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Abstract

In previous work on point registration, the input point sets are often represented using Gaussian 

mixture models and the registration is then addressed through a probabilistic approach, which aims 

to exploit global relationships on the point sets. For non-rigid shapes, however, the local structures 

among neighboring points are also strong and stable and thus helpful in recovering the point 

correspondence. In this paper, we formulate point registration as the estimation of a mixture of 

densities, where local features, such as shape context, are used to assign the membership 

probabilities of the mixture model. This enables us to preserve both global and local structures 

during matching. The transformation between the two point sets is specified in a reproducing 

kernel Hilbert space and a sparse approximation is adopted to achieve a fast implementation. 

Extensive experiments on both synthesized and real data show the robustness of our approach 

under various types of distortions such as deformation, noise, outliers, rotation and occlusion. It 

greatly outperforms state-of-the-art methods, especially when the data is badly degraded.

Index Terms

Registration; shape matching; non-rigid; Gaussian mixture model; global/local

I. Introduction

Finding an optimal alignment between two sets of points is a fundamental problem in 

computer vision, image analysis and pattern recognition [1], [2], [3], [4]. Many tasks in 

these fields – such as stereo matching, image registration and shape recognition – can be 

formulated as a point set registration problem, which requires addressing two issues: find 

point-to-point correspondences and estimate the underlying spatial transformation which 

best aligns the two sets [5], [6], [7].
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The registration problem can be roughly categorized into rigid or non-rigid registration, 

depending on the application and the form of the data. With a small number of 

transformation parameters, rigid registration is relatively easy and has been widely studied 

[1], [2], [8], [9], [10]. By contrast, non-rigid registration is more difficult because the true 

underlying non-rigid transformations are often unknown and modeling them is a challenging 

task [3]. But non-rigid registration is very important because it is required for many real 

world tasks, including shape recognition, deformable motion tracking and medical image 

registration.

Existing non-rigid registration methods typically consider the alignment of two point sets as 

a probability density estimation problem and more specifically, they use Gaussian Mixture 

Models (GMMs) [11], [12]. This makes the reasonable assumption that points from one set 

are normally distributed around points belonging to the other set. Hence, the point-to-point 

assignment problem can be recast into that of estimating the parameters of a mixture 

distribution. In general, these probabilistic methods are able to exploit global relationships in 

the point sets, since the rough structure of a point set is typically preserved; otherwise, even 

people cannot find correspondences reliably under arbitrarily large deformations. However, 

even for non-rigid shapes, the local structures among neighboring points are strong and 

stable. For example, most neighboring points on a non-rigid shape (e.g., a human face) 

cannot move independently under deformation due to physical constraints [13], [14]. 

Furthermore, preserving local neighborhood structures is also very important for people to 

detect and recognize shapes efficiently and reliably [15]. As a major contribution of this 

paper, we propose a uniform framework, which exploits both the global and the local 

structures in the point sets.

More precisely, we formulate point registration as the estimation of a mixture of densities: A 

GMM is fitted to one point set, such that the centers of the Gaussian densities are 

constrained to coincide with the other point set. Meanwhile, we use local features such as 

shape context to assign the membership probabilities of the mixture model, so that both 

global and local structures can be preserved during the matching process. The non-rigid 

transformation is modeled in a functional space, called the reproducing kernel Hilbert space 

(RKHS) [16], in which the transformation function has an explicit kernel representation.

The rest of the paper is organized as follows. Section II describes background material and 

related work. In Section III, we present the proposed non-rigid registration algorithm which 

is able to preserve both global and local structures among the point sets. Section IV 

illustrates our algorithm on some synthetic registration tasks on both 2D and 3D datasets 

with comparisons to other approaches, and then tests it for feature matching on real images 

involving non-rigid deformations. Finally, we conclude this paper in Section V.

II. Related Work

The iterated closest point (ICP) algorithm [2] is one of the best known point registration 

approaches. It uses nearest-neighbor relationships to assign a binary correspondence and 

then uses the estimated correspondences to refine the transformation. Efficient versions of 

ICP use sampling processes, either deterministic or based on heuristics [8]. The nearest point 
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strategy of ICP can be replaced by soft assignments within a continuous optimization 

framework, e.g., the TPS-RPM [17], [3]. In the recent past, the point registration is typically 

solved by probabilistic methods [18], [19], [11], [12]. The Kernel Correlation Based Method 

[18] models each one of the two point sets as two probability distributions and measures the 

dissimilarity between the two distributions. It was later improved in [19], which represents 

the point sets using GMMs. In [11] and [12], the GMM is used to recast the point-to-point 

assignment problem into that of estimating the parameters of a mixture. This is done within 

the framework of maximum likelihood and the Expectation-Maximization (EM) algorithm 

[20]. In addition, point registration for articulated shapes has also been investigated using 

similar methods and shows promising results [21], [12], [22]. The methods mentioned above 

mainly focus on exploiting the global relationships in the point sets.

