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Abstract

In this paper, we propose an efficient algorithm, called vector field consensus, for establishing 

robust point correspondences between two sets of points. Our algorithm starts by creating a set of 

putative correspondences which can contain a very large number of false correspondences, or 

outliers, in addition to a limited number of true correspondences (inliers). Next, we solve for 

correspondence by interpolating a vector field between the two point sets, which involves 

estimating a consensus of inlier points whose matching follows a nonparametric geometrical 

constraint. We formulate this a maximum a posteriori (MAP) estimation of a Bayesian model with 

hidden/latent variables indicating whether matches in the putative set are outliers or inliers. We 

impose nonparametric geometrical constraints on the correspondence, as a prior distribution, using 

Tikhonov regularizers in a reproducing kernel Hilbert space. MAP estimation is performed by the 

EM algorithm which by also estimating the variance of the prior model (initialized to a large 

value) is able to obtain good estimates very quickly (e.g., avoiding many of the local minima 

inherent in this formulation). We illustrate this method on data sets in 2D and 3D and demonstrate 

that it is robust to a very large number of outliers (even up to 90%). We also show that in the 

special case where there is an underlying parametric geometrical model (e.g., the epipolar line 

constraint) that we obtain better results than standard alternatives like RANSAC if a large number 

of outliers are present. This suggests a two-stage strategy, where we use our nonparametric model 

to reduce the size of the putative set and then apply a parametric variant of our approach to 

estimate the geometric parameters. Our algorithm is computationally efficient and we provide 

code for others to use it. In addition, our approach is general and can be applied to other problems, 

such as learning with a badly corrupted training data set.
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Index Terms
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I. Introduction

Establishing reliable correspondence between two images is a fundamental problem in 

computer vision and it is a critical prerequisite in a wide range of applications including 

structure-from-motion, 3D reconstruction, tracking, image retrieval, registration, and object 

recognition [22], [28], [34], [42], [47], [64]. In this paper, we formulate it as a matching 

problem between two sets of discrete points where each point is an image feature, extracted 

by a feature detector, and has a local image descriptor (e.g., SIFT [31] or shape context [4]). 

The matching problem is ill-posed and is typically regularized by imposing two types of 

constraints: (i) a descriptor similarity constraint, which requires that points can only match 

points with similar descriptors, and (ii) geometric constraint, which requires that the matches 

satisfy an underlying geometrical requirement, which can be either parametric (e.g., rigid 

transformations) or non-parametric (e.g., non-rigid). Even after regularization there remain 

an exponential number of possible matches between the two sets and efficient algorithms are 

required to obtain the best solution by removing the false matches. The difficulty of the 

matching problem is typically made harder by the presence of unmatched points in the two 

images (due to occlusion or failures of the feature detectors).

A popular strategy for solving the matching problem is to use a two stage process. In the 

first stage, a set of putative correspondences are computed by using a similarity constraint to 

reduce the set of possible matches. This putative correspondence set typically includes most 

of the true matches, the inliers, but also a large number of false matches, or outliers, due to 

ambiguities in the similarity constraints (particularly if the images contain repetitive 

patterns). The second stage is designed to remove the outliers and estimate the inliers and 

the geometric parameters [18], [26], [35], [49]. This strategy is commonly used for 

situations where the geometrical constraints are parametric, such as requiring that 

corresponding points lie on epipolar lines [22]. Examples of this strategy include the 

RANSAC algorithm [18] and analogous robust hypothesize-and-verify methods [13], [42], 

[49]. Although these methods are very successful in many situations they have had limited 

success if the geometrical constraints are non-parametric, for example if the real 

correspondence is non-rigid, and they also tend to degrade badly if the proportion of outliers 

in the putative correspondence set becomes large [26].

In this paper we address these limitations by formulating the point matching problem as 

robust vector field interpolation using a non-parametric geometrical constraint. As discussed 

in the background section, vector flow interpolation arises frequently in computer vision and 

machine learning. Regularization theory [57] provides a framework for estimating vector 

fields when the problems are ill-posed. Yuille and Grzywacz [64], [65] formulated the 

discrete motion matching task in terms of finding those matches which give rise to the best 

interpolated vector field and subsequent work by Rangarajan and colleagues [12], [21] 

applied this to shape matching. Poggio and his collaborators [41] formulated learning in 

Ma et al. Page 2

IEEE Trans Image Process. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



terms of interpolating a vector field from a discrete set of training samples (see also [37]), 

and other related machine learning work includes Gaussian processes [1], [8], [43].

Vector field interpolation assigns each position x ∈ IRP (e.g., in one image) to a vector y ∈ 
IRD defined by a vector-valued function f, hence specifying a mapping x ↦ f(x) between 

two images. The problem of vector field interpolation is to fit a vector field f which 

interpolates a given sparse sample set S = {(xn, yn) : n ∈ INN }, i.e., ∀n ∈ INN, yn = f(xn). In 

this paper, we define robust vector field interpolation to be the spacial case where the sparse 

sample set S contains a large number of outliers which must be removed. We formulate this 

by a mixture model by introducing explicit latent/hidden variables for all members of the 

sample set which identifies/rejects the outliers and imposing a prior on the geometry which 

imposes a non-parametric smoothness constraint on the vector fields [64]. This leads to a 

maximum a posteriori (MAP) estimation problem which risks having many local minima 

which an algorithm may get trapped in. To address this issue, we use the EM algorithm [17] 

to estimate the variance of the prior, while simultaneously estimating the outliers, and give 

the variance a large initial value. This is conceptually similar to deterministic annealing [63], 

which uses the solution of an easy (e.g., smoothed) problem to recursively give initial 

conditions to increasingly harder problems, but differs in several respects (e.g., by not 

requiring any annealing schedule). Our method is computationally attractive and able to deal 

with a significant amount (up to 90%) of outliers.

To illustrate the main ideas of this paper, we show a simple example in Fig. 1. Given two 

sets of interest points extracted from an image pair, we want to match them to establish their 

point-wise correspondence. We first compute a set of putative correspondences based on 

their SIFT features as shown in Fig. 1(a), where the blue and red lines denote inliers and 

outliers respectively (we only show a subset of 50 members of the putative set). The input x 
∈ ℛ2 denotes the location vectors, and the output y ∈ ℛ2 is the displacement vectors (or 

disparity) at that location; then the putative correspondences are displayed by motion field 

samples, as shown in Fig. 1(b). The inliers are shown in Fig. 1(c). If we use a recent 

interpolation method [37], which does not use an outlier process, we obtain the motion fields 

in Fig. 1(d) and (e) from the correspondences shown in Fig. 1(b) and (c) respectively. 

Clearly, the motion field in Fig. 1(d) is inaccurate because it is contaminated by the outliers 

in the putative set. Hence our task is to recover the motion field from the samples by 

removing the outliers – in other words to get Fig. 1(b)–(e). We note that our method can fail 

if the inliers of the putative set do not obey the smoothness assumption we impose [59], [64] 

(e.g., suppose the “true matches” are not indicated by the blue arrows and instead 

correspond to a subset of the red arrows). Interestingly, we demonstrate that we obtain very 

good results using our method even for cases where the underlying motion is rigid and 

parametric (e.g., cases addressed by RANSAC) and, in particular, we perform better than 

RANSAC if the putative set contains a large proportion of outliers.

Our contributions in this paper include the following. Firstly, we present an algorithm for 

determining point correspondences between a pair of 2D or 3D images. Unlike some 

standard methods, for example RANSAC, we do not assume an underlying parametric 

geometrical constraint (e.g., epipolar lines) but instead use a more flexible, non-rigid, non-

parametric constraint. This greatly increases the generality of our approach and makes it 
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robust to an extremely large amount of outliers – up to 90% of the putative set. Secondly, we 

also study a variant of our model which uses parametric constraints which we show is also 

more robust than RANSAC when the proportion of outliers is not so large (e.g., less than 

50%). This parametric variant can be used in a two-stage process where we first use our non-

parametric method to estimate an reduced putative set, by first removing many/most of the 

outliers in the putative set and then run our parameter method on this reduced set to directly 

output the parameters (assuming we want to estimate them). Thirdly, our approach can be 

used for robust learning where the dataset of training examples is contaminated by outliers. 

