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Currently, molecular markers are not used when determining the prognosis

and treatment strategy for patients with hepatocellular carcinoma (HCC).

In the present study, we proposed that the identification of common pro-

oncogenic pathways in primary tumors (PT) and adjacent non-malignant

tissues (AT) typically used to predict HCC patient risks may result in HCC

biomarker discovery. We examined the genome-wide mRNA expression

profiles of paired PT and AT samples from 321 HCC patients. The work-

flow integrated differentially expressed gene selection, gene ontology

enrichment, computational classification, survival predictions, image analy-

sis and experimental validation methods. We developed a 24-ribosomal

gene-based HCC classifier (RGC), which is prognostically significant in

both PT and AT. The RGC gene overexpression in PT was associated with

a poor prognosis in the training (hazard ratio = 8.2, P = 9.4 9 10�6) and

cross-cohort validation (hazard ratio = 2.63, P = 0.004) datasets. The mul-

tivariate survival analysis demonstrated the significant and independent

prognostic value of the RGC. The RGC displayed a significant prognostic

value in AT of the training (hazard ratio = 5.0, P = 0.03) and cross-valida-

tion (hazard ratio = 1.9, P = 0.03) HCC groups, confirming the accuracy

and robustness of the RGC. Our experimental and bioinformatics analyses

suggested a key role for c-MYC in the pro-oncogenic pattern of ribosomal

biogenesis co-regulation in PT and AT. Microarray, quantitative RT-PCR

and quantitative immunohistochemical studies of the PT showed that

DKK1 in PT is the perspective biomarker for poor HCC outcomes. The

common co-transcriptional pattern of ribosome biogenesis genes in PT and

AT from HCC patients suggests a new scalable prognostic system, as sup-

ported by the model of tumor-like metabolic redirection/assimilation in

non-malignant AT. The RGC, comprising 24 ribosomal genes, is intro-

duced as a robust and reproducible prognostic model for stratifying HCC
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patient risks. The adjacent non-malignant liver tissue alone, or in combina-

tion with HCC tissue biopsy, could be an important target for developing

predictive and monitoring strategies, as well as evidence-based therapeutic

interventions, that aim to reduce the risk of post-surgery relapse in HCC

patients.

1. Introduction

Hepatocellular carcinoma (HCC) ranks fifth among

solid tumors and causes 70 000 annual deaths world-

wide. It is the third leading cause of cancer-related

mortality in males and is most prevalent in Asia and

Africa. Unlike many solid tumors, the incidence and

mortality of HCC have increased over the past decade

(Ashtari et al., 2015). The absence or substantial pro-

gress of effective HCC therapies is indicated by the

mortality rate, which is equivalent to the incidence rate

in most countries (Bruix and Sherman, 2011).

Notable disease treatment challenges include the

high heterogeneity of the primary tumor (PT) and the

pathophysiological status of the adjacent non-malig-

nant tissue (AT), which affects 70% of patients after

resection or local ablation (Llovet et al., 2005).

Recent studies of various cancers (including HCC)

have incorporated global molecular profiling using var-

ious ‘omics’ platforms (Wang et al., 2015a). These

studies have enabled the development of multiple

multigene prognostic biomarkers for stratifying cancer

patients into risk subgroups that are relevant for

potential treatments (Hoshida et al., 2012). Compared

to several other cancers (e.g. breast, prostate and

hematological), the molecular markers are not used for

the diagnosis or determination of prognosis and treat-

ment for HCC patients. Thus, evidence-based molecu-

lar markers that could accurately and reproducibly

predict survival time and response to treatment must

be identified (Bruix et al., 2016).

However, in this respect, significant challenges might

reflect certain caveats: (a) poor clinical reproducibility

(e.g. when a biomarker fails in an independent cohort

validation) and/or poor genetic reproducibility (e.g.

different enriched gene sets/deregulated pathways in an

independent validation cohort), which limits or con-

founds the clinical and therapeutic utility of the bio-

marker, and (b) high diversity in the genetic status and

high technical (e.g. different ‘omics’ platforms) and/or

clinicopathological cross-cohort variability from inde-

pendent clinical centers. To overcome these obstacles,

a workflow for biomarker selection that identifies the

most etiologically and pathobiologically essential

genes, gene products and biological processes with

high reproducibility and prognostically confident

molecular patterns is needed.

It has been reported that AT substantially con-

tributes to HCC and has an independent prognostic

value (Hoshida et al., 2008), presumably reflecting the

de novo multicentric occurrence of HCC in cirrhotic

tissue, which impacts late HCC recurrence (> 2 years

recurrence-free survival). Alternatively, PT cells that

remain after resection can disseminate across the AT

of specific HCC patients to contribute to early HCC

recurrence (≤ 2 years of recurrence-free survival) (Hos-

hida et al., 2008). However, the relationships between

the PT and AT can be more complex.

