those in the spleen [118••].

Application of Tolerogenic Nanoparticles to T1D

Several strategies to reformulate immunomodulatory agents using nanoparticles have shown 

efficacy in T1D models. For example, the nano/microparticles described by Phillips et al. 

[100] prevented or reversed disease in NOD mice and prevented it when T cells from treated 

mice were co-transferred with NOD diabetogenic cells into NOD.Scid mice.

Antigen-specific therapies have also been applied to the treatment of T1D. The nanoparticles 

used by Tsai et al. [104] were able to protect against development of T1D in young NOD 

mice, reverse recent-onset NOD T1D, and restore normal glucose levels in a humanized 

mouse model. The particles interacted directly with low-avidity CD8+ T cells and expanded 

them into a population of regulatory CD8+ T cells that prevented or reversed disease. 

Building on these results, Clemente-Casares et al. [105••] expanded TR1-like cells out of 

antigen-experienced CD4+ T cells and eventually created a “regulatory network” that also 

included regulatory B cells and was able to reverse hyperglycemia in NOD mice and prevent 

its onset in adoptive transfer models involving NOD.Scid mice.

Yeste et al. [112••] used gold nanoparticles coated with PEG, proinsulin, and the tolerogenic 

AhR ligand ITE to target dendritic cells. The induced tolerogenic phenotype of the DCs in 
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turn led to induction of CD4+ Treg cells which were able to suppress T1D onset when 

administered to NOD mice at 8 weeks of age in both spontaneous and cyclophosphamide-

accelerated models. Additionally, bone marrow-derived dendritic cells (BMDC) that had 

been incubated in vitro with the nanoparticles were able to reduce T1D development in the 

spontaneous NOD model. Perhaps most interestingly, the nanoparticles used in this study 

were also incubated in vitro with human dendritic cells (hDCs), swapping out insulin for the 

human T1D antigen GAD555–567. Measurements of gene expression and costimulatory cell 

surface markers suggested that a tolerogenic phenotype was induced in hDCs as well. 

Subsequently, the treated hDCs were able to decrease IFN-γ secretion in a human GAD-

specific CD4+ T cell.

Our group has used insulin and the P31 CHrA mimetope of transgenic BDC2.5 CD4+ T 

cells in various formulations to treat T1D in two different mouse models [120••]. P31 

coupled to apoptotic splenocytes was able to delay and significantly reduce spontaneous 

T1D onset in NOD mice and a single intravenous infusion was enough to protect NOD.Scid 

mice from hyperglycemia for 90 days following adoptive transfer of BDC2.5 cells. 

Envisioning clinical translation of this tolerance induction pathway, we began to focus 

instead on biodegradable PLG nanoparticles as antigen-carriers. P31-coupled or P31-

encapsulating nanoparticles were able to protect against adoptive transfer mediated T1D by 

sequestering autoreactive T cells in the spleen and decreasing inflammation in the pancreas. 

Tolerization was shown to be mediated by PD-L1 and CTLA-4 signaling and long-term 

maintenance of tolerance was found to depend on the induction of Tregs. We have been 

further able to show similar efficacy using the same approach with a mimotope of CD8+ 

NY8.3 transgenic T cells.

The approach of Yeste [112••], as well as our group’s research, indicates the need for 

loading a tolerogenic nanoparticle with insulin when used in the NOD spontaneous onset 

model. Indeed, when apoptotic splenocytes were used as the antigen carrier, only insulin and 

InsB9–23 proved effective in preventing disease [32••]. Furthermore, only full-length insulin 

was fully tolerogenic when the particles were administered later in life (19–21 weeks of 

age). Data from our group has shown that nanoparticles which encapsulate antigen may be 

preferable to ones in which the antigen is displayed on the particle surface in terms of 

patient safety [98•]. Taken together, this means a nanoparticle that encapsulates full-length 

insulin or proinsulin is a promising therapeutic for testing in the NOD mouse model. While 

encapsulating insulin remains challenging, efforts are underway to optimize its loading 

while still controlling nanoparticle size [123].

