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Abstract

Melanoma represents a significant clinical problem affecting a large segment of the population 

with a relatively high incidence and mortality rate. Ultraviolet radiation (UVR) is an important 

etiological factor in malignant transformation of melanocytes and melanoma development. UVB, 

while being a full carcinogen in melanomagenesis, is also necessary for the cutaneous production 

of vitamin D3 (D3). Calcitriol (1,25(OH)2D3) and novel CYP11A1-derived hydroxyderivatives of 

D3 show anti-melanoma activities and protective properties against damage induced by UVB. The 

former activities include inhibitory effects on proliferation, plating efficiency and anchorage-

independent growth of cultured human and rodent melanomas in vitro, as well as the in vivo 
inhibition of tumor growth by 20(OH)D3 after injection of human melanoma cells into 
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immunodeficient mice. The literature indicates that low levels of 25(OH)D3 are associated with 

more advanced melanomas and reduced patient survivals, while single nucleotide polymorphisms 

of the vitamin D receptor or the D3 binding protein gene affect development or progression of 

melanoma, or disease outcome. An inverse correlation of VDR and CYP27B1 expression with 

melanoma progression has been found, with low or undetectable levels of these proteins being 

associated with poor disease outcomes. Unexpectedly, increased expression of CYP24A1 was 

associated with better melanoma prognosis. In addition, decreased expression of retinoic acid 

orphan receptors α and γ, which can also bind vitamin D3 hydroxyderivatives, showed positive 

association with melanoma progression and shorter disease-free and overall survival. Thus, 

inadequate levels of biologically active forms of D3 and disturbances in expression of the target 

receptors or D3 activating or inactivating enzymes, can affect melanomagenesis and disease 

progression. We therefore propose that inclusion of vitamin D into melanoma management should 

be beneficial for patients, at least as an adjuvant approach. The presence of multiple 

hydroxyderivatives of D3 in skin that show anti-melanoma activity in experimental models and 

which may act on alternative receptors, will be a future consideration when planning which forms 

of vitamin D to use for melanoma therapy.
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1. Introduction

Exposure to the highly energetic spectrum of ultraviolet radiation (UVB; λ=290–320 nm; 

5% of total UVR reaching Earth surface), while representing a major risk factor for basal 

cell and squamous cell carcinomas (BCC and SCC) and melanomas, is also necessary for 

cutaneous production of vitamin D3 (D3) (Fig. 1)[1–5]. The transformation of 7-

dehydrocholesterol (7DHC) to D3 after absorption of UVB energy by the unsaturated B ring 

represents the most fundamental reaction in photobiology [6–8], since the biologically active 

form of D3, 1,25(OH)2D3, not only regulates body calcium homeostasis, but also displays a 

variety of pleiotropic effects [7, 9, 10]. Importantly, these include radioprotective and 

anticarcinogenic activities [3, 5, 9, 11–14]. Moreover, skin supplies >90% of the body’s 

requirement for this prohormone.

Over 80% of non-melanoma skin cancers (NMSC) occur in sun-exposed sites, head, neck 

and the back of hands, attesting to a role for UVR in carcinogenesis. UVR is also considered 

as a full carcinogen for melanoma (Fig. 1) [4, 15–17]. UVR, depending on its wavelength, 

penetrates different layers of the skin affecting DNA integrity, cell and tissue homeostasis, 

inducing mutations, and modulating the expression of a plethora of genes including 

oncogenes and tumor suppressor genes [18–21]. It can also modify the expression and 

activity of growth factors/cytokines and their receptors, and has local and systemic 

immunosuppressive effects [22–27]. UVB absorbed by DNA can induce covalent bond 

formation between adjacent pyrimidines which leads to the production of mutagenic 

photoproducts such as cyclobutane pyrimidine dimers (CPD) and pyrimidine-pyrimidine 

adducts ((6–4)PPs)[19–21]. UVR also augments the production of reactive oxygen species 
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(ROS) with deleterious effects on skin, and induces tumor suppressor factor p53 as a part of 

the response to DNA damage [28–30]. The net effects are skin aging, solar elastosis, 

precancerous states such as solar keratosis, and finally skin cancers such as SCC, BCC and 

melanoma. Also, excessive sun damage can induce a field of cancerization, which may 

complicate the traditional therapy of skin cancer [31–33].

In this review, we summarize experimental and clinical data from our laboratories and the 

literature demonstrating that active forms of vitamin D3 show potent anti-melanoma activity 

in experimental models, and that defects in vitamin D signaling can contribute to 

melanomagenesis and tumor progression, with implications in melanoma therapy and 

pathological risk assessment of the disease outcome. We also discuss a hypothesis that 

endogenously produced active forms of D3 can attenuate or reverse UVB induced damages 

with net antioxidative, antimutagenic, antigenotoxic and anti-proliferative effects.

2. Activation of vitamin D

2.1 Established (canonical) pathway of vitamin D activation

Vitamin D3 is produced in the skin by the photochemical opening of the B ring of 7-

dehydrocholesterol by UVR. The initial product, previtamin D3, undergoes a slow thermal 

isomerization to vitamin D3 at skin temperature [34]. Vitamin D3 is a prohormone and is 

activated by two hydroxylations, the first at C25 by CYP2R1 or CYP27A1 in the liver to 

produce 25(OH)D3, and the second at C1α by CYP27B1 in the kidney to produce the active 

hormone, 1,25(OH)2D3 [34, 35]. 1,25(OH)2D3 can also be produced locally in the skin with 

CYP2R1, CYP27A1 and CYP27B1 being expressed in skin cells [35–38]. 1,25(OH)2D3 is 

inactivated by the action of CYP24A1, primarily in the kidney, which hydroxylates it at C24 

then further oxidizes the side chain to the excretory product, calcitroic acid [39–42]. 