A resurging interest in cancer cell and host tissue

interactions, including metabolism, biogenesis and

secreted metabolites, metabolic reprogramming in the

systemic modulating of gene expression, and signaling

pathways in joint cancer-host tissue compartments, has

been observed in recent years. According to the ‘field

cancerization’ model (Vauthey et al., 2000), pathologi-

cal and genetic changes in tissues peripheral to a

tumor could result from ‘preconditioning’ of the

affected organ by various carcinogenic agents. For

example, most HCC arise in the background of

chronic liver disease [e.g. hepatitis B virus (HBV) or

hepatitis C virus (HCV) infection, hepatitis and cirrho-

sis]. After the surgical resection of PT in the absence

of effective therapy of the background medical condi-

tion(s), the significant probability of the appearance

and development of tumor(s) in field cancerization

may be similar to those that prompt the primary

HCC.

Alternatively, PT cell growth and progression can

modulate the host tissue metabolic pathways and

induce epigenetic reprogramming in AT (Skill et al.,

2011). These changes often lead to tumor-like func-

tional modulations of the gene expression profiles in

non-malignant tissue cells (Lou et al., 2009). For

example, the DNA methylation status of a tumor sup-

pressor regulatory signal(s) in the AT can not only be

distinct from that of the normal (Arai et al., 2009) and

cirrhotic liver tissues of non-HCC individuals, but also

similar to that of the PT (Lou et al., 2009). In
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addition, multiple metabolic coupling between PT and

AT has been described. Experimental models have

been developed (Shapot and Potapova, 1986; Shapot

et al., 1972) of tumor–host tissue metabolic relation-

ships demonstrating the competition of the tumor and

host tissues for RNA precursors and other metabo-

lites. These studies also characterized a phenomenon

of the tumor capacity to act as ‘a trap’ for nitrogen

and glucose, leading to tumor-like host cell metabolism

and host tissue metabolic ‘assimilation’ peculiarities in

glycolysis and RNA biosynthesis.

Cell–cell interactions, external regulatory signaling

factors and the active transport of biomolecules that

are secreted from PT via the exosomes/microvesicles

may induce and maintain the specific tumor-driven

pro-oncogenic biological processes and signaling path-

ways relevant to RNA biosynthesis and the ribosomal

biogenesis in AT. We propose the presence of multiple

tumor-producing molecular signals, secreting factors

and tumor-induced external metabolite trapping pro-

cesses that collectively establish tumor-like common

RNA biosynthesis and ribosome biogenesis patterns

and specific steady-state aberrant pathways in AT

cells. The interactions between tumor and host tissue

compartments assume the co-microevolution of meta-

bolic processes in AT and AT cell populations during

the course of cancer cell metabolism, genetic and epi-

genetic alterations, cell growth, death and migration,

clonal selection and other factors of tumor progres-

sion.

In an effort to identify HCC biomarkers, many

studies have developed models of gene expression pro-

filing to discover biomarkers either in PT or AT sam-

ples (Hoshida et al., 2012). Some studies have

additionally used the differentially expressed genes

(DEGs) between PT and AT as prognostic biomarkers

at the prognostic variable pre-selection step (Mah

et al., 2014; Orimo et al., 2008). By contrast, in the

present study, we hypothesize that the next-generation

prognostic biomarkers for HCC prognosis and predic-

tion can be determined via the automatic selection of a

subset(s) of co-expressed survival significant genes in

PT and AT pairs. This strategy uses the concepts of

(a) field cancerization and (b) PT-initiated biogenesis

assimilation in AT compartments as systemically

affected by aggressively growing PT compartments. To

our knowledge, such an approach to tumor-host tissue

co-evolution analysis has not been considered previ-

ously in the literature in the context of prognostic/pre-

dictive biomarker discovery and disease risk

stratification.

We aimed to develop a prognostic biomarker dis-

covery model that would (a) identify common pro-

oncogenic biological processes induced by aggressive

PT growth in PT and AT and (b) select variables pre-

dicting HCC patient risks after curative resection. We

suggested that the expression of potential prognostic

genes pre-selected in the cells of AT, as a non-malig-

nant cell population, was more genetically stable and

less vulnerable to oncogenic reprogramming compared

to the pre-selected genes in the PT cell population. We

also assumed that the identification of statistically

enriched gene subsets/pathways/biological mechanisms

consistent in AT and PT pairs is another important

step toward further shortlisting the most biologically/

pathologically essential gene candidates for biomark-

ers. We expected that the use of these two strict patho-

biology-based pre-selection criteria would eliminate

numerous indirectly correlated but non-essential gene

confounders with less or nonreproducible mechanistic

functions and prognostic abilities.