To preserve local neighborhood structures, Belongie et al. [23] introduced a registration 

method based on the shape context descriptor, which incorporates the neighborhood 

structure of the point set, and helps to establish better point correspondences. Using shape 

context as a lever, Zheng and Doermann [13] proposed a matching method, called the 

Robust Point Matching-preserving Local Neighborhood Structures (RPM-LNS) algorithm, 

which was later improved in [24]. Tu and Yuille [25] presented a shape matching method, 

based on a generative model and informative features. Wasserman et al. used local structure 

information to achieve point cloud registration for registering medical images [26], [27]. 

Recently, Ma et al. introduced Robust Point Matching methods based on local features and a 

robust L2E estimator (RPM-L2E) [28], [29] or Vector Field Consensus [30], [31], which can 

exploit both global and local structures. However, they find the correspondences and the 

transformation separately. In this paper, we propose a method which estimates these two 

variables jointly under the GMM formulation.

III. Method

We start by introducing a general methodology for non-rigid point set registration using 

Gaussian mixture models. We next present the layout of our model. We then explain the way 

we search for an optimal solution, followed by a description of our fast implementation. We 

also state the differences between our algorithm and several related state-of-the-art 

algorithms in detail. Finally, we provide the implementation details.

A. Point Registration and Gaussian Mixtures

We denote by X = (x1, ⋯, xN) ∈ IRD×N the coordinates of a set of model points and by Y = 

(y1, ⋯, yM) ∈ IRD×M the coordinates of a set of observed data points, where each point is 

represented as a D × 1 dimensional column vector. The model points undergo a non-rigid 

transformation  : IRD → IRD, and the goal is to estimate , which warps the model 

points to the observed data points, so that the two point sets become aligned. In this paper, 

we will formulate the point registration as the estimation of a mixture of densities, where a 

Gaussian mixture model (GMM) is fitted to the observed data points Y, such that the GMM 

centroids of the Gaussian densities are constrained to coincide with the transformed model 

points (X) [11], [19], [12].
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Let us introduce a set of latent variables  = {zm ∈ INN+1 : m ∈ INM}, where each variable 

zm assigns an observed data point ym to a GMM centroid  (xn), if zm = n, 1 ≤ n ≤ N, or to 

an additional outlier class, if zm = N + 1. The GMM probability density function then can be 

defined as

(1)

Typically, for point registration, we can use equal isotropic covariances σ2I for all GMM 

components and the outlier distribution is supposed to be uniform . Note that a more 

general assumption of anisotropic Gaussian noise in the data, which uses the full Gaussian 

model, has also been investigated in [12]. We denote by θ = { , σ2, γ} the set of unknown 

parameters, where γ ∈ [0, 1] is the percentage of outliers. Let πmn be the membership 

probability of the GMM, such that . The mixture model then takes the form

(2)

We want to recover the non-rigid transformation . The slow-and-smooth model [32], 

which has been shown to account for a range of motion phenomena, suggests that the prior 

of  has the form: , where ϕ( ) is a smoothness functional and λ is a 

positive real number (we will discuss the details of ϕ( ) later). Using Bayes rule, we 

estimate a MAP solution of θ, i.e., θ* = arg maxθ P(θ|Y) = arg maxθ P(Y|θ)P( ). This is 

equivalent to minimizing the negative log posterior

(3)

where we make the i.i.d. data assumption. The transformation  will be obtained from the 

optimal solution θ*.

B. Registration Using Global and Local Structures

The above method treats the point set as an instance of a GMM distribution, which aims to 

exploit the global structures in the point sets. For non-rigid point set registration, the local 

structures among neighboring points are also very strong and stable and can be used to 

improve the point correspondences. Next, we show how to use the local structures.

Consider the mixture model in Eq. (2), where we need to assign the membership probability 

πmn that the observed data point ym belongs to the GMM centroid  (xn). It is a prior and is 

typically assumed to be equal for all GMM components [11], [12], i.e., , ∀m ∈ 
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INM, n ∈ INN. In this paper, we initialize πmn by incorporating the local neighborhood 

structure information. More specifically, we compute a local feature descriptor for each 

point [23], [33], and then initialize πmn based on the matching of the feature descriptors of 

the two sets.