25(OH)D3 can be metabolized by the same oxidation pathway. CYP24A1 is also expressed 

in the skin [35, 43].

2.2 CYP11A1-dependent (non-canonical) pathway of vitamin D activation

Over 15 years of experimental work has revealed an alternative pathway of vitamin D3 

activation by CYP11A1 [44]. CYP11A1 is best known for initiating steroidogenesis where 

the side chain of cholesterol is hydroxylated and cleaved to produce pregnenolone (reviewed 

in [45, 46]. CYP11A1 can hydroxylate the side chain of vitamin D3 at C17, C20, C22 and/or 

C23, but no cleavage occurs. Hydroxylation at C20 is favored with 20S-hydroxyvitamin D3 

[20(OH)D3] being the principal product. Other major products are 20,23(OH)2D3, 

17,20(OH)2D3, 20,22(OH)2D3, 17,20,23(OH)3D3 and 22(OH)D3 [38, 47–51]. These 

secosteroids were originally identified as products of the enzyme in vitro. Subsequent 

studies where skin cells, or fragments of adrenal glands or placentae were incubated with D3 

confirmed their production under ex vivo conditions [38]. Importantly, 22(OH)D3 and 

20(OH)D3 are present in human serum in the nM range [52]. Many of the CYP11A1-

derived hydroxy-secosteroids, including 20(OH)D3 and 20,23(OH)D3, are converted to their 

1α-hydroxy derivatives by CYP27B1in vitro [53] and during ex vivo incubations [38] with 

1,20,23(OH)3D3 and 1,20(OH)2D3 being present in human serum and/or the epidermis [52]. 

CYP27A1, CYP24A1 and CYP3A4 can act on 20(OH)D3 producing 20,24(OH)2D3, 
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20,25(OH)2D3 and/or 20,26(OH)2D3 [54–56] which have also been identified in serum [52]. 

These dihydroxy-metabolites are good substrates for CYP27B1 which hydroxylates them at 

C1α [53]. CYP24A1 can also act on 20,23(OH)2D3 producing 20,23,24(OH)3D3 and 

20,23,25(OH)3D3 [55]. Thus, CYP11A1 initiates new pathways of vitamin D3 metabolism 

with initial products being acted on by the well characterized P450s of the canonical 

pathway, with 16-different hydroxyvitamin D3 metabolites being identified by NMR to date. 

These pathways can be regarded as activating vitamin D3 since both the primary CYP11A1-

derived products and secondary products, including those produced by CYP24A1, display 

biological activity, as described later. Similarly, CYP11A1 can activate vitamin D2 

producing 20(OH)D2, 17,20(OH)2D3 and 17,20,24(OH)3D3, with 20(OH)D2 being 

converted to 1,20(OH)2D3 by CYP27B1 [57–60].

2.3. Phototransformation of Δ7- hydroxysterols into hydroxy-secosteroids

Previous studies have demonstrated that CYP11A1 can convert 7DHC to 22(OH)-7DHC and 

20,22(OH)2-7DHC with subsequent cleavage of the side chain producing 7-

dehydropregnenolone (7DHP), in vitro [47, 61] and ex-vivo [62, 63], with some of the 

products detectable in the human epidermis and serum [52]. 7DHP can also be hydroxylated 

to Δ7-steroids by steroidogenic enzymes or have the remaining 2C side chain cleaved 

producing Δ7-androsta-steroids [62, 63]. In the skin, the breakage of the unsaturated B ring 

of these compounds by the absorption of UVB energy [6] causes their transformation into 

the corresponding secosteroids, with or without a full-length side chain, vitamin D-like and 

tachysterol-like, as well as lumisterol-like formed when the broken Bring reseals in a 

different stereochemical configuration to 7DHC (Fig. 2) [61, 64–69].

3. Malignant melanoma

3.1. Introduction

Cutaneous melanomas represent a challenge for patients, clinicians and researchers because 

of the relatively high incidence and high mortality rates, as well as the relative resistance of 

metastatic disease to the therapy [70–74]. For example, for 2016 in the USA 7,630 new 

cases of melanoma were reported for this year with an estimated 10,130 death associated 

with this disease [70, 71]. Therefore, this disease deserves serious attention including its 

prevention, early and precise diagnosis, and adequate surgical removal of the tumor which 

may be curable for melanoma in situ or the invasive tumor at the radial growth phase (RGP) 

[73, 75, 76]. The pathologist plays a crucial role in this process by providing adequate 

diagnosis supported by synoptic reporting of the necessary prognostic factors as well as by 

performing ancillary studies relating to the therapy or for predicting prognosis.

Over the last decade, there has been a significant advancement in our understanding of the 

immune and molecular principles regulating melanoma behavior [74, 77–81]. This led to 

development of new therapeutic approaches including targeted therapy using BRAF and 

MEK inhibitors or immunotherapy also encompassing checkpoint inhibitor antibodies 

against CTLA-4, PD1 and PDL-1. Unfortunately, targeted therapy retains efficacy only for a 

short period and the disease relapses leading to the death of patients. In addition, checkpoint 

immunotherapy is effective in only a certain subset of patients, has toxic side effects and is 
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very expensive. Thus, a new creative approach is required such as the use of natural products 

like vitamin D, in combination with the above strategies, to control tumor growth and to 

obtain a positive disease outcome [82, 83].