We illustrate this by a simple toy example, because it gives some insight in our approach, but 

we do not explore this application in this paper. This article is an extension of our earlier 

work [67], and the primary new contributions are an expanded derivation as well as 

comprehensive evaluations with more discussions and analysis.

The rest of the paper is organized as follows. Section II describes background material and 

related work. Section III describes our vector field consensus algorithm for interpolation 

which is robust to a high proportion of outliers. In Section IV, we discuss how to apply our 

algorithm to the point matching problem with either non-parametric or parametric geometric 

constraints. Section V illustrates our algorithm on a synthetic learning task and then tests it 

for motion correspondence on several datasets with comparisons to other approaches, 

followed by some concluding remarks in Section VI.

II. Related Work

This section briefly reviews the background material that our work is based on. This 

includes methods for establishing a set of putative correspondences and geometric 

constraints. Next we discuss approaches for solving matching problems which solve for a 

correspondence matrix between point sets. Then we discuss vector field interpolation.

A. Establishing Point Correspondences Using Putative Sets and Geometric Constraints

A popular strategy [42] for establishing reliable point correspondences between image pairs 

involves two steps: (i) computing a set of putative correspondences, and (ii) then removing 

the outliers using geometrical constraints. In the first step, putative correspondences are 

obtained by pruning the set of all possible point correspondence by computing feature 

descriptors at the points and removing the matches between points whose descriptors are too 

dissimilar. The types of descriptors used include as SIFT [31] and shape contexts [4] in the 

2D case, and spin image [24], MeshDOG and MeshHOG [66] in the 3D case. In the second 

step, robust estimators typically based on parametric geometrical models (e.g., rigidity 

constraints) are used to detect and remove the outliers.

There has been considerable study of robust estimation in the statistics literature [23], [46]. 

This work shows, for example, that maximum likelihood estimator of parameters using 

quadratic L2 norms are not-robust and highly sensitive to outliers. By contrast, methods 

which minimize L1 norm are more robust and capable of resisting a larger proportion of 

outliers. A particularly robust method is the redescending M-estimator [23]. It can be shown 

that this estimator results from using an explicit variable to indicate whether data is an 

outlier or an inlier (this indicator variable must be estimated) [19]. The use of explicit 
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variable to indicate outliers has a long history in computer vision [7], [19], [20] and for 

signal processing methods like robust PCA [61]. We return to the use of explicit outlier 

variables in the next section.

The RANSAC algorithm matches two point sets by first computing a putative set and then 

using robust methods to impose parametric geometric constraints [18]. RANSAC uses a 

hypothesize-and-verify framework. It proceeds by repeatedly generating solutions estimated 

from a small set of correspondences randomly selected from the data, and then tests each 

solution for support from the complete set of putative correspondences. RANSAC has 

several variants such as MLESAC [49], LO-RANSAC [14] and PROSAC [13]. MLESAC 

adopts a new cost function using a weighted voting strategy based on M-estimation and 

chooses the solution that maximizes the likelihood rather than the inlier count. RANSAC is 

also enhanced in LO-RANSAC with a local optimization step based on how well the 

measurements satisfy the current best hypothesis. Alternatively, prior beliefs are assumed in 

PROSAC about the probability of a point being an inlier to modify the random sampling 

step of the RANSAC. A detailed comparative analysis of RANSAC techniques can be found 

in [42]. Recently, some new non-parametric model-based methods have also been 

developed, such as identifying point correspondences by correspondence function (ICF) 

[26]. It uses support vector regression to learn a correspondence function pair which maps 

points in one image to their corresponding points in another, and then rejects the outliers by 

checking whether they are consistent with the estimated correspondence functions.

Another strategy for point correspondences is to formulate this problem in terms of a 

correspondence matrix between points together with a parametric, or non-parametric, 

geometric constraint [5], [12], [21], [39]. These approaches relate closely to earlier work on 

mathematical models of human perception of long-range motion. This includes Ullman’s 

minimal mapping theory [53] and Yuille and Grzywacz’s motion coherence theory [65] 

which formulate correspondence in terms of vector field interpolation and use Gaussian 

kernels. We note that these types of models give accurate prediction for human perception of 

long range motion [32].

These methods typically involve a two step update process which alternates between the 

correspondence and the (rigid/non-rigid) transformation estimation. The iterated closest 

point (ICP) algorithm [5] is one of the best known point registration approaches. It exploits 

nearest-neighbor relationships to assign a binary correspondence, and then uses estimated 

correspondence to refine the transformation. Rangarajan and colleagues [12], [21] 

established a general framework for estimating correspondence and transformations for 

point matching, building on Yuille and Grzywacz’s work [65]. Specifically, for the non-rigid 

case, they modeled the transformation as a thin-plate spline and did robust point matching 

by an algorithm (TRS-RPM) which involves deterministic annealing and soft-assignment. 

Alternatively, the coherence point drift (CPD) algorithm [39] uses Gaussian radial basis 

functions instead of thin-plate splines (this corresponds to a different type of regularizer, see 

next section). In these formulations, both the rigid and non-rigid cases can be dealt with, but 

these methods usually cannot tolerate large numbers of outliers and searching over all 

possible matches is in general NP-hard. Some robustness can be achieved by paying a 

penalty for unmatched points.
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Point correspondence has also been formulated as a graph matching problem, such as the 

dual decomposition (DD) [50], Spectral Matching (SM) [25], and graph shift (GS) [29], 

[30]. The DD approach formulates the matching task as an energy minimization problem by 

defining a complex objective function of the appearance and the spatial arrangement of the 

features, and then minimizes this function based on the dual decomposition approach. The 

SM method uses an efficient spectral method for finding consistent correspondences 

between two sets of features. Based on the SM method, the GS method constructs an affinity 

graph for the correspondences, and the maximal clique of the graph is viewed as spatially 

coherent correspondences. Besides, Cho and Lee [11] introduced novel progressive 

framework which combines probabilistic progression of graphs with matching of graphs. 

The SIFT-flow algorithm [28] builds a dense correspondence map between two arbitrary 

images with a particular advantage for matching two scenes; it does not explicitly deal with 

the outliers and may not be able to produce the accuracy for the precise matching for 

problems like structure-from-motion. Note that this type of graph matching formulation can 

in some cases be mathematically equivalent to the methods with correspondence variables 

and geometric constraints [63], [65].

B. Vector Field Interpolation

A classical problem of vector field interpolation is to measure dense motion (velocity) fields. 

In this specific context, a number of methods have been developed based on regularization 

theory [16], [65]. Corpetti et al. [16] proposed an optical-flow technique specifically 

dedicated to estimating fluid flows from image sequences. Yuille and Grzywacz [65] 

introduced the motion coherence theory for computing a velocity field defined in an image. 

They used a quadratic regularizer to impose geometric constraints on the correspondences, 

and showed that this was equivalent to formulating the problem in terms of a space of 

kernels. These methods usually do not consider the interactions among the x and y 
components of the fields. But recently Micchelli and Pontil [37] developed a framework of 

regularization in the RKHS of vector-valued functions, which can directly encode 

relationships between the components of vector fields by choosing a suitable matrix-valued 

kernel. Based on their work, Baldassarre et al. [3] investigated a spectral regularization 

scheme to interpolate vector fields. See also Wu et al. [60] who developed different 

regularizers and kernels for different types of motion fields and investigated their relation to 

human perception of motion flow. In addition, Lin et al. [27] proposed a novel semi-

supervised multi-task learning formulation using vector fields. These methods however 

ignore the robustness issue, in which the presence of outliers in the dataset may greatly 

degrade the performance.

The technique of robust vector field interpolation has been adopted in Gaussian processes, 

basically by using the so-called t-processes [62], [68]. The t-processes are inherently robust 

to outliers and can be seen as a robust extension of Gaussian processes, in which the priors 

of the function values are sampled from a (heavy-tailed) multivariate t distribution. In this 

work, we introduce a novel robust vector field interpolation method; our approach tries to 

associate each sample with a latent variable indicating whether it is an inlier for purpose of 

robust estimation.