We use shape context [23] as the feature descriptor in the 2D case, using the Hungarian 

method for matching, with the χ2 test statistic as the cost measure. In the 3D case, the Fast 

Point Feature Histograms (FPFH) [34] can be used as a feature descriptor and the matching 

is performed by a Sample Consensus Initial Alignment method. After we obtain the 

correspondences between the two point sets by matching their feature descriptors, we use 

them to initialize πmn according to the following two rules:

i. For a data point ym, we denote by ℐ the set of model points, which it 

corresponds to1. We let

(4)

where parameter τ, 0 ≤ τ ≤ 1, could be considered as the confidence of a feature 

correspondence, and | · | denotes the cardinality of a set.

ii. If a data point ym does not have a corresponding model point, we use equal 

membership probabilities for all GMM components, i.e. , ∀n ∈ INN.

Note that in our formulation the membership probability πmn is not assigned as a prior, since 

it depends on the data.

C. The EM Algorithm

There are several ways to estimate the parameters of the mixture model, such as the EM 

algorithm, gradient descent and variational inference. The EM algorithm [20] is a technique 

for learning and inference in the context of latent variables. It alternates between two steps: 

an expectation step (E-step) and a maximization step (M-step).

We follow standard notation [35] and omit some terms that are independent of θ. 

Considering the negative log posterior function, i.e., Eq. (3), the complete-data log posterior 

(also referred to as the posterior expectation of the complete-data log likelihood) is then 

given by

1Typically, ℐ contains only one point, but multiple correspondences could exist in some cases, for instance, if the matching strategy is 
not bipartite matching.
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(5)

where .

E-step—We use the current parameter values θold to find the posterior distribution of the 

latent variables. To this end, we first renew the membership probability πmn based on the 

feature correspondence between the data points Y and the transformed model points (X), 

as described in Section III-B. We denote by P the posterior probability matrix of size M × N, 

where the (m, n)-th element pmn = P(zm = n|ym, θold) can be computed by applying Bayes 

rule:

(6)

Note that the local structure is used throughout the EM process. The posterior probability 

pmn is a soft assignment, which indicates to what degree the observed data point ym 

coincides with the model point xn under the current estimated transformation .

M-step—We compute the revised parameters as2: θnew = arg maxθ (θ, θold). Taking 

derivatives of (θ) with respect to γ and σ2, and setting them to zero, we obtain

(7)

(8)

The estimate of the variance σ2 with a large initial value is conceptually similar to 

deterministic annealing [3], which uses the solution of an easy (e.g., smoothed) problem to 

recursively provide the initial conditions to increasingly harder problems, but differs in 

several aspects (e.g., by not requiring any annealing schedule).

2Note that the parameters contained in θ cannot be updated simultaneously because of their dependencies on σ2 and , as can be 
seen from Eqs. (8) and (11). However, here we use the symbol θ instead of { , σ2, γ} for the sake of simplicity.
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Next we consider the terms of (θ) that are related to . We define the transformation as 

the initial position plus a displacement function v: (X) = X + v(X), and then obtain a 

regularized risk functional as:

(9)

This is a particular form of Tikhonov regularization [36], and the first term can be seen as a 

weighted empirical error. Thus the maximization of  with respect to  is equivalent to 

minimizing the regularized risk functional (9). To proceed, we model v by requiring it to lie 

within a vector-valued reproducing kernel Hilbert space (RKHS) ℋ defined by a diagonal 

Gaussian matrix kernel Γ : IRD × IRD → IRD×D [37], where 

. A brief introduction of the vector-valued RKHS is given in 

Appendix A. By using the square norm for the smoothness functional ϕ(v), i.e., 

, we then have the following representer theorem [38], and the proof is given in 

Appendix B.

Theorem 1—The optimal solution of the regularized risk functional (9) has the form

(10)

with the coefficient set {cn : n ∈ INN} determined by the following linear system:

(11)

where C = (c1, ⋯, cN) ∈ IRD×N is the coefficient set, Γ ∈ IRN×N is the so-called Gram 

matrix with the (i, j)-th element , 1 is a column vector of all ones, 

and d(·) is the diagonal matrix.