In the present study, we specified both a genetic and

metabolic preconditioning ‘field cancerization’ model

in PT and AT and a PT-like AT cell ribosomal bio-

genesis model. We analyzed the role of gene expression

patterns in cancer predisposition and metabolism, cou-

pling cancer and non-malignant host tissues as an

interconnected two-compartmental tissue cell popula-

tion system.

We developed a hypothesis-driven HCC biomarker

discovery and statistically-based computationally pre-

diction method. We selected a specific group of com-

mon prognostic genes (CPGs) co-expressed in both PT

and AT, generating HCC patient risk stratification

into relatively favorable and unfavorable disease out-

come subgroups. The CPG analysis enabled the identi-

fication of translation elongation and ribosomal (TER)

gene subsets with common pro-oncogenic prognostic

patterns as the most over-represented gene subsets in

PT and AT. We showed how the data analysis, inte-

grating paired PT and AT samples, identified the HCC

prognostic ribosomal gene classifier (RGC). This prog-

nostic classifier demonstrated high confidence, robust-

ness and reproducibility across the studied cohorts and

identified the clinically and pathobiologically repro-

ducible low- and high-risk patient subgroups with

thoroughly characterized and druggable deregulated

biological pathways. In summary, these results high-

light the importance of the deregulation of the TER

pathway in HCC, comprising the essential pathological

feature common to PT and AT. We discuss the clinical

perspectives of these findings and the potential applica-

tions of these tools and also propose a novel strategy

for the identification of uniformly co-regulated, path-

way-specific, statistically reliable and reproducible

prognostic biomarkers.
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2. Materials and methods

2.1. HCC patients and tissue samples

We retrospectively analyzed the hepatic tissue samples

of HCC patients from Singapore, which were collected

after surgical treatment with informed consent from

the patients. The patients underwent radical resection

and follow-up between 2000 and 2013 at Singapore

General Hospital, and their hepatic tissue samples

were collected at the National Cancer Centre of Singa-

pore/SingHealth Tissue Repository. HCC diagnosis

and treatment for the HCC patients were based on

established histological criteria (International Working

Party, 1995). After surgical treatment, patients were

followed up at least once every 3–6 months. Other

post-surgery patient treatments included imaging and

a fetal protein (AFP) monitoring on each follow-up.

The Singapore HCC cohort (Singapore cohort) pre-

sented here included only HCC patients diagnosed

with resectable HCC, with good liver function (Child

status A or B), adequate future liver remnant and

good general health. The HCC patients with unre-

sectable lesions with poor liver function or general

health (Chow et al., 2016) were excluded from the

analysis. Linked clinical and histopathology data col-

lected from the patient medical records were rendered

anonymous. The study was approved by the Sin-

gHealth Institutional Review Board. Cost and practi-

cal issues restricted the primary sample size in the

present study to 125 HCC patients. PT and AT liver

samples obtained at the time of definitive surgery were

snap-frozen and preserved at –80 °C. The inclusion of

matching AT samples in the study was based only on

the availability of the samples from the SingHealth

Tissue Repository and satisfactory results of RNA and

microarray quality control. A paired sample design

was used and clinical data were available for analysis

only after re-identification of the RNA samples and

full completion of microarray profiling.

Median follow-up in the Singapore cohort was

1.17 years. The detailed patient and tumor features of

the Singapore and the Liver Cancer Institute (LCI)

cohorts are presented in Tables 1 and S1.

2.2. Study design and endpoint

The pressent study complied with the recommenda-

tions for reporting prognostic cancer biomarkers

according to the REMARK statement (McShane

et al., 2005) (Table S2) and the guidelines for evaluat-

ing prognostic biomarkers (Simon et al., 2009). The

prognostic biomarker(s) demonstrated certain traits:

(a) significant prognostic power in the training and

validation sample sets; (b) statistically independent

prognostic value in a multivariate analysis that

included known clinicopathological predictive vari-

ables; and (c) significant predictive power confirmed in

an external cohort reported by independent investiga-

tors using the same technology. The primary endpoint

of the study was the patient overall survival (OS). OS

was defined as the time between surgical resection and

death of any cause at last follow-up. Other measures

of patient benefits from use of prognostic biomarkers,

such as disease-free or recurrence-free survival, were

not used because they are surrogate to OS and may

not always translate to longer OS (Goh et al., 2016;

Llovet et al., 2008a). Additionally, OS proved to be

useful in large and successful targeted drug therapy tri-

als of HCC (Llovet et al., 2008b).