Ma et al. Page 6

IEEE Trans Image Process. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



III. The Vector Field Consensus Algoroithm

This section describes the vector field consensus algorithm (the next section discusses how 

to apply it to point matching). We start by briefly introducing the interpolation problem, and 

then lay out the formulation of our robust vector field interpolation and derive an EM 

solution by using a regularized kernel method. We subsequently discuss some potentially 

useful matrix-valued kernels for vector field interpolation, and followed by the fast 

implementation. Finally, we analyze the computational complexity of the proposed 

approach.

A. Interpolation by Regularization

Assume a set of observed input-output pairs S = {(xn, yn) ∈  × : n ∈ INN } that are 

samples randomly drawn from a vector field, where  ⊆ IRP and  ⊆ IRD are input and 

output space respectively. The goal is to fit a mapping f interpolating the sample set, i.e., ∀n 
∈ INN, yn = f(xn). This problem is in general ill-posed since it has an infinite number of 

solutions. To obtain a meaningful solution, it can one way be formulated into an 

optimization problem with a certain choice of regularization [3], [41], which typically 

operates in a vector-valued Reproducing Kernel Hilbert Space (RKHS) [2] (associated with 

a particular kernel), as described in detail in Appendix A. Specifically, the Tikhonov 

regularization [48] in an RKHS ℋ defined by a matrix-valued kernel Γ : IRP × IRP → 
IRD×D minimizes a regularized risk functional

(1)

where the first term is the empirical error (risk) which enforces closeness to the data, the 

second term is a stabilizer which enforces smoothness to the vector field f, λ is a 

regularization constant controlling the trade-off between these two terms, and ||·||ℋ denotes 

the norm of ℋ.

According to the representer theorem [37], the solution of the regularized risk functional (1) 

is given by

(2)

with the coefficient set {cn : n ∈ INN } determined by a linear system

(3)
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where the Gram matrix Γ̃ ∈ IRDN×DN is an N × N block matrix with the (i, j)-th block Γ(xi, 

xj), I is an identity matrix,  and  are column vectors.

B. Problem Formulation

The Tikhonov regularization treats all samples as inliers, which may be problematic if there 

are outliers. Hence we assume that the given sample set S may contain some amount of 

unknown outliers. Our purpose is to fit a vector field f :  →  interpolating the inliers, 

and consequently distinguish inliers from the outliers.

Due to the existence of outliers, it is desirable to have a robust estimation of f. To this end, 

we make the assumption that, for the inliers, the noise is Gaussian on each component with 

zero mean and uniform standard deviation σ; for the outliers, the output space is a bounded 

region of IRD, and the distribution is assumed to be uniform , where a is just a constant (the 

volume of this region). We then associate the n-th sample with a latent variable zn ∈ {0, 1}, 

where zn = 1 indicates a Gaussian distribution and zn = 0 points to a uniform distribution. 

Let X and Y be the set of observed input and output data, in which the n-th rows represent 

 and . Thus, the likelihood is a mixture model given by

(4)

where θ = {f, σ2, γ } includes a set of unknown parameters, γ is the mixing coefficient 

specifying the marginal distribution over the latent variable, i.e., ∀zn, p(zn = 1) = γ. Note 

that the uniform distribution function is nonzero only in a bounded region (here we omit the 

indicator function for clarity).

We want to recover the vector field f from the data S. Taking a probabilistic approach, we 

assume f to be a realization of a random field with a known prior probability distribution 

p(f). The prior is used to impose constraints on f, assigning significant probability only to 

those functions that satisfy those constraints. We consider the slow-and-smooth model [59], 

[64] which has been shown to account for a range of motion phenomena, the prior of f then 

has the form:

(5)

where ϕ(f) is a smoothness functional and λ a positive real number (we will discuss the 

details of f later).
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Note that flat priors are also implicitly assumed on σ2 and γ. Using Bayes rule, we estimate 

a MAP solution of θ, i.e., θ* = argmaxθ p(θ|X,Y) = argmaxθ p(Y|X, θ)p(f). This is 

equivalent to seeking the minimal energy

(6)

The vector field f will be directly obtained from the optimal solution θ*, and the latent 

variables {zn : n ∈ INN } determine the inliers. In the next section, we show how to solve the 

estimation problem using an EM approach.

C. The EM Algorithm

There are several ways to estimate the parameters of the mixture model, such as EM 

algorithm, gradient descent, and variational inference. The EM algorithm [17] is a general 

technique dealing with the existence of latent variables. It alternates with two steps: an 

expectation step (E-step) and a maximization step (M-step).

We follow standard notations [6] and omit some terms that are independent of θ. 

Considering the negative log posterior function, i.e. Eq. (6), the complete-data log posterior 

is

(7)

E-step—We use the current parameter values θold to find the posterior distribution of the 

latent variables. Denote P = diag(p1, … , pN ) a diagonal matrix, where pn = P(zn = 1|xn, yn, 
θold) can be computed by applying Bayes rule:

(8)

The posterior probability pn is a soft decision, which indicates to what degree the n-th 

sample agrees with the current estimated vector field f.
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M-step—We determine the revised parameter estimate θnew as follows: θnew = argmaxθ 

(θ, θold). Considering P is a diagonal matrix and taking derivative of (θ) with respect to σ2 

and γ, and setting them to zero, we obtain

(9)

(10)

where Ṽ = (f(x1)T, … , f(xN )T)T, P̃ = P ⊗ ID×D with ⊗ denoting the Kronecker product, 

and tr(·) is the trace.

Next we consider the terms of (θ) that are related to f. We obtain a regularized risk 

functional as [37]:

(11)

It is a special form of Tikhonov regularization, i.e. equation (1), and the first term could be 

seen as a weighted empirical error. Thus the maximization of  with respect to f is 

equivalent to minimizing the regularized risk functional (11).

We model f by requiring it to lie within an RKHS ℋ defined by a matrix-valued kernel Γ : 

IRP × IRP → IRD×D. For the smoothness functional ϕ(f), we use the square norm, i.e., 

. Therefore, we have the following representer theorem [37].

Theorem 1—The optimal solution of the regularized risk functional (11) is given by 

equation (2) with the coefficient set {cn : n ∈ INN } determined by a linear system

(12)

The proof is given in Appendix B. Once the EM algorithm converges, we then obtain a 

vector field f. Besides, we have the estimation of the inliers as well. Here we present two 

particular scenarios:

i. with a predefined threshold τ, we obtain an inlier set ℐ

(13)
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ii. since we have recovered the vector field, we are then able to determine the inliers 

by checking whether they are consistent with f.

In this paper, we use the first scenario. Moreover, we observe that in practice the posterior 

probabilities of the samples are mostly (over 99%) either smaller than 0.01 or larger than 

0.99, after the EM iteration converges. Therefore, our method is not sensitive to the choice 

of τ. When such a hard decision is made, the set ℐ is the so-called consensus set in 

RANSAC [18]. This is the reason we name our method vector field consensus (VFC). We 

summarize the VFC method in Algorithm 1.

Algorithm 1

The Vector Field Consensus Algorithm

Analysis of convergence—Note that the energy function (6) is not convex so it unlikely 

that any algorithm can find its global minimum. Our strategy is to initialize the variance σ2 

by a large initial value and then use the EM algorithm. At large sigma, the objective function 

will be convex in a large region surrounding the global minimum. Hence we are likely to 
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find the global minimum for large variance. As sigma decreases, the position of the global 

minimum will tend to change smoothly. The objective function will be convex in a small 

region around its minimum, which makes it likely that using the old global minimum as 

initial value could converge to the new global minimum. Therefore, as the iteration 

proceeds, we have a good chance of reaching the global minimum. This is conceptually 

similar to deterministic annealing [63], which uses the solution of an easy (e.g., smoothed) 

problem to recursively give initial conditions to increasingly harder problems.

D. Matrix-Valued Kernels

Kernels play a central role in regularization theory as they provide a flexible and 

computationally feasible way to choose an RKHS. Next, we briefly review some potentially 

useful kernels which will be adopted and tested in the experiments.