Algorithm 1

The PR-GLS algorithm

Input: Two point sets X and Y, parameters γ, β, λ

Output: Optimal transformation 

1 Construct the Gram matrix Γ;

2

Initialization: C = 0, ;

3 Compute feature descriptors for point set Y;
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4 repeat

5 E-step:

6   Compute feature descriptors for point set  (X);

7   Establish correspondence between  (X) and Y;

8   Initialize πmn based on the feature correspondence;

9   Update posterior probability P by Eq. (6);

10 M-step:

11     Update C by solving the linear system (11);

12     Update  (X) = X + CΓ;

13     Update γ and σ2 by Eqs. (7) and (8);

14 until  converges;

15 The transformation  is determined as  (X) = X + CΓ.

Note that the M-step is different from the standard EM algorithm, where the free parameters 

are the means and the covariances of the Gaussian mixture, and the estimation of these 

parameters is quite straightforward. Our problem requires multiple conditional maximization 

steps and thus the algorithm is referred as the Expectation Conditional Maximization 

(ECM), which was first introduced into the point registration problem by Horaud et al. [12]. 

Since our non-rigid Point set Registration algorithm exploits both Global and Local 

Structures, we call it PR-GLS and summarize it in Algorithm 1.

D. Fast Implementation

Solving for the transformation  requires solving the linear system (11). But for large 

values of N, this may pose a serious problem because this has O(N3) computational 

complexity. Even if this is tractable, we may prefer a suboptimal, but faster method. In this 

section, we provide a fast implementation based on an idea related to the Subset of 

Regressors method [39], [37].

Instead of searching for the optimal solution (10), we use a sparse approximation and 

randomly pick a subset containing K (K ≪ N) model points {x̃k : k ∈ INK}. Only points in 

this subset are allowed to have nonzero coefficients in the expansion of the solution, as in 

[39], [37]. Our experiments showed that simply selecting an arbitrary subset of the training 

inputs at random does not perform any worse than more sophisticated methods. Therefore, 

we seek a solution of the form:

(12)

with the coefficients C̃ = (c1, ⋯, cK) ∈ IRD×K determined by a linear system

(13)
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where Γ̃ is the Gram matrix Γ̃ ∈ IRK×K, where , and U ∈ IRN×K 

with the (i, j)-th element . By using this sparse approximation, the 

time and space complexities for solving the linear system (11) are reduced from O(N3) and 

O(N2) to O(K2N) and O(KN), respectively.

E. Related Non-Rigid Registration Methods

The most relevant non-rigid point sets registration algorithm to ours is coherent point drift 

(CPD) [11], as both algorithms use the GMM formulation and Gaussian radial basis 

functions to parameterize the transformations. However, our PR-GLS has three major 

advantages compared to CPD. Firstly, CPD ignores the local structure information in the 

point sets; it simply uses equal membership probabilities in the mixture model, while our 

PR-GLS tries to preserve local structures by encouraging the matching of points with similar 

neighborhood structures, e.g., shape features. Secondly, the outlier percentage γ is fixed and 

set manually in CPD. This may be problematic in many real-world problems, where the 

amount of outliers is not known in advance. By contrast, our PR-GLS treats γ as an 

unknown parameter and estimates it for each EM iteration. Thirdly, CPD can not handle 

large rotations, e.g., rotations with angles larger than 60°. We solve this problem by 

choosing rotation invariant features in our formulation.

The two other most relevant non-rigid point sets registration algorithms to ours are RPM-

LNS [13] and RPM-L2E [28]. More specifically, they also use local structure information. 

RPM-LNS formulates point matching as a graph matching problem. RPM-L2E establishes 

point correspondences by first constructing a large putative set of correspondence and then 

uses a robust L2E estimator to get rid of the outliers. Both of the two algorithms use shape 

context to initialize the correspondences. One major drawback of RPM-LNS and RPM-L2E 
is that they find the correspondence and the transformation separately, while our method 

estimates these two variables jointly using the GMM formulation. Moreover, RPM-LNS is 

not applicable to the 3D case.

In summary, our main contribution is that we propose an efficient framework for preserving 

both global and local structures during matching. Compared to other related methods, the 

efficient use of global and local information in our PR-GLS can lead to big improvements 

under various degenerations (see Fig. 3).

F. Implementation Details

The performance of point matching algorithms typically depends on the coordinate system 

in which the points are expressed. We use data normalization to control this. More 

specifically, we perform a linear scaling of the coordinates, so that the points in both of the 

two sets both have zero mean and unit variance.

To assign the membership probability πmn, we need to establish initial correspondences 

which is usually time consuming. Fortunately, the deformation of the model shape is 

gradually reduced during the EM iterations and as such, the correspondences between the 
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two shapes will not change too fast. Therefore, to speed-up our algorithm, we update πmn in 

every 10 iterations rather than in each iteration.

Parameter settings—There are three main parameters in our PR-GLS algorithm: γ, β 
and λ. Parameter γ reflects our assumption on the amount of outliers in the point sets. 