Such an approach appears to be supported by reports in the literature of an inverse 

relationship between 25(OH)D serum levels, melanoma thickness and patient survival, and 

polymorphisms in the genes encoding the vitamin D receptor (VDR) and the vitamin D 

binding protein [83–87]. This is consistent with the documented anti-cancer activity of 

vitamin D [9, 13, 88]. Furthermore, experiments on VDR or RXR knock-out mice have 

suggested a role for these receptors in the development of melanocytic tumors [89–91]. 

Below we summarize clinic-pathological correlations between the expression of VDR, 

CYP27B1, CYP24A1 and retinoic acid orphan receptors (RORs) with the progression of 

malignant melanoma.

3.2. Defects in vitamin signaling during melanomagenesis and melanoma progression

Clinical-based studies on melanoma patients have revealed that vitamin D plays an 

important role in the attenuation of melanoma development and tumor progression. Several 

studies show that the serum level of 25(OH)D3 is deficient in melanoma patients, and that 

there is a negative correlation between serum 25(OH)D concentrations and prognostic 

markers of melanoma such as tumor thickness [85, 92, 93], ulceration [84, 94], mitotic rate 

and histological type [94]. Consequently, lower 25(OH)D3 is accompanied by poorer 

melanoma prognosis [85, 87, 92, 93]. Recently published data also reveal that patients with 

melanomas formed on sun-exposed sites have higher levels of 25(OH)D than patients with 

melanomas on shielded-sites [95]. Some of these studies show that the 25(OH)D3/D2 

concentration at the time of diagnosis is important for the prognosis of melanoma patients 

[84, 92, 94]. Others suggested that changes in the 25(OH)D3 concentration after diagnosis 

during follow-up are more important and could be a prognostic marker [96], or that both the 

initial 25(OH)D3 concentration and its changes during follow-up are predictors of 

melanoma patient prognosis [87]. Serum 25(OH)D levels can also influence the relationship 

between VDR polymorphisms and melanoma patient outcome [92]. This study also partly 

explained some inconsistencies in reports related to VDR polymorphisms and melanoma 

risk and outcome [83, 86, 93, 97–102].

In our studies on clinical melanocytic tumor samples we have shown that changes of VDR 

expression correlate with clinico-pathomorphological features. Both cytoplasmic and 

nuclear VDR immunostaining decreased with the development de novo, or progression of 

tumors from nevi to primary melanomas and to metastatic disease (Fig. 3). Similarly, in 

primary melanomas increasing tumor advancement (thickness, depth, pT stage) correlates 

with decreasing VDR expression [103, 104]. Moreover, the presence of other poor 

prognostic markers such as ulceration, higher mitotic rate, absence of tumor-infiltrating 

lymphocytes, nodular histological type, vertical growth phase and the presence of local and 

distant metastases are also accompanied by decreased VDR expression [103, 104]. 

Consequently, patients with low or undetectable VDR expression in melanoma cells had a 

higher overall stage of the disease and showed shorter overall survival (Table 1). The 
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statistically significant relationship between overall survival and VDR was seen for nuclear 

VDR but not cytoplasmic immunostaining (Table 1) [103].

Since epidemiological studies showed that melanoma patients had serum concentrations of 

25(OH)D3 in the insufficient range at the time of diagnosis and/or during follow-up, we 

analyzed the expression of CYP27B1 in clinical samples of melanomas. Aside from kidney, 

CYP27B1 is widely expressed in peripheral tissues including skin [105–110]. In our study, 

similarly to VDR, CYP27B1 expression was higher in nevi, decreased in primary 

melanomas and was the lowest in metastatic lesions (Fig. 3). Also, the advancement of 

primary lesions (Breslow thickness, Clark’s level and pT stage) correlated with decreasing 

CYP27B1 expression. Lack of or low CYP27B1 expression was associated with the 

presence of markers of poor prognosis. Melanoma at the vertical growth phase and 

metastasizing melanomas had lower CYP27B1 expression than in the radial growing phase 

and non-metastasizing tumors, respectively. In melanomas with low CYP27B1 expression 

the proliferative activity was also elevated. Finally, better disease-free and overall survival 

was seen in patients with higher tumor CYP27B1 expression (Table 1) [111].

CYP24A1 expression changed during the progression of melanocytic tumors, however, the 

expression pattern was different from that of VDR and CYP27B1. In nevi and primary 

melanomas CYP24A1 expression was elevated when compared to normal skin, with the 

highest expression found in nevi and early stage melanomas (Breslow thickness ≤2mm, 

Clark level ≤ III, pT ≤ 2) [112]. Advanced melanomas and melanoma metastases showed 

decreased CYP24A1 expression (Fig. 3). CYP24A1 expression decreased in melanomas 

developing local and distant metastases (pN1–3, pM1) and melanomas at an advanced 

overall stage (stage 2–3). Furthermore, CYP24A1 expression was lower in melanomas 

showing a more aggressive phenotype such as nodular histological type, melanomas with 

higher proliferative index and with ulceration. Similarly to VDR and CYP27B1, lack of or 

decreased CYP24A1 expression was accompanied by shorter overall and disease-free 

survival (Table 1) [112]

Summarizing these findings, the disruption of the expression of VDR and of the vitamin D 

activating enzyme, CYP27B1, is associated with melanoma development and progression. 

The surprising positive correlation between the 1,25(OH)2D3 inactivating enzyme, 

CYP24A1, and disease outcome could either be a reflection of activation of the VDR that 

would stimulate CYP24A1 expression, as expected, or it may be secondary to the recently 

described additional function for CYP24A1 as an activator of 20(OH)D3 [40, 54].