Decomposable kernels—Baldassarre et al. [3] discussed a decomposable kernel for 

interpolating a vector field which has the form

(14)

where the scalar kernel κ (e.g., Gaussian kernel) encodes the similarity between the inputs, 

and the positive semidefinite D×D matrix A encodes the relationships between the outputs. 

The matrix-valued kernel can exploit the relationships among the components of the vector 

field.

Divergence-free and curl-free kernels—Important examples of divergence-free and 

curl-free fields are incompressible fluid flows and magnetic fields respectively. These 

kernels have been used in [36] to interpolate divergence-free or curl-free vector fields. The 

divergence-free kernel is

(15)

and the curl-free kernel is

(16)

where σ̃ is the width of the Gaussian part of the kernels. Note that in these two kernels the 

dimensions of the input and output are the same, i.e. P = D. Observe that non-negative linear 

combinations of matrix-valued kernels still obey the kernel properties. Thus, we can 
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interpolate a vector field and reconstruct its divergence-free and curl-free parts by taking a 

convex combination of these two matrix-valued kernels, controlled by a parameter

(17)

E. Fast Implementation

Solving the vector field f merely requires to solve the linear system (12). However, for large 

values of N, it may pose a serious problem due to heavy computational (e.g. scales as 

O(N3)) or memory (e.g. scales as O(N2)) requirements, and, even when it is implementable, 

one may prefer a suboptimal but simpler method. In this section, we provide a fast 

implementation based on a similar kind of idea as the subset of regressors method [40].

Rather than searching for the optimal solution in ℋN, we use a sparse approximation and 

search a suboptimal solution in a space with much less basis functions defined as 

, and then minimize the regularized risk functional 

over all the sample data. Here M ≪ N and we choose the point set {x̃m : m ∈ INM} as a 

random subset of {xn : n ∈ INN } according to [44] and [33]. There, it was found that simply 

selecting an arbitrary subset of the training inputs performs no worse than more 

sophisticated methods. According to the sparse approximation, we search a solution with the 

form

(18)

with the coefficients {cm : m ∈ INM} determined by a linear system

(19)

where  is the coefficient vector, Γ̃s is an M × M block Gram matrix with 

the (i, j )-th block Γ(x̃i, x̃j ), Ũ is an N ×M block matrix with the (i, j)-th block Γ(xi, x̃j ).

In contrast to the optimal solution given by the representer theorem, which is a linear 

combination of the basis functions {Γ(·, xn) : n ∈ INN }, the suboptimal solution is formed 

by a linear combination of arbitrary M-tuples of the basis functions. Generally, this sparse 

approximation will yield a vast increase in speed and decrease in memory requirements with 

negligible decrease in accuracy. We call this implementation SparseVFC. Compared with the 

VFC algorithm shown in Algorithm 1, SparseVFC solves a different linear system (19) in 

Line 9.
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F. Computational Complexity

For the VFC algorithm, the corresponding Gram matrix is of size DN × DN. Because of the 

representer theorem, it needs to solve a linear system (12) to estimate the vector field f. The 

time complexity is O(D3N3) and it is the most time-consuming step in the algorithm. As a 

result, the total time complexity of the VFC algorithm is O(mD3N3), where m is the number 

of EM iterations. In our current implementation, we just use the Matlab “\” operator, which 

implicitly uses Cholesky decomposition to invert a matrix. The space complexity of VFC 

scales like O(D2N2) due to the memory requirements for storing the Gram matrix Γ̃.

For SparseVFC, the corresponding Gram matrix is of size DM×DM, where M is the number 

of basis functions used for sparse representation. Then the time complexity is reduced to 

O(mD3M2N+mD3M3), and the space complexity is reduced to O(D2MN + D2M2). Due to 

M ≪ N, the time and space complexities can be written as O(mD3M2N) and O(D2MN). Our 

experiments demonstrate that SparseVFC is much faster than VFC with negligible 

performance degradation.

IV. Establishing Point Matching Using VFC

This section describes how we can apply the vector field consensus algorithm to the problem 

of establishing matches between two sets of points. Our strategy is to construct a putative set 

of matches by considering all possible matches (between points in the two sets) and 

rejecting matches between points whose feature descriptor vectors (e.g., SIFT or shape 

context) are sufficiently different. This putative set typically contains many false matches 

(outliers), in addition to a small number of true matches (inliers), and hence it is important 

that the VFC algorithm is highly robust to outliers.

We also address the issue of using parametric and non-parametric geometrical constraints. 

The non-parametric constraints are more general and allow slow-and-smooth motion fields, 

while the parametric constraints impose stronger constraints based on rigidity of motion 

(e.g., the epipolar line constraint). We discuss why there is a relationship between slow-and-

smooth and rigid motion, which justifies applying the slow-and-smooth model (described in 

the last section) to cases where the motion is rigid. In addition, we formulate a variant of the 

VFC algorithm which uses parametric models.

A. Vector Field Introduced by Point Correspondences

We first establish a set of putative correspondences by considering all matches between the 

two point sets and then removing matches between points whose feature descriptors are 

above threshold. Each member of the putative set is comprised of a pair (un, vn), where un 

and vn are positions of the two points. The performance of point matching algorithms 

depends, typically, on the coordinate system in which points are expressed. We use data 

normalization to control for this. More specifically, we make a linear re-scaling of the 

correspondences so that the positions in the first and second point sets have zero mean and 

unit variance. Suppose the normalized correspondence is (ûn, v̂n); we convert it into a 

motion field sample by a transformation (ûn, v̂n) → (xn, yn), where xn = un, yn = v̂n − ûn.
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B. Kernel Choice

By choosing different kernels, the norm in the corresponding RKHS encodes different 

notions of smoothness. Usually, for the correspondence problem, the structure of the 

generated motion field is relatively simple. A decomposable kernel with the form (14) is 

effective. For the scalar kernel κ, we choose a Gaussian kernel as κ(xi, xj ) = e−β||xi−xj||2. For 

the relationship matrix A, we find that empirically using an identity matrix works well. In 

this case we can solve a more efficient linear system instead of Eq. (12) as

(20)

where the Gram matrix K ∈ IRN×N with Kij = κ(xi, xj), and C = (c1, …, cN )T is a matrix of 

size N × D.

C. Applicability of The Method: Rigid and Non-Rigid Motion

Our basic approach assumes that the motion flow between the two datasets can be modelled 

non-parametrically which, in practice, requires imposing some type of smoothness, or slow-

and-smoothness, constraint. This is a plausible assumption if the transformation between the 

transformation between the images is a homography or a non-rigid transformation. But it is 

less clear that this is a good assumption if the underlying transformation is rigid in three-

dimensional space (e.g., the epipolar geometry constraint). In this situation, the motion flow 

may not be smooth if, for example, there are large depth discontinuities. But as we argue 

below, and our experimental results support, rigid motion in space often corresponds to 

slow-and-slow motion in the images.

A close relationship between rigid transformation in three-dimensions and slow-and-smooth 

motion in two dimensions was shown by Ullman [53] and by [54]. They assumed plausible 

probability distributions about the rigid motion in three-dimensional (i.e. for the translation 

and rotation) and showed that the resulting projected motion in the image plane was 

typically slow-and-smooth. These analyses were performed to address the apparent paradox 

that humans appear to use slowness and smoothness to resolve ambiguities in matching 

points between images, but use rigidity assumption to estimate the structure of the moving 

objects.

Further evidence for a relation between slow-and-smooth and rigidity comes from the 

empirical studies of Roth and Black [45]. They analyzed the motion flow in images obtained 

by a camera moving in a fixed environment. They showed that the motion statistics were 

consistent with a variant of the slow-and-smooth model.

In summary, the analysis in this section shows that it is reasonable to apply our VFC 

algorithm even if the underlying motion is rigid. This is confirmed by our experimental 

results which also show that VFC gives better estimates of the motion flow (and for 

detecting the outliers in the putative set) compared to other approaches which exploit this 

rigid structure (e.g., RANSAC and the algorithm described in the next section).
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D. Extension to Parametric Models

As mentioned in the last section, if the two datasets are related by an underlying rigid 

transformation then the VFC algorithm may not get the correct result if the image pair 

contains a large depth discontinuity. Nevertheless, our formulation can be easily extended to 

a parametric model, e.g., the fundamental matrix or homography. For the sake of clarity, in 

the following we present a parametric variant of our model to estimate the fundamental 

matrix alone.