Parameters β and λ reflect the amount of the smoothness constraint, where β determines the 

width of the range of the interaction between samples and λ controls the trade-off between 

the closeness to the data and the smoothness of the solution. In general, we found that our 

method was robust to parameter changes. Parameter τ is used to initialize the membership 

probabilities, which we will discuss in the experiments. Moreover, the uniform distribution 

parameter a is set to be the volume of the bounding box of the data.

Analysis of convergence—The objective function (3) is not convex, so it is unlikely that 

any algorithm can find its global minimum. However, a stable local minimum is often 

enough for many practical applications. To this end, our strategy is to initialize the variance 

σ2 with a large initial value and then use the EM algorithm. If the value of σ2 is large 

enough, the objective function becomes convex in a large region which can filter out a lot of 

unstable shallow local minima. Hence we are likely to find a good minimum for large 

variance. As σ2 decreases, the objective function tends to change smoothly, which makes it 

likely that using the old minimum as the initial value could be helpful to converge to a new 

good minimum. Therefore, as the iterations continue, we have a good chance of reaching a 

stable local minimum. This is conceptually similar to deterministic annealing [3], which 

uses the solution of an easy problem to recursively give initial conditions to increasingly 

harder problems.

IV. Experimental Results

In order to evaluate the performance of our algorithm, we conducted three types of 

experiments: i) non-rigid point set registration for 2D shapes; ii) non-rigid point set 

registration for 3D shapes; iii) sparse feature correspondence on real images. The 

experiments were performed on a laptop with 2.5 GHz Intel® Core™2 Duo CPU, 8 GB 

memory and Matlab Code.

A. Results on 2D Non-Rigid Shape Matching

We tested our PR-GLS algorithm on the same synthesized data as in [3] and [13]. The data 

consists of two models with different shapes, where the first model consists of 96 points 

representing a fish and the second model consists of 108 points, representing a Chinese 
character. For each model, there are five sets of data designed to measure the robustness of 

registration algorithms with respect to different degrees of deformation, noise, outliers, 

rotation and occlusion. In the deformation test, the deformation is generated by using 

Gaussian radial basis functions with coefficients sampled from a Gaussian distribution with 

zero mean and a standard deviation ranging from 0.02 to 0.08. In the noise test, Gaussian 

noise is added with standard deviation ranging from 0 to 0.05. In the outlier test, random 

outliers are added with the outlier to original data ratio ranging from 0 to 2. In the rotation 

test, six rotation angles are used: 0, 30, 60, 90, 120, and 180. In the occlusion test, some 
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parts of the data are removed with the removed data to original data ratio ranging from 0 to 

0.5. In each test, one of the above distortions is applied to the model set to create an 

observed data set, and 100 samples are generated for each degradation level. We use shape 

contexts as the feature descriptor to establish the initial correspondences. It is easy to make 

the shape context feature descriptors translation and scale invariant and in some applications, 

rotation invariance is also required. We use the rotation invariant shape context as in [13].

Generally, the parameter τ in Eq. (4) reflects the accuracy of the initial correspondences, 

which to some extent depends on the degree of the distortion. In these experiments we 

determine τ adaptively, based on the data. To this end, we first define a registration error ε*, 

which is independent of the ground truth:

(14)

where  consists of the min(N, M) matches with the largest posterior matching 

probabilities, i.e., pmn. For each set of data, we randomly choose 5 of the 100 samples and 

compute their average registration error with τ = 0.1, 0.3, 0.5, 0.7 and 0.9. Afterwards, we 

set τ to be the value which achieves the smallest registration error ε*. Typically, τ ≈ 0.9 

works well for small distortions and 0.3 for large distortions. For the parameters γ, β and λ, 

we set them to 0.1, 2 and 3, respectively, throughout the experiments.

The registration progress on the fish shape is illustrated schematically in Fig. 1. The columns 

show the iterative progress, and each row provides a different type of distortion. The goal is 

to align the model point set (blue pluses) onto the observed data point set (red circles). From 

the results, we see that our RPM-GLS registration is robust and accurate, and it typically 

converges in about 30 iterations. More qualitative results of our method on the two shape 

models are presented in Fig. 2. We organize the results in every two rows: the upper row 

presents the data, while the lower row shows the registration result. For the fish model, the 

shape is relatively simple and discriminative and as such, both the global and the local 

structures are preserved well, even under large degradations. Our method in this case 

produces almost perfect alignments, as shown in the left of Fig. 2. For the Chinese character 
model, the points are spread out on the shape and the local structure is not preserved as well 

under large degradations. The matching performance then degrades gradually, but it remains 

acceptable, even for large degradations. Let us consider the rotation test in (a4, b3) of Fig. 2. 