3.3. Retinoic orphan acid receptors (RORs) and melanoma

Vitamin D metabolites can also function as inverse agonists for the retinoic acid-related 

orphan receptors (RORs), RORα and RORγ, and therefore provide an alternative 

mechanism by which vitamin D metabolites affect melanoma development [113, 114]. Both 

RORα and RORγ were found to be expressed in human melanocytic tumors samples, but 

their expression varied and was dependent on the clinico-pathomorphological features of the 

tumors [113, 115]. Both RORα and RORγ expression decreased with the progression of the 

tumors from nevi to primary melanomas to metastases. In addition, increasing advancement 

of primary melanomas, as assessed by Clark’s level, Breslow thickness and pT stage, was 

Slominski et al. Page 6

J Steroid Biochem Mol Biol. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accompanied by decreasing levels of RORα and RORγ expression. Similarly, melanomas 

developing metastases were also characterized by the reduced expression of RORα and 

RORγ [115]. The lack of or decreased expression of these receptors was also related to the 

presence of negative prognostic melanoma markers such as nodular histological type of 

melanoma, the lack of tumor-infiltrating lymphocytes, the presence of ulceration, and a high 

proliferation index. Immunohistochemistry showed that cytoplasmic and nuclear RORα and 

RORγ levels were dependent on the clinico-pathomorphological features of the melanomas. 

Correspondingly, expression of RORα and RORγ correlated with less advanced overall 

stage, better prognosis and longer disease-free and overall survival (Table 2). The 

relationship with overall survival (OS) and disease-free survival (DFS) was observed for 

both cytoplasmic and nuclear RORγ and for nuclear RORα (only for OS). This trend was 

also observed after adjustment for Breslow thickness (OS and DFS) and overall stage (DFS) 

in Cox proportional-hazards regression analysis [115].

3. Testing the anti-melanoma activity of active forms of vitamin D

3.1. Overview on canonical active forms of vitamin D

The work of Colston and colleagues originally demonstrated the anti-melanoma activity of 

1,25(OH)2D3 and the presence of VDR receptors in melanoma cells [116]. Shortly 

thereafter, the inhibitory effects of 1,24,25(OH)3D3 and 1,25,26(OH)3D3 on melanoma cells 

were also demonstrated [117] and production of 1,25(OH)2D3 and of 24,25(OH)2D3 by 

melanoma cells was shown [118]. Since then several papers have demonstrated the anti-

melanoma activity of 1,25(OH)2D3 and its analogs in cell culture, and the expression of 

VDR and vitamin D activating- and inactivating enzymes in different melanomas (for most 

recent reviews see [2, 83, 97, 119]). Most frequently used in these studies were human 

melanoma lines and rodent melanomas including murine and hamster lines. The 

responsiveness of melanoma cells to active forms of vitamin D was cell-type specific and 

dependent on the culture conditions. Interestingly, some human melanomas were not 

responsive to vitamin D analogs and there were conflicting results on vitamin D effects in 

B16 and Cloudman murine melanomas (reviewed in [83]). Furthermore, active forms of 

vitamin D have been shown to display protection against UVR-induced damage, including in 

melanocytes and against photocarcinogenesis [3, 11, 120–122]. CYP11A1-derived 

20(OH)D3 also shows photoprotective properties in model systems of both cultured human 

skin cells (at 10−7 M [12] and 10−7 M [123]) and murine skin in vivo (23 or 46 pmol/cm2), 

comparable to equivalent concentrations 1,25(OH)2D3 [12, 124]. Finally, results from Dr 

Indra’s laboratory clearly demonstrate the protective role of VDR against UVR-induced 

damage in murine melanocytes in vivo [91].

3.2. Antimelanoma activity of CYP11A1-derived secosteroids

Novel vitamin D derivatives with a full length or short side chain, as listed in Table 3, have 

been tested for their in vitro anti-melanoma activity using established lines of human 

(SKMEL-188, WM35, WM1341, WM164, WM98D, SBCE2, YUROB, YUKSI and 

YULAC and hamster (Bomirski AbC1 and Ab) melanomas [53, 54, 59, 62, 65–67, 125–

131]. Among the compounds with a complete side chain the most extensively studied are 

20(OH)D2, 20(OH)D3, 20,23(OH)2D3 and 1,20(OH)2D3. They show inhibition of cell 
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proliferation in monolayer, inhibition of plating efficiency (colony formation in monolayer) 

and inhibition of anchorage-independent cell growth (ability to grow in soft agar) with 

potencies similar to that of 1,25(OH)2D3 (Table 3). Inhibition of cell proliferation by 

20(OH)D was related to arrest in the G1/G0 phase of the cell cycle and a decrease in S and 

G2/M phases, with no effect on subG1 (an indicator of apoptosis) [59]. Daily intraperitoneal 

injections of 20(OH)D3, 20,23(OH)2D3 and 20(OH)D2 into rodents have shown that these 

secosteroids are non-calcemic at the highest doses tested, 60, 3 and 4 µg/kg, respectively 

[59, 132–134]. The CYP27B1-catalysed hydroxylation product, 1,20(OH)2D3, also shows 

reduced calcemic activity in comparison to 1,25(OH)2D3 [134].

It is important here to discuss the dietary supply of vitamin D to laboratory animals through 

commercially available chow. Vitamin D3 from the diet is easily converted to the active 

forms in the liver, kidney and other tissues, including malignant ones, equipped with 

enzymatic machinery [135]. Although the affinity of 25(OH)D3 for the VDR is 

approximately 500-fold less than that of 1,25(OH)2D3, its presence at high concentrations 

may affect the outcome of in vivo experiments, either directly or by increased conversion 

to1,25(OH)2D3 [136]. As shown in a preclinical study, a 5-fold rise in vitamin D3 levels in 

the mouse chow led to an increase of 50% and 145% in serum 25(OH)D serum levels and 

resulted in significant (50–60%) shrinkage of xenograft breast and prostate tumors [136]. 