Suppose we are given a set of putative correspondences , where u and v 
are homogeneous image coordinates, i.e. u = (ux, uy, 1)T. The epipolar line constraint is then 

represented by a fundamental matrix F: vTFu = 0. We assume Gaussian noise on inliers, i.e., 

, and uniform distribution on outliers. By using the same notation as in our 

non-parametric formulation, we obtain a likelihood as:

(21)

where θ = {F, σ2, γ } is the set of unknown parameters. Similar to our non-parametric 

formulation, a maximum likelihood estimation of θ can be derived based on the EM 

algorithm. We omit the details of the derivation, and only present the estimation of F.

The fundamental matrix F can be estimated by minimizing a weighted error function

(22)

We aim to seek a non-zero solution F. To this end, a condition on the norm such as ||F||F = 1 

is used. Denote by f the nine-element vector made up of the entries of F in row-major order, 

P = diag(p1, … , pn), and A has the following form

Then the problem may be stated as finding the f that minimizes ||P1/2Af|| subject to ||f|| = 1. 

The solution is the unit singular vector corresponding to the smallest singular value of 

P1/2A. Specifically, if P1/2A = UDVT with D diagonal with positive diagonal entries, 

arranged in descending order down the diagonal, then f is the last column of V. Moreover, 

an important property of F is that it is singular, in fact of rank 2. To enforce this constraint, 

we replace F in each EM iteration by the closest singular matrix to it under a Frobenius 

norm [22].
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For the case of homography, we have a parametric model: vn − Hun = 0. The derivation of H 
is similar to the derivation of F, and we omit the details for clarity.

E. Implementation Details

In the VFC algorithm, if the linear system (12) is solved directly, the matrix inversion 

operation then causes some problem when the matrix P is singular. For the numerical 

stability, we cope with this problem by defining a lower bound ε. Diagonal elements of P 
that are below ε is set to ε. In this paper, we set ε as 10−5. Similarly, we constrain γ ∈ [0.05, 
0.95].

In the SparseVFC algorithm, there is a problem to which we need pay attention. We must 

ensure that the point set {xm̃ : m ∈ INM} used to construct the basis functions does not 

contain two identical points since in this case the coefficient matrix in linear system (19), i.e. 

(ŨT P̃ Ũ +λσ2Γs ), will be singular. Obviously, this may appear in the point correspondence 

problem, since in the putative correspondence set there may exist one point in the first point 

set matched to several points in the second point set.

Parameter settings—There are four parameters in the VFC algorithm: β, λ, τ and γ. 

Parameters β and λ both reflect the amount of the smoothness constraint. Parameter β 
determines how wide the range of interaction between samples. Parameter λ controls the 

trade-off between the closeness to the data and the smoothness of the solution. Parameter τ 
is a threshold, which is used for deciding the correctness of a correspondence. Parameter γ 
reflects our initial assumption on the amount of inliers in the correspondence sets. In 

general, we find our method to be very robust to parameter changes. We set β = 0.1, λ = 3, τ 
= 0.75 and γ = 0.9 throughout this paper.

V. Experimental Results

To evaluate our algorithm, we first design a set of experiments on vector field interpolation 

to demonstrate the efficiency of our technique in dealing with severe outliers, and then focus 

on the correspondence problem for building reliable point correspondences for 2D and 3D 

images. The experiments are performed on a laptop with 2.0 GHz Intel Pentium CPU, 8 GB 

memory and Matlab Code.

A. Learning With Outliers

We focus on interpolating a synthetic 2D vector field from sparse samples as in [3]. The 

field is constructed from a function defined by a mixture of five Gaussians, which have the 

same covariance 0.25I and centered at (0, 0), (1, 0), (0, 1), (−1, 0) and (0, −1) respectively. 

Its gradient and perpendicular gradient are shown in Fig. 2, which indicate a divergence-free 

and a curl-free field respectively. The synthetic data is then constructed by taking a convex 

combination of these two vector fields, controlled by a parameter α which is set to 0 and 0.5. 

The field is computed on a 70 × 70 grid over the square [−2, 2] × [−2, 2]. The sparse inlier 

sets are obtained by uniformly sampled points from the grid. The outliers are generated as 

follow: the input x is chosen randomly from the grid; the output y is generated randomly 

from a uniform distribution on the square [−2, 2] × [−2, 2].
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The kernel is chosen to be a convex combination of the divergence-free and curl-free 

kernels, i.e. Eqs. (15) and (16), with width σ̃ = 0.8, controlled by a parameter α̃ which is 

selected via cross-validation. After interpolating the vector field, we use it to predict the 

outputs on the whole grid and compare them to the ground truth. The experimental results 

are evaluated by means of interpolation errors, and the interpolation error is measured by an 

angular measure of error between the interpolated vector and the ground truth [3]. If 

 and  are the ground truth and estimated fields, we consider the 

transformation . The interpolation error is defined as err = 

arccos(ṽe, ṽg).

The Tikhonov regularization on sample sets without outliers is used for comparison. For 

each set with a fixed number of inliers, we add outliers for VFC so that the inlier percentage 

varies from 0.9 to 0.1. Generally speaking, the performance of the Tikhonov regularization 

on a sample set without outliers can be considered as an upper bound performance of VFC 

on the sample set with outliers.

The results are reported in Fig. 3, in which we consider both the noiseless and noise cases. 

For the noise case, we add a Gaussian noise with zero mean and uniform standard deviation 

0.1 to the inliers. As shown, the performance consistently improves with the increase of the 

cardinality of the sample set. When the sample set is small, the performance of the Tikhonov 

regularization without outliers is better than VFC, and the performance of VFC becomes 

worse as the outlier percentage increases. However, the difference in performance between 

them becomes small when the sample set is large. In conclusion, the performance of VFC is 

influenced both by the outlier percentage and sample set size, and it can reach the upper 

bound performance when the size of the given samples grows to an appropriate number, 

regardless of the percentage of the outliers.

B. Feature Correspondence on 2D Image Datasets

In this section, we focus on establishing feature correspondences for 2D real images. The 

open source VLFeat toolbox [56] is used to determine the putative correspondences of SIFT 

[31]. All parameters are set as the default values except for the distance ratio threshold t. In 

the VLFeat toolbox, it is defined as the ratio of the Euclidean distance of the second-closest 

neighbor and the closest neighbor. Usually, the greater is the value of t, the smaller amount 

of correspondences with higher inlier percentage will be. The default value of t is 1.5 and the 

smallest possible value is 1.0, which corresponds to the nearest neighbor strategy.

The experimental results are evaluated by precision and recall, where the precision is defined 

as the ratio of the preserved inlier number and the preserved correspondence number, and 

the recall is defined as the ratio of the preserved inlier number and the inlier number 

contained in the putative correspondences. We compare our VFC algorithm with other four 

methods which remove outliers from given putative point correspondences, such as ICF 

[26], GS [29], [30], RANSAC [18] and MLESAC [49]. We implement ICF and tune all 

parameters accordingly to find optimal settings. For GS and MLESAC, we implement them 

based on the publicly available codes. Throughout all the experiments, five algorithms’ 

parameters are all fixed.
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1) Results on Image Pairs of Homography—We test our method on the dataset of 

Mikolajczyk et al [38], which contains image pairs either of planar scenes or taken by 

camera in a fixed position during acquisition. The images, therefore, always obey 

homography. The ground truth homographies are supplied by the dataset. We use all the 40 

image pairs, and for each pair, we set the SIFT distance ratio threshold t as 1.5, 1.3, 1.0 

respectively. To determine the match correctness on this dataset, we similarly use an overlap 

error εS as in [38]: we reduce the scale of feature points to be 1/3 of the original scale, and a 

correspondence is regarded as inlier if εS > 0. The cumulative distribution function of 

original inlier percentage is shown in Fig. 4(a). The average precision of all image pairs is 

69.57%, and about 30 percent of the correspondence sets have inlier percentage below 50%. 