It is interesting that our method can handle the fold-back contained in the data shape, which 

is a desirable property in real-world applications. Moreover, in some extreme cases, such as 

the deformation test in (a1, b3), as well as the outlier test in (a3, b1), it is hard to establish 

visual correspondences even by human beings, however, our method can still achieve 

accurate alignments. The average runtime of our method on 2D shape matching with about 

100 points is about 0.4 seconds.

To provide a quantitative comparison, we report the results of six state-of-the-art algorithms, 

such as shape context (SC) [23], TPS-RPM [3], RPM-LNS [13], GMMREG [19], CPD [11], 

Ma et al. Page 11

IEEE Trans Image Process. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and RPM-L2E [28] which were implemented using publicly available codes. The registration 

error of a pair of shapes is quantified as the average Euclidean distance between a point in 

the warped model shape and the ground truth corresponding point in the observed data shape 

(note that it is different from ε* defined in Eq. (14)). Then the registration performance of 

each algorithm is compared by the mean and standard deviation of the registration error of 

all the 100 samples for each distortion level. The statistical results, error means, and 

standard deviations for each setting are summarized in Fig. 3.

In the deformation test results, seven algorithms achieve similar performance in both the fish 
and the Chinese character datasets at low deformation levels. But our PR-GLS outperforms 

them, especially for large degrees of deformation. In the noise test results, we observe that 

all algorithms are affected by this type of distortion. Still, our PR-GLS achieves the best 

registration performance. In the outlier test results, GMMREG is not robust to outliers. 

RPM-L2E is easily confused and starts to fail once the outlier level becomes relatively high. 

This is due to that it solves the correspondence and the transformation problems separately. 

When the outlier level becomes too high, it cannot establish good correspondences in the 

first step and hence, the final solution will be badly degraded. In contrast, our PR-GLS 

shows much more robustness, regardless of the outlier level. Note that the original CPD is 

not robust to changes in the outlier ratios, as it involves a fixed outlier ratio parameter, i.e., 

parameter γ in Eq. (2). To make a fair comparison, we set it adaptively similar to the setting 

of parameter τ in our PR-GLS. In the rotation test, TPS-RPM, GMMREG and CPD 

degenerate rapidly when the rotation angle is larger than 60°, while RPM-L2E and our PR-

GLS are not affected, because they are using the rotation invariant shape context. In the 

occlusion test, the registration error of TPS-RPM is the largest, and our PR-GLS again has 

the best results in most cases once again. We have also tested the fast version of PR-GLS on 

this dataset and achieved similar performance, as shown in the last column of each test in 

Fig. 3.

In our PR-GLS, we assign the membership probability πmn based on shape context feature, 

so that the local structure information can be used to achieve better performance. To 

demonstrate the benefits for doing this, we perform experiments on the fish and Chinese 

character datasets with different degrees of deformations. The results are given in Tables I 

and II, where CPD assumes equal GMM components (πmn = 1/N), PR-GLS assigns πmn 

based on local shape features, and GT assigns πmn by using the ground truth 

correspondences. Clearly, a good initialization of πmn can improve registration performance, 

especially when the data is badly degraded.

In conclusion, our PR-GLS is effective for various non-rigid point set registration problems, 

regardless of large deformation, noise, outliers, rotation or occlusion.

B. Results on 3D Non-Rigid Shape Matching

We next test our PR-GLS algorithm for 3D shape matching. We adopt the FPFH [34] to 

determine the initial correspondence. For the dataset, we use two pairs of point sets, 

representing a wolf in different poses from a surface correspondence benchmark3 [40], as 

3Available at http://www.cs.princeton.edu/~vk/projects/CorrsBlended/doc_data.php.
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shown in the left two columns of Fig. 4. The ground truth correspondences are supplied by 

the dataset. Some other challenging benchmark datasets with known ground truth 

correspondences have also been developed [41], [42]. To assign the membership probability 

πmn, parameter τ can be determined adaptively according to Eq. (14); here, we fix it to 0.9 

for efficiency. Moreover, 3D datasets typically contain thousands of points (e.g., about 5, 

000 in the wolf shape), which may pose a serious problem due to heavy computational or 

memory requirements; here, we use the fast version of our method with K = 50 in Eq. (12).

Fig. 4 presents the registration results of PR-GLS. In the left two columns, the data contains 

large rotations and slight pose changes, and our method gives almost perfect alignments. In 

the middle two and right two columns, we also test our method on occlusion and outliers. In 

each group, the first set contains a degradation on only one set of points, while the second 

set contains degradations on both the two point sets. The last column demonstrates a 

challenging example, where we biased the outliers to the different sides of point sets, and the 

outliers were generated randomly from a normal distribution rather than a uniform 

distribution. The results demonstrate that our method is quite robust and is not affected by 

all these degradations. The average runtime of our method with the fast implementation on 

3D shape matching with about 5, 000 points is about 1 minute. Note that in this experiment 

the FPFH is quite efficient and requires only 1.5 seconds approximately to establish the 

initial correspondences.