Therefore, in order to properly establish the role of vitamin D in melanoma progression it is 

crucial to eliminate any external sources of vitamin D (diet and UVB exposure) to avoid 

compromising the interpretation of results. This should allow for better assessment of the 

true extent of tumor inhibition due to treatment with the secosteroids under study. According 

to the American Institute of Nutrition guidelines, the optimal content of vitamin D in rodent 

chow is 0.025 mg/kg (0.65 µmol or 1.0 IU/g) [137]. Nowadays the regular rodent chows 

contain 2.39 – 4.6 IU/g of vitamin D3, with the average daily chow intake of 5 g/mouse 

[138] (LabDiet, St. Louis, MO; Harlan Lab., Madison, WI). In mice, hypercalcemia, 

manifested as calcium depositions in vital organs, has been observed at a dose as low as 5.0 

mg/kg for vitamin D3 and 25(OH)D3, and 0.1 µg/kg for 1,25(OH)2D3 [135]. In our 

experiments employing 20(OH)D3 we used 30 µg/kg/day [128] (Table 3), with 60 µg/kg still 

being non-calcemic [133].

The lack of hypercalcemia at very high doses of 20(OH)D3 led us to test this compound 

more extensively. Specifically, 20(OH)D3 inhibited nuclear factor-kappa B (NF-κB) activity 

in human SKMEl-188 melanoma cells with concomitant reduction of melanoma 

proliferation [139]. It should be noted that in human melanomas, NF-κB is upregulated 

leading to a poor disease outcome [140, 141]. In addition, 20(OH)D3 caused inhibition of 

the migratory capabilities of the cells and cell-cell and cell-extracellular matrix interactions 

using transwell cell migration and spheroid toxicity assays [128]. Importantly, 20(OH)D3 at 

intraperitoneal daily doses of 30 µg/kg inhibited melanoma tumor growth in 

immunocompromised old female NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice kept on a 

vitamin D-deficient diet (TD.89123, Harlan Laboratories, Madison, WI) [128], without 

visible signs of toxicity. Interestingly, the total body score was higher in the 20(OH)D3 

treatment group as compared to the control group (2.8 vs. 2.55) [128]. The body score (BS) 

scale is a 5-point practical, rapid, noninvasive methods to assess the overall health condition 

of an animal [142]. A score of 3 indicates the optimal health state and any deviation from 
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this value (above or below) indicates worsening of body condition. Precursor vitamin D3 at 

the same dose had no effect on tumor growth (Skobowiat et al., unpublished) indicating the 

requirement for vitamin D activation in order for it to exert anti-melanoma activity.

20(OH)D3 is not only further hydroxylated by CYP11A1 producing other bioactive 

secosteroids [49, 143] but is also hydroxylated by CYP27A1, CYP24A1 and CYP3A4 to 

produce 20,24(OH)2D3, 20,25(OH)2D3 and 20,26(OH)2D3, as described above [53, 54, 56]. 

These are more potent and efficacious than their precursor 20(OH)D3 at inhibiting 

melanoma growth in soft agar [53, 54]. These secosteroids are excellent substrates for 

CYP27B1 [53, 126]. However, they and their 1α-hydroxyderivatives show similar 

antiproliferative potencies against keratinocytes [114]. Also, hydroxylation at C1α had 

rather minimal effect on their anti-melanoma activity [53, 54].

With respect to the mechanism of action of CYP11A1-derived vitamin D compounds with a 

full-length side chain, they inhibit melanoma growth in a similar manner independent of the 

presence or absence of hydroxyl at C1α. The involvement of VDR in this process is 

indicated by amplification of growth inhibition by 20(OH)D2 in melanoma cells 

overexpressing VDR [59]. 20(OH)D3 and its hydroxyderivatives, with or without C1α(OH), 

cause translocation of the VDR from the cytoplasm to the nucleus in melanoma and other 

skin cells with high potency, comparable to that of 1,25(OH)2D3. This is consistent with 

their high docking scores predicted by molecular modeling, indicating high affinity for 

binding to the genomic site of the VDR, as reported previously [114, 143, 144]. However, 

their interaction with VDR-ligand binding domain using the LanthaScreen TR-FRET 

Vitamin D receptor Coactivator kit required the presence of the C1α(OH). Thus, for the 

synthetic VDRE used in this coactivator binding assay, the absence of the C1α(OH) 

presumably prevents the full conformational change necessary to promote binding of the 

coactivator. This indicates that the appropriate VDRE and complete receptor complex in the 

cellular environment are necessary for proper interaction of the VDR with ligands having 

hydroxyl groups solely on the side chain and not at C1α [114]. Therefore, we suggest that 

CYP11A1-derived D3 hydroxyderivatives with hydroxyl groups placed only on the side 

chain can act as biased agonists (the term “biased” was defined by Kenakin [145, 146] for 

selective activity on specific receptors), or as partial agonists (as we proposed previously 

[143]) on VDR in melanoma cells, selectively causing some but not all of the phenotypic 

effects of 1,25(OH)2D3 [114, 143]. Examples of the latter are the relatively poor activation 

of CYP24A1 expression and the lack of calcemia by 20(OH)D3. An example of the former 

(similar potency and efficacy to 1,25(OH)2D3) is the inhibition of melanoma cell colony 

formation by 20(OH)D3 [54, 128, 130]. We are in the process of further addressing these 

exciting observations through microarray and genomic technology, as well as 

crystallographic studies aimed at obtaining the structure of 20(OH)D3 bound to the VDR 

ligand binding domain (see also section 3.3).