Finally, nanoparticles may be used in tolerance induction in conjunction with pancreatic islet 

cell transplantation. Transplant of either stem cell or deceased donor origin islet cells is a 

promising technique for curing T1D, especially for those suffering from severe 

hypoglycemia. Sadly, however, recipients of allogeneic islet grafts require lifelong 

immunosuppression to avoid host rejection of the transplanted cells [3, 46]. Our group and 

collaborators have explored the use of negatively charged antigen-coupled or encapsulating 

nanoparticles to induce tolerance in transplant models [122] and have used ECDI-treated 

donor splenocytes to tolerize recipients of islet transplants [124•]. A recent study 

investigated the feasibility of using donor antigen-coupled PLG nanoparticles in place of 
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apoptotic cells. The treatment was successful in producing tolerance in about 20% of 

recipient mice. Adding a small dose of rapamycin to the nanoparticle treatment increased 

that number to approximately 60% [121•]. Wang et al. [102] used the previously described 

magnetic nanoparticles conjugated to siRNA to inhibit rejection in a kind of xenograft of 

human islet to NOD.Scid mice reconstituted with NOD splenocytes. Another potential 

application of nanotechnology to islet transplant is the encapsulation of islets using 

engineered capsules to protect the islet from an immune response. A comprehensive 

discussion of this approach can be found elsewhere [125], but two key points can be 

addressed. Firstly, one of the most pressing concerns is the need for precise control of pore 

size in the capsule material to protect from immune components but also to allow for proper 

β cell function and viability. Additionally, materials need to be engineered to promote 

vascularization and prevent fibrosis at the site of the transplant.

Conclusions and Future Directions

The uptake of nanoparticles by phagocytic cells makes them a natural choice for testing as 

tolerogenic agents. The properties of nanoparticles, including size, charge, and shape, as 

well as their route of administration, may be altered to specifically target their effect to one 

or several populations of immune cells. Here, we have reviewed approaches using 

nanoparticles that aim to induce antigen- or disease-specific tolerance, particularly in regards 

to treatment of T1D. For many of the remaining studies referenced in this manuscript that 

have not been tested in models of T1D, there is no reason why they cannot be modified to 

blunt, prevent, or delay islet cell-directed autoimmunity.

Given the increasing uses in which nanotechnology is being employed in the medical arena, 

it is likely that future development of tolerogenic nanoparticles will not be limited to simply 

abrogating islet autoimmunity. Innovative applications, such as the induction of donor-

specific tolerance in order to allow pancreas or islet transplant, may be used either alone or 

in concert with autoantigen-specific tolerance. Future work in this area is also likely to focus 

on considerations not discussed in this review, such as the safety versus toxicity of 

nanoparticles, their cost benefit, and the ability of their manufacture to be scaled up to 

industry levels. The very fact that these concerns are being addressed demonstrates the 

translational potential of this promising new technology.
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Fig. 1. 
Effect of nanoparticle size on biodistribution following systemic administration. MPS 
mononuclear phagocyte system, RES reticuloendothelial system
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Fig. 2. 
Proposed mechanisms of tolerance induction of selected tolerogenic nanoparticle treatments. 

a Nanoparticles targeting APCs. Top: MARCO receptor dependent uptake of antigen-

coupled and antigen-encapsulating PLG [98•, 116••, 117••, 118••, 119•, 120••, 121•, 122]. 

Middle: PLG encapsulating both antigen and rapamycin [109, 110]. Bottom: gold 

nanoparticles decorated with both antigen and AhR ligand [111, 112••]. b Iron oxide 

nanoparticles coated with peptide-MHC that interact directly with T cells to expand 

autoregulatory cell populations [104, 105••, 106]. APC antigen presenting cell, PLG 
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poly(lactide-co-glycolide), AhR aryl hydrocarbon receptor, MHC major histocompatibility 

complex
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Table 1

Summary of non-nanoparticle antigen-specific therapies tested for treatment of T1D

Antigen Treatment method References

GAD Soluble Ag [43, 47–53]

DNA vaccination [43]

Insulin and proinsulin Soluble Ag [43, 54–58]

DNA vaccination [43]

Cell-based [32••, 43, 59]

BDC2.5 mimotopes Soluble Ag [43, 60, 61]

Cell-based/Treg [43, 62]

Other cell-based Cell-based/Treg [43, 63, 64, 65•, 66, 67]
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Table 2

Summary of antigen- or disease-specific tolerogenic nanoparticle strategies

Approach Disease models References

Iron oxide-pMHC EAE, T1D, CIA [104, 105••, 106]

Peptide-HLA/IgM-epoxy N/A [107, 108]

PLG nanoparticles encapsulating antigen and rapamycin EAE, allergy/hypersensitivity, factor VIII 
tolerance

[109, 110]

Gold PEG-Ag-ITE EAE, T1D [111, 112••]

Lipid Ag-Siglec C or CD22 Factor VIII tolerance [113, 114]

PLG coated with RBC membrane Pathogenic antibodies [115]

Carboxylated PLG nanoparticles coupled with or 
encapsulating antigen

Allergy, EAE, T1D, bone marrow 
transplantation, islet transplantation

[98•, 116••, 117••, 118••, 119•, 
120••, 121•]

Italicized text indicates studies relevant to T1D
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