A quantitative comparison of our method with CPD and RPM-L2E is reported in Table III. 

In addition, we also compare with a recent method using local structure information based 

on Tensor Fields (TF) [27]. In the case of CPD, we rotate the data, so that the two point sets 

have roughly similar orientations, since CPD is not robust to large rotations. As shown in 

Table III, our PR-GLS consistently outperforms the other three algorithms in every case. In 

conclusion, PR-GLS is effective for non-rigid registration, in both the 2D and the 3D cases.

C. Results on Image Feature Correspondence

In this section, we test our PR-GLS on real image data, focusing on establishing visual 

correspondences between two images. Here the images contain some deformable objects 

and consequently, the underlying relationships between the images are non-rigid. We use 

SIFT [33] for feature detection and description. The goal is to find correspondences/matches 

between two sets of sparse feature points {xn : n ∈ INN} and {ym : m ∈ INM}, with 

corresponding feature descriptors. To assign the membership probability πmn, we determine 

the initial correspondences by searching the nearest neighbors and fix parameter τ to 0.9. 

Note that since the feature descriptor here is computed based on an image patch rather than 

the neighboring points, the value of πmn does not need to be recalculated in every iteration.

Fig. 5 contains a T-shirt with different amount of spatial warps, where we aim to establish 

SIFT matches in each image pair. We consider (xn, ym) to be a correspondence/match if its 

posterior probability pmn is larger than 0.5. Performance is characterized by the number of 

correct matches and the matching score (i.e., the ratio between the number of correct 

matches and the number of total matches). Since the image relations are non-rigid and not 

known in advance, it is impossible to establish accurate ground truth. We evaluate the 
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matching results by manually checking. Though the judgment of correct match or false 

match seems arbitrary, we make the benchmark to ensure objectivity.

In feature correspondence, the image typically contains hundreds or thousands of feature 

points, thus, for efficiency, we use the fast version of our method with K = 15 in Eq. (12). 

The results of our method are presented in Fig. 5. In the left columns, where the 

deformations are relatively small, our method obtains a lot of correspondences, whereas in 

the right columns, the deformations are large and the number of correct matches decreases. 

Still, even in these cases, the matching scores remain quite high, e.g., around 95% or higher. 

For comparison, we also report three other matching methods as shown in Fig. 6. The SIFT 

method can be considered as a baseline. To eliminate as many outliers as possible, while 

preserving the inliers, SIFT compares the distance ratio between the nearest and the second 

nearest neighbors against a predefined threshold to decide whether they are considered a 

match or not. From these results, we see that the matching score of SIFT is not good, 

especially in the case of large deformations. This suggests that using local image features 

alone is insufficient. CPD is not efficient for such problems, since it ignores the local image 

features’ information. However, RPM-L2E and PR-GLS consider both global structures and 

local features and hence, they are able to find more correct matches and achieve high 

matching scores. The average runtime of our method with the fast implementation on the six 

image pairs is about 0.5 seconds per pair.

V. Conclusion

In this paper, we presented a new approach for non-rigid registration. A key characteristic of 

our approach is the preservation of both global and local structures during matching. We also 

provide an efficient implementation of our method for handling large datasets, which 

significantly reduces the computational complexity without reducing the quality of the 

matching significantly. Experiments on public datasets for 2D and 3D non-rigid point 

registration and on real images for sparse image feature correspondence demonstrate that our 

approach yields superior results to those of the state-of-the-art methods, when there are 

significant deformations, noise, outliers, rotations and/or occlusions in the data.
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Appendix A

Vector-Valued Reproducing Kernel Hilbert Space

We review the basic theory of vector-valued reproducing kernel Hilbert space, and for 

further details and references we refer to [38], [43].

Let  be a set, for example,  ⊆ IRP,  a real Hilbert space with inner product (norm) 〈·, ·〉, 
(‖ · ‖), for example,  ⊆ IRD, and ℋ a Hilbert space with inner product (norm) 〈·, ·〉ℋ, (‖ · 
‖ℋ), where P = D = 2 or 3 for point matching problem. Note that a norm can be induced by 
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an inner product, for example, . And a Hilbert space is a real or 

complex inner product space that is also a complete metric space with respect to the distance 

function induced by the inner product. Thus a vector-valued RKHS can be defined as 

follows.