As described earlier, there are alternative nuclear receptors for CYP11A1-derived 

secosteroids, the RORs [113, 114]. In the above context, the use of melanoma cell lines with 

silenced or overexpressed VDR or RORs should provide an indication of which particular 

receptor is involved in the regulation of selective phenotypic traits of melanoma by the 

CYP11A1-derived secosteroids.
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Another downstream mechanism of inhibition of skin cell proliferation, including 

melanoma, by 20(OH)D3 and 20,23(OH)2D3 is down-regulation of NF-κB activity [139, 

147, 148] (Fig. 4). The mechanism of action of these secosteroids on NF-κB is very similar 

to that mediated by 1,25(OH)2D3, i.e., stimulation of the expression of IkappaBalpha 

(IκBα) with subsequent sequestration of NF-κB in the cytoplasm and consequent 

attenuation of transcriptional and phenotypic activities [139, 147, 148] (Fig. 4). Although 

recent data suggest that the VDR is involved in the upstream regulation of NF-κB signaling 

[149, 150], the involvement of RORs cannot be entirely ruled out, since 1,25(OH)2D3 may 

also act as an inverse agonist on RORα and RORγ [114], with the latter being placed 

upstream of pro-inflammatory responses [151, 152]. Of note, it has been proposed that 

upregulation of NF-κB can be secondary to a deregulation in upstream pathways including 

Ras/Raf, PI3K/Akt, and NIK that play a role in melanoma genesis [140, 141]. NF-κB, being 

involved in the regulation of apoptosis, angiogenesis, tumor cell invasion and tumor 

progression, is a druggable target for melanoma therapy [139–141, 153, 154].

Analogs of pregna- or androsta-calciferols (secosteroidal or lumisterol compounds with a 

short or no side chain) also show therapeutically desirable anti-melanoma activities 

comparable to 1,25(OH)2D3 [62, 65–67, 125, 129] (Table 3). Interestingly, their 

antiproliferative activities, at least under certain experimental conditions (in vitro melanoma 

models) did not require translocation of VDR to the nucleus [129], consistent with previous 

molecular modeling predicting weak binding [144]. In addition, the pregnacalciferol 

compounds lack calcemic effects [155]. Thus, they may be considered as good candidates 

for treatment of VDR-negative melanomas, however the details of their mechanism of action 

require further investigation.

3. 3. Towards pre-clinical and clinical testing of novel forms of vitamin D3

Patient-derived orthotopic xenografts (PDOX) models of melanoma have been used to test 

their sensitivity to molecularly-targeted drugs, standard chemotherapeutics, as well as live 

therapeutics such as tumor-targeting bacteria [156–160]. For example, a BRAF-V600E-

mutant melanoma obtained from the right chest wall of a patient was grown orthotopically in 

the right chest wall of nude mice to establish a PDOX model. Trametinib (TRA), a MEK 

inhibitor, was the only agent of the 4 tested that caused tumor regression. In contrast, 

another MEK inhibitor, cobimetinib (COB), could slow but not arrest growth or cause 

regression of the melanoma. First-line therapy with temozolomide could slow, but not arrest 

tumor growth or cause regression. Since the patient had a BRAF-V600E-mutant melanoma, 

the patient would be considered as a strong candidate for vemurafenib (VEM) as first-line 

therapy, since VEM targets this mutation. However, VEM was not effective in the PDOX. 

The PDOX model thus helped identify the very-high efficacy of TRA against the melanoma 

PDOX and is a promising drug for this patient. These results demonstrate the powerful 

precision of the PDOX model for cancer therapy, not achievable by genomic analysis alone 

[156–160]. Therefore, these models are the most suitable for preclinical testing the efficacy 

of novel non-or low-calcemic vitamin D analogs discussed above in melanoma therapy and 

whether high doses of vitamin D, applied either orally or parenterally, can slow tumor 

progression or improve efficacy of the BRAF or MEK inhibitors.
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A major metabolic modification to the D3 structure in the noncanonical pathway is the 

hydroxylation at the C20 position to stereo-specifically form 20S(OH)D3. Both 20S(OH)D3 

and its non-natural stereo-isomer 20R(OH)D3 can be chemically synthesized, and they show 

comparable potency with 1,25(OH)2D3 in stimulating VDR gene expression [68, 131, 161]. 

Further hydroxylations to the 20(OH)D3 scaffold, performed chemically or enzymatically, 

produced a number of di-hydroxylated analogs such as 20S,23S(OH)2D3, 20S,

23R(OH)2D3, 20S,24S(OH)2D3, 20S,24R(OH)2D3, and their 1α(OH)-tri-hydroxylated 

derivatives [126, 127]. While all these derivatives demonstrate similar anti-melanoma and 

anti-inflammatory activities, the addition of the 1α(OH) was found to significantly enhance 

downstream VDR transcriptional activity of CYP24A1 and TRPV6, and VDR translocation 

to the nucleus, presumably because of the increased binding affinity/altered conformational 

change contributed by the 1α(OH) (discussed in section 3.2) [114, 126, 127]. Clarification 

of their interactions with the VDR will require obtaining crystal structures of ligand bound 

to the VDR-LBD, which for 20S(OH)D3 and 1,20S(OH)2D3 are being generated in our 

laboratories (Li et al., in preparation). In addition to hydroxylation to the parental 20(OH)D3 

scaffold, chemically synthesizing Gemini 20(OH)D3 analogs by adding a second identical 

side chain, or changing the composition of the side chain has also been explored [133, 162]. 