Fig. 4(b) presents the cumulative distribution of the number of point matches contained in 

the experimental image pairs. We see that most of the image pairs have large scale of point 

matches (i.e. in the order of 1000’s).

The results of five methods are summarized in Fig. 4(c) and (d), in which each scattered dot 

represents a precision-recall pair on an image pair. On the left is a comparison of our method 

to non-parametric model based methods ICF and GS, while on the right RANSAC and 

MLESAC based on geometric constraint (homography) are used for comparison. The 

average precision-recall pairs are (93.95%, 62.69%), (96.29%, 77.09%), (95.49%, 97.55%), 

(97.95%, 96.93%) and (98.57%, 97.75%) for ICF, GS, RANSAC, MLESAC and VFC 

respectively. As shown, ICF usually has high precision or recall, but not simultaneously. It 

lacks robustness when the outlier percentage is high or the viewpoint change is large. GS has 

high precision and low recall. This is probably because GS cannot estimate the factor for 

affinity matrix automatically and it is not affine-invariant. MLESAC performs a little better 

than RANSAC, and they both achieve quite satisfactory performance. This can be explained 

by the lack of complex constraints between the elements of the homography matrix. Our 

proposed method VFC has the best precision-recall trade-off. We also observe that the 

outlier removal capability of VFC is not affected by the large view angle, image rotation and 

affine transformation since these cases are all contained in the dataset. In fact, VFC performs 

well except when the initial number (not the percentage) of inliers is very small.

Since the scenes in the test image pairs are all rigid, we test the performance of our 

parametric variant (i.e., homography) as presented in Section IV-D. The results are shown in 

Fig. 4(d), marked by red circles, where we get an average precision-recall pair (85.58%, 

98.70%). We see that our algorithm works quite well on most pairs, and fails on a small part 

of them (about 20%). In fact, we find that the inlier percentages in the failure image pairs are 

all below 50%. For the image pairs with inlier percentages over 50%, the average precision-

recall pair is about (99.84%, 99.21%), compared to (98.15%, 99.87%), (99.38%, 99.79%) 

and (99.71%, 97.60%) in RANSAC, MLESAC and VFC respectively. That is to say, for 

handling a rigid scene, our algorithm with parametric model is somewhat sensitive to noise, 

however, if the outlier percentage is not so high, e.g., less than 50%, it still works quite well 

and yields comparable results.

The SparseVFC algorithm is also tested on this dataset, where the number M of basis 

functions used for sparse approximation is fixed to 15. The precision-recall pairs are 

summarized in Table I. We see that SparseVFC approximates VFC quite well, especially 
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SparseVFC. The average run-times of VFC and SparseVFC are also presented in Table I. 

For comparison, we provide the run-time of RANSAC as well. The average run-times of 

VFC and RANSAC have the same order of magnitude. However, SparseVFC achieves a 

significant speedup with respect to VFC and RANSAC, more specifically, of two orders of 

magnitude, without any performance degradation.

2) Results on Image Pairs of Non-Rigid Object—The traditional methods such as 

RANSAC and similar techniques depend on a parametric geometrical model, for example, 

the fundamental matrix. If there exist some deformable objects with different shapes in the 

image pairs (this often happens in the area of image retrieval or image-based non-rigid 
registration), then these parametric model-based methods can no longer work, since the 

parametric model between the image pairs is not known apriori. However, our proposed 

VFC is a general method and it does not depend on any particular parametric model. Instead, 

it just uses a smoothness constraint so long as the deformation does not destroy the 

smoothness of the field.

To validate this idea, we consider two image pairs with deformable objects as shown in Fig. 

5. In the first image pair, we first add a regular grid on it, and then warp it and take two 

views with different deformations. The second image pair consists of scenes of two different 

deformations with illumination changes of a T-shirt. The match correctness is determined by 

manually refining the results of our VFC algorithm. The results are shown in Fig. 5 as well. 

On the DogCat pair, our VFC method correctly removes all the outliers and keeps all the 

inliers. On the T-shirt pair, there are still a few false positives and false negatives in the result 

since we could not precisely estimate the true warp function between the image pair under 

this framework. The average run-time of VFC on these two image pairs is about 55 

milliseconds.

Recent work [51] justifies a simple RANSAC-driven deformable registration technique with 

an affine model that is at least as accurate as other methods based on the optimization of 

fully deformable models. Therefore, besides ICF and GS, we compare VFC to RANSAC as 

well on these two image pairs. The result is shown in Table II. We see that RANSAC 

performs well in case of small or moderate distortion, e.g., in the DogCat pair. However, 

when the deformation is relatively large, e.g., in the T-shirt pair, it cannot obtain satisfactory 

results, since just an affine model is not capable to handle a large complex deformation. Our 

method VFC has the best precision-recall scores. In general, VFC is effective for 

establishing feature correspondence on image pairs related by smooth motion fields, 

including both rigid and non-rigid cases.

3) Results on Wide Baseline Images—The motion fields introduced by the image 

pairs in the previous sections are usually smooth, and we obtain good performance. Now we 

test the VFC method on wide baseline image pairs, in which the motion fields are in general 

not continuous. The test images are from the dataset of Tuytelaars et al. [52], and the match 

correctness is determined by manually refining the results of RANSAC.

We first consider two wide baseline image pairs, Mex and Tree, as shown in Fig. 6. The Mex 
pair is a structured scene and the Tree pair is an unstructured scene. On the Mex pair, as 
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shown on the top row of Fig. 6, there are 158 putative correspondences with 76 outliers; the 

inlier percentage is 51.90%; after using the VFC to remove the outliers, 85 correspondences 

are preserved, including all the 82 inliers. The precision-recall pair is about (96.47%, 

100.0%). A similar result on the Tree pair is presented on the bottom row of Fig. 6. The 

average run-time of VFC on these two image pairs is about 17 milliseconds.

The performance of VFC compared to other four approaches is shown in Table III. The 

geometry model used in RANSAC and MLESAC is epipolar geometry. We see that 

MLESAC is slightly better than GS and RANSAC. The recall of ICF is quite low, although 

it has a satisfactory precision score. However, VFC can successfully distinguish inliers from 

outliers, and it has the best trade-off between precision and recall. These results suggest that 

even though the motion field is discontinuous and not consistent with the smoothness 

constraint, the VFC method is still effective for establishing feature correspondences.

Since the smoothness constraint is imposed as a prior in our approach, it may be problematic 

in some particular cases. We now consider an image pair shown in Fig. 7. In this image pair, 

there exists a large depth discontinuity; the point correspondences on the sky violate the 

smoothness prior, which will be removed by our VFC method, as shown on the left of Fig. 7. 

It should be noted that this does not influence the recovery of epipolar geometry, since the 

point correspondences preserved by VFC in general do not lie in a dominant plane, and 

thereby are not geometrically degenerate with respect to the fundamental matrix [15].

To validate this idea, we again take the Valbonne pair for example, and apply our parametric 

variant to estimate the epipolar geometry, e.g., the fundamental matrix, based on the 

correspondences preserved by our non-parametric model VFC. After we estimate the 

fundamental matrix, we use it to determine match correctness of the whole set of putative 

correspondences. The result is shown on the right of Fig. 7. We see that all the inliers are 

preserved, including the point correspondences on the sky. This suggests that the epipolar 

geometry has been correctly estimated.

4) Robustness Test—We next test the robustness of VFC and compare it to ICF, GS, 

RANSAC and MLESAC on the image pair shown in Fig. 7. In our evaluation we consider 

the following two scenarios.