Definition 1

A Hilbert space ℋ is an RKHS if the evaluation maps eυx : ℋ →  (i.e., eυx(f) = f (x)) are 

bounded, i.e., if ∀x ∈  there exists a positive constant Cx such that

(15)

A reproducing kernel Γ:  ×  → ℬ( ) is then defined as: , where 

ℬ( ) is the Banach space of bounded linear operators (i.e., Γ(x, x′), ∀x, x′ ∈ ) on , for 

example, ℬ( ) ⊆ IRD×D, and  is the adjoint of eυx. We have the following two properties 

about the RKHS and kernel.

Remark 1

The kernel Γ reproduces the value of a function f ∈ ℋ at a point x ∈ . Indeed, ∀x ∈ 

and y ∈ , we have , so that 〈f(x), y〉 = 〈f, Γ(·, x)y〉ℋ.

Remark 2

An RKHS defines a corresponding reproducing kernel. Conversely, a reproducing kernel 

defines a unique RKHS.

More specifically, for any , and a reproducing kernel Γ, a unique 

RKHS can be defined by considering the completion of the space

(16)

with respect to the norm induced by the inner product

(17)

where  and .
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Appendix B

Proof of Theorem 1

For any given reproducing kernel Γ, we can define a unique RKHS ℋN as in Eq. (16) in 

Appendix A. Let  be a subspace of ℋ,

(18)

From the reproducing property, i.e. Remark 1, 

(19)

Thus  is the orthogonal complement of ℋN; then every v ∈ ℋ can be uniquely 

decomposed into components along and perpendicular to , where vN ∈ ℋN 

and . Since by orthogonality  and by the 

reproducing property v(xn) = vN(xn), the regularized risk functional then satisfies

(20)

Therefore, the optimal solution of the regularized risk functional (9) comes from the space 

ℋN, and hence has the form (10). To solve the coefficients, we consider the definition of the 

smoothness functional ϕ(v) and the inner product (17)

(21)

where C = (c1, ⋯, cN) ∈ IRD×N is the coefficient set. The regularized risk functional then 

can be conveniently expressed in the following matrix form:

(22)
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where Γ ∈ IRN×N is the so-called Gram matrix with the (i, j)-th element 

, Pm is the m-th row of P, ‖·‖F 

denotes the Frobenius norm, and d(·) is the diagonal matrix. Taking the derivative of the last 

equation with respect to C and setting it to zero, we obtain the linear system in Eq. (11). 

Thus the coefficient set {cn : n ∈ INN} of the optimal solution v is determined by the linear 

system (11).
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Fig. 1. 
Schematic illustration of our method for non-rigid point set registration. The goal is to align 

the model point set (blue pluses) onto the observed data point set (red circles). The columns 

show the iterative alignment progress. From top to bottom: results on data degraded by 

deformation, noise, outliers, rotation and occlusion, respectively. Our RPM-GLS registration 

is robust and accurate in all experiments.
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Fig. 2. 
Point set registration results of our method on the fish (left) and Chinese character (right) 

shapes [3], [13], with deformation, noise, outliers, rotation and occlusion presented in every 

two rows. The goal is to align the model point set (blue pluses) onto the observed data point 

set (red circles). For each group, the upper figure is the model and data point sets, and the 

lower figure is the registration result. From left to right, increasing degree of degradation.
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Fig. 3. 
Comparison of PR-GLS and its fast version (PR-GLS-F) with SC [23], TPS-RPM [3], RPM-

LNS [13], GMMREG [19], CPD [11] and RPM-L2E [28] on the fish (top) and Chinese 
character (bottom) [3], [13]. The error bars indicate the registration error means and standard 

deviations over 100 trials. Note that the variance bar can reach the negative y-axis, where 

large variance indicates that a method sometimes works well and sometimes totally fails.
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Fig. 4. 
Point set registration results of our method on the 3D wolf shape [40], with deformation, 

occlusion and outliers presented in every two columns. The goal is to align the model point 

set (blue dots) onto the observed data point set (red circles). For each group of experiments, 

the upper figure is the model and data point sets, and the lower figure is the registration 

result.
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Fig. 5. 
Results of image feature correspondence on image pairs of deformable objects. From left to 

right, increasing degree of deformation. The lines indicate matching results (blue = correct 

matches, red = false matches).
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Fig. 6. 
Comparison of SIFT [33], CPD [11], RPM-L2E [28] and PR-GLS for feature 

correspondence. Left: number of correct matches; right: matching score. The horizontal axis 

corresponds to the six image pair in Fig. 5 (from left to right, top to bottom).
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