Interestingly, there were no clear correlations between the Gemini chain length or side chain 

composition and their VDR activation or anti-melanoma activities, suggesting high 

flexibility in the ligand-binding pocket of the VDR [133, 162]. The above compounds will 

be tested for their anti-melanoma activity in the PDOX models described above.

Most recently a pilot placebo-controlled randomized phase II trial has been started by the 

Australia and New Zealand Melanoma Trials Group (ANZMTG 02.09) to assess the 

feasibility, safety and toxicity of an oral loading dose of 500,000 IU of vitamin D, followed 

by an oral dose of 50,000 IU of vitamin D monthly for 2 years in patients who have been 

treated for cutaneous melanoma by wide excision of the primary tumor [163]. Patients with 

stage IIb, IIc, IIIa (N1a, N2a) or IIIb (N1a, N2a) disease were included for randomization 

2:1 to vitamin D treatment or placebo. The study will determine whether vitamin D is both 

safe and tolerable under these conditions and whether it will prolong time to recurrence 

within 5 years, or improve overall survival at 5 years [163]. Although limited in patient 

numbers (75), this is an important step in testing vitamin D as an adjuvant agent in 

melanoma therapy. Results of safety will be presented at World Melanoma Congress in 

Brisbane Australia, October 2017.

4. Perspective and conclusion

Based on the above, it is clear that vitamin D deficiency, defects in vitamin D activation, 

transport, activation of corresponding receptors and downstream signaling play a role in 

melanoma development and progression. Aside from avoidance of solar radiation, the 

preventive measures could include use of high doses of precursor vitamin D or its active 

forms that would fulfill the definition of endogenous or natural products. In addition to the 

oral route of delivery of vitamin D, the active forms could be applied topically to increase 

their efficacy in radioprotection and/or anti-cancerogenic effects. It must be noted that the 

vast majority of orally delivered vitamin D will be hydroxylated in position 25 in the liver 

making it unavailable for biotransformation by CYP11A1, because 25(OH)D is not acted on 
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by this enzyme [44, 48]. Therefore, in order for vitamin D to be metabolized by the non-

canonical pathway it would have to be of skin origin, or applied topically or parenterally to 

be metabolized in the skin or in steroidogenic tissues including adrenals, for systemic use 

[38, 44].

With respect to melanoma therapy or prevention of metastatic disease after removal of the 

primary tumor, high doses of vitamin D could be applied either orally or parenterally. 

Definitively, vitamin D could be included into any therapeutic regime as the adjuvant, since 

melanoma patients are under strict physician supervision that would identify any early signs 

of toxicity. This could be an economical measure to possibly amplify the therapeutic 

efficacy of the first line drugs [82]. As optimal melanoma therapy represents a challenge for 

the patients [73], testing of new naturally derived active forms of vitamin D, alone, or in 

combination using appropriate preclinical models may represent a dawn of a new 

inexpensive and less toxic therapy. Thus, while UVB is a full melanoma carcinogen, 

products of its activity could be used in prevention or treatment of this devastating disease.
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Highlights

- Active forms of vitamin D inhibit growth of melanomas in vitro and in vivo

- Defects in vitamin D receptors and activating enzymes affect 

melanomagenesis and melanoma progression

- Active forms of vitamin D warrant pre- and clinical testing against melanoma

- Vitamin D can be used as an adjuvant factor in melanoma therapy
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Figure 1. 
Ultraviolet B acts as a double edge sword inducing skin cancer and producing vitamin D3 of 

which bioactive hydroxy-derivatives have photoprotective and anti-cancerogenic effects. 

BCC: basal cell carcinoma; MM: malignant melanoma.
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Figure 2. 
UVB-induced transformation of 7DHC, its hydroxy-derivatives and 7DHP to their vitamin 

D-like and tachysterol-like secosteroids, as well as lumisterol-like configurations. Although 

the enzyme transforming 7DHC to 20(OH)7DHC must be identified there is a high 

probability that it is the same enzyme which transforms cholesterol to 20-hydroxycholesterol 

(CYP11A1 has very low activity for this). Not shown are the Δ7-products of 7DHP 

metabolism by steroidogenic enzymes, which are detectable in the steroidogenic tissues or 

serum under normal and pathological conditions [52, 62, 63, 164–166]. These Δ7-steroids 

can be transformed to their corresponding secosteroids after exposure to UVB [64–67, 69, 

125].
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Figure 3. 
Changes in VDR, CYP27B1 and CYP24A1 expression during the progression of 

melanocytic tumors. Upper panel presents the routine H&E sections of normal skin, 

junctional melanocytic nevus and melanomas at different stages of progression. VDR 

expression was detected using rat antibody (clone 9A7; Abcam, Cambridge, MA, USA; a 

dilution 1:75) and visualized with Red AP Substrate (Vector Laboratories, Burlingame, CA, 

USA) [104]. CYP27B1 expression was immunostained using rabbit antibody (clone H-90, 

Santa Cruz Biotechnology, Santa Cruz, CA, USA, a dilution of 1:75) and visualized with 

ImmPACT NovaRED substrate (Vector Laboratories, Burlingame, CA, USA) [111]. 
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CYP24A1 expression was detected with mouse antibody (Abcam, Cambridge, UK, dilution 

1:40) and visualized with ImmPACT NovaRED substrates (Vector Laboratories, 

Burlingame, CA, USA) [112]. Arrows indicate the changes of the expression in relation to 

normal skin, scale bars - 50 µm.
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Figure 4. NF-kB as a target for bioregulation by hydroxyvitamin D3 in melanoma
A. Basal expression of NF-kB in human melanoma lines and normal epidermal melanocytes 

and keratinocytes. Whole cell extracts were prepared from human melanoma lines or skin 

cells and were subjected to Western blotting as described previously [139, 148]. B-actin 

served as an internal control for equal amounts of proteins loaded onto the gel.