On the one hand, reducing the distance ratio threshold would generate more inliers. For 

instance, changing t from 1.5 to 1, the number of inliers will increase from 69 to 120 in the 

Valbonne pair. This is sometimes important for the possible subsequent analysis such as 

fundamental matrix estimation. Here we design a series of experiments from this 

perspective. For each image pair, we generate five correspondence sets by the following 

procedure: the distance ratio thresholds are first set to 1.5, 1.3 and 1.0 respectively; then we 

fix threshold to 1.0 and add 2, 000 and 4, 000 random outliers respectively. The result is 

presented in Table IV. We observe that the performance of VFC is satisfactory, and it can 

tolerate even 90% outliers. As the inlier percentage decreases, the precision and recall of 

VFC decrease gradually. Still, the results are acceptable compared to other four alternative 

methods.
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On the other hand, images taken at close range may result in plenty of outliers while having 

only a few inliers. One standard example is in the endoscopic images, since they often 

involve low texture, abundant specularity, blurs and extreme illumination changes [58]. Here 

we test the robustness of the VFC by reducing the percentage of inliers. For each image pair, 

we generate five correspondence sets by the following procedure: we first fix the distance 

ratio threshold to be 1.5 and then randomly remove inliers so that the numbers of inliers 

become 50, 40, 30, 20 and 10 respectively. The initial number of correspondence and inlier 

are 126 and 69 respectively. The result is presented in Table V. We see that VFC becomes 

ineffective when both the inlier number and the inlier percentage in the sample set are very 

small. However, in other cases, the performance of VFC is still satisfactory compared with 

other four competing methods.

C. Feature Correspondence on 3D Surfaces

In this section, we establish feature correspondences for 3D surfaces. We adopt the datasets 

used in [66], which contain two types of 3D data: rigid and non-rigid objects. In the rigid 

case, the test datasets are Dino and Temple datasets; each surface pair is from the same rigid 

object which can be aligned using a rotation, translation and scale. In the non-rigid case, the 

dataset is the INRIA Dance-1 sequence, each surface pair is from the same moving person.

We determine the putative correspondences by using the method of Zaharescu et al. [66] 

which detects correspondences between nontrivial feature points on the 2D manifolds, such 

as the photometric and local curvature data. The feature point detector is called MeshDOG, 

and the feature descriptor is called MeshHOG.

The match correctness is determined as follows. For the rigid objects such as the Dino and 

Temple datasets, the correspondence between the two surfaces can be formulated as y = sRx
+t, where R3×3 is a rotation matrix, s is a scaling parameter, and t3×1 is a translation vector. 

We can use some robust rigid point registration methods such as the Coherent Point Drift 

(CPD) [39] to solve for these three parameters, and then the match correctness can be 

accordingly determined. On the INRIA Dance-1 sequence, which contains non-rigid objects, 

the match correctness is difficult to determine; we just visualize the results in image pairs.

1) Results on Rigid Objects—We test the VFC method on two surface pairs of rigid 

objects, the Dino and Temple datasets, which satisfy similarity transformations. For 

comparisons, we choose RANSAC combined with similarity transformation. The 

correspondence between two surfaces can be formulated as y = sRx + t. This model has 

seven degrees of freedom: three for rotation matrix R, three for translation vector t and one 

for scaling factor s. Therefore, three point correspondences are sufficient to recover the 

similarity transformation. The only restriction is that the three points must be in “general 

position”, which means that they should not be collinear. To obtain the closed form solution 

for these three parameters, we use the method of Umeyama [55].

The results of the VFC are shown in Fig. 8. For the Dino dataset, there are 325 putative 

correspondences with 61 outliers; after using the VFC to remove outliers, 266 

correspondences are preserved, in which 263 are inliers. That is to say, 58 of 61 outliers are 

eliminated while discarding only 1 inlier. A similar result on the Temple dataset is presented 
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on the right of Fig. 8. The average run-time of VFC on these two surface pairs is about 48 

milliseconds. Experiments on these datasets with rotation and scale transformations are also 

performed. We observe similar performances.

However, using RANSAC obtains even better results: the precision-recall pairs of RANSAC 

on these two datasets are (100.0%, 100.0%) and (99.07%, 100.0%). Actually, in this case, 

RANSAC is only influenced by noise on inliers, but not the random outliers. On the one 

hand, despite how large the proportion of outliers is, the sampling rule ensures with high 

probability, p (usually is chosen at 0.99), at least one of the random samples of points is free 

from outliers; that is to say that we can work out the correct model generally. On the other 

hand, for a point on the first object, there is one, and only one, point on the other object 

corresponds to it by the similarity transformation; if we obtain the parameters of the 

similarity transformation, all outliers could be removed. This is different from the case of 

RANSAC with fundamental matrix on the 2D image pairs. For a point in one image, there is 

one line in the other image corresponding to it and all points on this line satisfy the epipolar 

line constraint.

We then test the robustness of the VFC on a surface pair, the Dino dataset, and compare it 

with the RANSAC algorithm. We generate five correspondence sets by adding different 

numbers of additional outliers: 500, 1, 000, 2, 000, 4, 000 and 8, 000 respectively. Here each 

outlier is generated by randomly choosing one vertex from each of the surfaces. The results 

are shown in Table VI. As we expect, RANSAC is not influenced by outliers. Similar to the 

2D case, the performance of VFC is also quite satisfactory, and it can tolerate 90% outliers. 

As the inlier percentage decreases, the recall of VFC decreases gradually while having slight 

changes on the precision. From these results we observe that the VFC is not influenced by 

the dimension of the input data; the performance is as good as that in the 2D case, although 

the RANSAC is more effective in this rigid case.

2) Results on Non-Rigid Objects—We further conduct experiments on non-rigid object 

case, and we used the INRIA Dance-1 sequence.

We first test two nearby frames. In this case, the object often observes small deformations. 

The results are presented in the left two figures of Fig. 9. There are 191 putative 

correspondences. After the VFC is used to remove the outliers, 164 correspondences are 

preserved.

We then consider two frames that are far apart. In this case, the object usually has a large 

deformation, leading to less putative correspondences. The results are shown in the right two 

figures of Fig. 9. There are 23 putative correspondences, and 20 of them are preserved after 

using the VFC for outlier removal. Note that the preserved correspondences contain two on 

the fist which seem not fit the spatially smooth field introduced by the other identified 

suspect inliers. This could be due to the sparsity of the sample set, which increases the 

uncertainty of the vector field. Unlike the outliers in the bottom right figure of Fig. 9, the 

two correspondences on the fist just slightly violate the spatial smoothness. Thus, it is 

possible to find a smooth field which agrees with those preserved correspondences.
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In conclusion, for the feature correspondence problem, VFC demonstrates its capability of 

handling 3D data which contains both rigid and non-rigid objects.

D. Non-Rigid Point Set Registration

Point set registration aims to align two point sets  (the model point set) and 

(the target point set). Typically, in the non-rigid case, it requires estimating a non-rigid 

transformation f which warps the model point set to the target point set. Recall that our VFC 

method is able to generate a smoothly interpolated vector field with adherence to a set of 

observed input-output pairs. Therefore, it could be used to recover the transformation 

between two point sets with a set of putative correspondences.

We determine the putative correspondences by using the shape context descriptor [4], using 

the Hungarian method for matching with the χ2 test statistic as the cost measure. The two 

steps of estimating correspondences and transformations are iterated to obtain a reliable 

result. We use a fixed number of iterations, typically 10 but more refined schemes are 

possible.

We tested our method on a synthesized fish shape as in [12]. We test the robustness of our 

VFC on different degrees of deformations and occlusions, and for each deformation level 

100 samples are generated. Fig. 10 shows the registration results. We see that for both 

deformation and occlusion with moderate degradation, our method is able to produce an 

almost perfect alignment. The matching performance degrades gradually and gracefully as 

the degree of distortion in the data increases. To provide a quantitative comparison, we 

report the results of other two state-of-the-art algorithms such as TPS-RPM [12] and CPD 

[39] which are implemented using publicly available codes. The registration error on a pair 

of shape is quantified as the average Euclidean distance between a point in the warped 

model and the corresponding point in the target. Then the registration performance of each 

algorithm is compared by the mean and standard deviation of the registration error of all the 

100 samples in each distortion level. The statistical results, error means, and standard 

deviations for each setting are summarized in the last column of Fig. 10. As shown, our VFC 

method achieves similar matching performance compared to CPD on the deformation test, 

and both algorithms perform better than TPS-RPM. However, in the occlusion test, VFC 

consistently outperforms the other two algorithms in all degrees of rotations.