B, C. 20(OH)D3 decreases protein expression of NF-κB in keratinocytes in a dose-

dependent manner. HaCaT keratinocytes were plated in a 96-well plate and incubated for 24 

h with 1,25(OH)2D3, 20(OH)D3 or 25(OH)D3. Cells were fixed and stained with NF-κB 

antibody [148], followed by incubation with secondary IR antibody. The plate was scanned 
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using an Odyssey infrared scanner (B) and data were analyzed using software for in-cell 

western (LI COR) (C).

D. Expression of the gene for IκBα (NF-kB inhibitor) is increased in human melanoma 

upon treatment with 1,25(OH)2D3 or 20(OH)D3. SKMel-188 cells were treated with 

1,25(OH)2D3, 20(OH)D3 or ethanol (vehicle) for 1, 4 or 24 h. Cells were harvested for RNA 

isolation. cDNA was used for RT-PCR to test the expression of IκBα as described 

previously [139, 147, 148]. Reactions were performed using TaqMan. Cyclophillin B was 

used as internal control. Data were analyzed using the delta-delta CT method and presented 

as a fold change. Statistical analysis was performed using the t-test (*p<0.05; ***p<0.001) 

in comparison to vehicle.

E. 20(OH)D3 and 1,25(OH)2D3 inhibit growth of human melanoma cells. SKMel-188 cells 

were treated with 1,25(OH)2D3 or 20(OH)D3 at different concentrations (10−8–10−11 M) for 

48 h. After incubation, the MTT assay was performed and absorbance was recorded at 570 

nm. P<0.05*, p<0.01**, p<0.001***.
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Table 1

Overall survival (OS) and disease-fee survival (DFS) of melanoma patients in relation to VDR, CYP27B1 and 

CYP24A1 expression in primary melanomas.

Antigen DFS time (median) [days] OS time (median) [days]

Nuclear VDR P>0.05 P<0.05

  Absent 539 810

  Present 1607 2297

Cytoplasmic VDR P>0.05 P>0.05

  Absent 539 912

  Present 1607 1018

CYP27B1 P<0.001 P<0.01

  Absent 471 748

  Present 2520 1449

CYP24A1 P>0.05 P<0.05

  Absent 459 581

  Present 1607 1807

The data were extracted from [103, 104, 111, 112] P value - Log-rank (Mantel-Cox) Test
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Table 2

Expression of RORα and RORγ in primary melanomas can serve as a prognostic factor for the disease 

outcome.

Antigen DFS time (median) [days] OS time (median) [days]

Nuclear RORα P>0.05 P<0.01

  Absent 780 530

  Present 1607 1748

Cytoplasmic RORα P>0.05 P>0.05

  Absent 1076 972

  Present 1607 1499

Nuclear RORγ P<0.05 P<0.05

  Absent 539 912

  Present 1607 2297

Cytoplasmic RORγ P<0.01 P<0.01

  Absent 471 912

  Present 1607 2297

The data were extracted from [115]. P value - Log-rank (Mantel-Cox) Test

OS: overall survival, DFS: disease fee survival
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Table 3

Anti-melanoma activities of novel secosteroids

Compound in vitro inhibitory effects in vivo inhibitory effects

20(OH)D2

Colony formation in monolayer [59] ND

Proliferation [59, 129]

20(OH)D3

Anchorage-independent growth [53, 54, 128, 130]

Tumor volume and geometric mean of tumor 
dimensions (NSG mice on a vitamin D-deficient 

diet) [128]

Chemotactic capacity [128]

Colony formation in monolayer [128, 130]

Migratory capability, cell-ECM interactions and cell-cell interactions 
[128]

Proliferation [129, 130, 139, 167]

1,20(OH)2D3

Colony formation in monolayer [125, 130] ND

Proliferation [125, 130]

20,23(OH)2D3

Anchorage-independent growth [130] ND

Colony formation in monolayer [130]

Proliferation [125, 127, 130]

20,24(OH)2D3

Anchorage-independent growth [54] ND

Proliferation [126]

20,25(OH)2D3 Anchorage-independent growth [53, 54] ND

20,26(OH)2D3 Anchorage-independent growth [53, 54] ND

1,20,23(OH)3D3 Proliferation [127] ND

1,20,24(OH)3D3 Proliferation [126] ND

1,20,25(OH)3D3 Anchorage-independent growth [53] ND

1,20,26(OH)3D3 Anchorage-independent growth [53] ND

17,20,23(OH)3D3 Proliferation [125] ND

pD3

Anchorage-independent growth [62, 67, 129] ND

Proliferation [125, 129]

21(OH)pD
Anchorage-independent growth [66] ND

Proliferation [66, 129]

20(OH)pD
Anchorage-independent growth [65, 129] ND

Proliferation [65, 67, 125]

The in vitro effects of the compounds tested were measured in comparison to 1,25(OH)2D3. The in vivo effect of 1,25(OH)2D3 in the experimental 

model described in [128] was not tested due to its toxicity at the testing dose.

Abbreviations: NSG: NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice; ND: not determined
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