VI. Conclusion

In this paper, we proposed and studied a new vector field interpolation algorithm called 

vector field consensus (VFC) that is robust and fast. It simultaneously generates a smoothly 

interpolated vector field and estimates the consensus set by an iterative EM algorithm. We 

apply it to point correspondence problems in computer vision, in which the feature 

correspondences between image pairs are determined based on the coherence of the 

underlying motion fields rather than the geometric constraints. Experiments on 2D and 3D 

real image datasets demonstrate the capability of VFC being able to tolerate 90% outliers. 

Quantitative results demonstrate that VFC outperforms state-of-the-art methods such as 

RANSAC. In addition, we describe a variant of VFC which uses a parametric model (e.g., 
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exploiting rigidity) which we show in more effective than RANSAC, but less effective that 

VFC if there are many outliers. We also provide an efficient implementation of VFC called 

SparseVFC, which significantly reduces the computational complexity without much 

performance degradation.
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Appendix A. Vector-Valued RKHS

We review the basic theory of vector-valued reproducing kernel Hilbert space, and for 

further details and references we refer to [37] and [10].

Let  be a real Hilbert space with inner product (norm) 〈·, ·〉, (||·||), for example,  ⊆ IRD, 

a set, for example,  ⊆ IRP, and ℋ a Hilbert space with inner product (norm) 〈·, ·〉ℋ, (||
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·||ℋ). Note that a norm can be induced by an inner product, for example, ∀f ∈ ℋ, 

.

Definition 1

A Hilbert space ℋ is an RKHS if the evaluation maps evx : ℋ →  are bounded, i.e. if ∀x 
∈  there exists a positive constant Cx such that

(23)

A reproducing kernel Γ :  ×  → ℬ( ) is then defined as: , where 

ℬ( ) is the space of bounded operators on , for example, ℬ( ) ⊆ IRD×D, and  is the 

adjoint of evx.

Remark 1

The kernel Γ reproduces the value of a function f ∈ ℋ at a point x ∈ . Indeed, ∀x ∈ 

and y ∈ , we have , so that 〈f(x), y〉 = 〈f, Γ(·, x)y〉ℋ.

Remark 2

An RKHS defines a corresponding reproducing kernel. Conversely, a reproducing kernel 

defines a unique RKHS.

More specifically, for any N ∈ IN, {xn : n ∈ INN} ⊆ , and a reproducing kernel Γ, a unique 

RKHS can be defined by considering the completion of the space

(24)

with respect to the norm induced by the inner product

(25)

where  and .
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Appendix B. Proof of Theorem 1

For any given reproducing kernel Γ, we can define a unique RKHS ℋN as in Eq. (24). Let 

 be a subspace of ℋ,

(26)

Form the reproducing property, i.e. Remark 1, 

(27)

Thus  is the orthogonal complement of ℋN; then every f ∈ ℋ can be uniquely 

decomposed in components along and perpendicular to , where fN ∈ ℋN and 

. Since by orthogonality  and by the reproducing 

property f(xn) = fN (xn), the regularized risk functional then satisfies

(28)

Therefore, the optimal solution of the regularized risk functional (11) comes from the space 

ℋN, and hence has the form (2). To solve for the coefficients, we consider the definition of 

the smoothness functional ϕ(f) and the inner product (25), the regularized risk functional 

then can be conveniently expressed in the following matrix form:

(29)

where Γ̃ is an N × N block matrix with the (i, j)-th block Γ(xi, xj), and  is 

the coefficient vector. Taking the derivative of the last Eq. with respect to C̃ and setting it to 

zero, we obtain the linear system in Eq. (12). Thus the coefficient set {cn : n ∈ INN} of the 

optimal solution f is determined by the linear system (12).
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Fig. 1. 
Robust Vector field interpolation. (a) An image pair and its putative correspondences. Blue 

and red lines represent inliers and outliers respectively. For visibility, only 50 randomly 

selected elements of the putative set are shown. (b) and (c) Motion field samples generated 

by all putative correspondences and only inliers respectively. The head and tail of each arrow 

correspond to the positions of feature points in two images. (d) and (e) The interpolated 

vector field using samples from (b) and (c) respectively. The visualization method is line 

integral convolution (LIC) [9], color indicates the magnitude of the displacement at each 

point. Best viewed in color.
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Fig. 2. 
Visualization of the synthetic 2D vector field. Left: its divergence-free part, corresponding to 

α = 0; right: its curl-free part, corresponding to α = 1.
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Fig. 3. 
Detailed results on synthetic 2D vector fields. Top: combination coefficient α = 0 and 0.5 

respectively, noiseless inliers; bottom: combination coefficient α = 0 and 0.5 respectively, 

Gaussian noise with zero mean and uniform standard deviation 0.1 on inliers.
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Fig. 4. 
Experimental results on the dataset of Mikolajczyk et al [38]. (a) Cumulative distribution 

function of initial inlier ratio. (b) Cumulative distribution function of number of point 

matches in the image pairs. (c) Precision-recall statistics for ICF, GS and VFC. (d) 

Precision-recall statistics for RANSAC, MLESAC and our method with parametric model. 

Our VFC (red circles, upper right corner) has the best precision and recall overall.
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Fig. 5. 
Experimental results on two image pairs of non-rigid objects: DogCat and T-shirt. Top: 

results on DogCat, the initial inlier percentage is 82.30%, and the precision-recall pair is 

(100.0%, 100.0%); bottom: results on T-shirt, the initial inlier percentage is 36.50%, and the 

precision-recall pair is (90.67%, 93.15%). The lines and arrows indicate inlier detection 

results (blue = true positive, black = true negative, green = false negative, red = false 

positive). For visibility, in the image pairs, only 50 randomly selected correspondences are 

presented, and the true negatives are not shown. Best viewed in color (the same 

representation is used in the following experiments).
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Fig. 6. 
Experimental results on two wide baseline image pairs: Mex and Tree. Top: results on Mex, 

the initial inlier percentage is 51.90%, and the precision-recall pair is (96.47%, 100.0%); 

bottom: results on Tree, the initial inlier percentage is 56.29%, and the precision-recall pair 

is (94.85%, 97.87%).
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Fig. 7. 
Results on the image pair of Valbonne. Left: result of VFC, the correspondences on the sky 

are falsely removed; right: first use point correspondences preserved by VFC to estimate 

fundamental matrix, and then use it for outlier removal; in this time all the inliers are 

preserved.
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Fig. 8. 
Experimental results on rigid object datasets of Dino and Temple. Left: results on Dino, the 

initial inlier percentage is about 81.23%, and the precision-recall pair is (98.87%, 99.62%); 

right: results on Temple, the initial inlier percentage is about 89.96%, and the precision-

recall pair is (99.07%, 99.53%).
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Fig. 9. 
Experimental results on non-rigid object real datasets of the INRIA Dance-1 sequence. Left 

two: results on frames 525 and 527; right two: results on frames 530 and 550. For each 

group, the left pair denotes the identified suspect inliers, and the right pair denotes the 

removed suspect outliers. For visibility, at most 50 randomly selected correspondences are 

presented.
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Fig. 10. 
Point set registration results of our VFC method on a fish shape with deformation (top) and 

occlusion (bottom) presented in every two rows. The goal is to align the model point set 

(blue pluses) onto the target point set (red circles). For each group of experiments, the upper 

figure is the model and target point sets, and the lower figure is the registration result. From 

left to right, increasing degree of degradation. The rightmost figures are comparisons of the 

registration performance of our method with TPS-RPM [12] and CPD [39] on the 

corresponding distortions. The error bars indicate the registration error means and standard 

deviations over 100 trials.
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TABLE I

Average Precision-Recall and Run-Time Comparison of RANSAC, VFC And Sparsevfc on the Dataset of 

Mikolajczyk

RANSAC [18] VFC SparseVFC

(p, r) (95.49, 97.55) (98.57, 97.75) (98.57, 97.78)

t (ms) 3784 6085 21
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TABLE II

Performance Comparison on the Image Pairs of DogCat and T-shirt. The Pairs in the Table Are Precision-

Recall Pairs (%) (the Same Representation is Used in the Following Experiments)

ICF GS RANSAC VFC

DogCat (92.19, 63.44) (97.70, 91.40) (97.89, 100.0) (100.0, 100.0)

T-shirt (77.94, 72.60) (94.83, 75.34) (80.00, 87.67) (90.67, 93.15)
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