2.3. Patient tissue sample processing, gene

expression microarrays and quantitative RT-PCR

analysis methods

All tissue samples were uniformly homogenized using

a TissueLyser LT from Qiagen (Germantown, MD,

USA) in accordance with the manufacturer’s instruc-

tions. RNA isolation was performed for all tissue

lysates. Sample preparation and hybridization of

labeled cRNA to the HumanHT-12 v4 Expression

BeadChip arrays (Illumina, Inc., San Diego, CA,

USA) were conducted in accordance with the manu-

facturer’s instructions. Data from 10 patients were

excluded as a result of low RNA or microarray prepa-

ration quality (Kauffmann et al., 2009). Finally, we

used 115 PT samples and 52 AT samples matched to

52 corresponding PT. After the completion of RNA

and microarray quality control, the included samples

were matched to corresponding clinical data and re-

identified before data analysis. The quantitative PCR

experiments were conducted using a QuantStudioTM 6

Flex Real-Time PCR system in accordance with the

standard instructions for Power SYBR Green master

mix from ABI systems (Applied Biosystems, Foster

City, CA, USA). The qRT PCR signals were normal-

ized with standard reference TBP and relative fold

change abundances for desired genes were estimated.

The microarray data for the gene expression profil-

ing of the HCC patient samples are publicly available

at GEO: GSE76427. As a validation HCC cohort, we

used publicly available data for the 206 HCC patients

from the Liver Cancer Institute (the LCI HCC cohort,

Fudan University, Shanghai, China, GSE14520)

(Roessler et al., 2012) that passed the same microarray

quality assessment (Kauffmann et al., 2009). We
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selected the LCI dataset for the Singapore data analy-

sis validation because (a) the LCI group is a relatively

large publicly available gene expression dataset (in-

cludes 206 paired PT–AT samples); (b) clinical data

including patient survival data have been available for

these 206 patients, allowing survival prediction analysis

for the PT-AT paired expression dataset to be carried

out; (c) Singapore and LCI datasets include mostly

Chinese/Asian patients; and (d) patients in both

groups have a predominantly HBV-driven ethology,

Table 1. Clinicopathological characteristics in HCC patients’ cohorts used in the present study.

Clinical characteristic

Singapore (training)

(n = 115)a
LCI (validation)

(n = 206)a P-value

1 HBV infection (yes/no/–/%) 53/43/19/46 187/4/15/91 < 0.001d

2 HCV infection (yes/no/–/%) 20/36/59/18 – –

3 Sex, male (yes/no/%) 93/22/81 183/23/89 0.06d

4 Age (years) (≥50/<50/median) 104/11/64 120/86/51 < 0.001d

5 AFP (> 300 ng�mL�1/≤ 300 ng�mL�1/–/%) 42/68/5/37 94/109/3/46 0.12

6 Cirrhosis (yes/no/%) 62/53/54 189/17/92 < 0.001d

7 Multinodular/solitary tumors (yes/no/%) 26/89/23 40/166/19 0.5d

8 Tumor size (> 5 cm/≤ 5 cm/%) 65/50/57 71/134/34 < 0.001d

9 Total nodules (yes/%)b

1 89/77 – –

2–7 16/14 – –

> 7 10/9 – –

10 Microscopic vascular invasion (yes/no/%) 45/70/39 – –

11 Albumin Child points (yes/%)c

1 point 74/64 – –

2 points 34/30 – –

3 points 7/6 – –

12 Bilirubin Child points (yes/%)c

1 point 107/93 – –

2 points 7/6 – –

3 points 0/0 – –

13 Child-Pugh status (yes/%)

Child-Pugh A 101/88 – –

Child-Pugh B 13/11 – –

Child-Pugh C 1/1 – –

14 Milan criteria (beyond/within/%) 75/40/65

15 Edmondson tumor grade (3, 4/1, 2/–/%)c 62/50/3/53 – –

16 Platelets score (> 100/≤ 100/%) 108/7/94 – –

17 Metastasis(imaging) (yes/no/–/%) 2/110/3/2 – –

18 Presence of tumor capsule (yes/no/–/%) 40/66/9/34 – –

19 Extra-hepatic invasion(histology) (yes/no/%) 1/114/1 – –

20 Portal vein invasion (yes/no/–/%) 8/102/5/7 – –

21 Positive tumor margins (yes/no/%) 12/103/10 – –

22 BCLC staging (yes/%)

0 4/3 17/8 0.1d

A 75/65 133/65 0.8d

B 27/23 19/9 < 0.001d

C 9/8 22/11 0.3d

– 0/0 15/7 –

23 TNM staging (II–IV/I/–/%) 58/56/1/50 105/86/15/51 0.9d

24 Median follow-up (OS), years (25–75th percentile) 1.17 (0.45–3.12) 4.36 (1.36–4.80) < 0.001e

25 Overall death, n (%) 25 (22) 80 (39) 0.002d

aNumber of patients/percentage.
bTotal nodules, based on histology report, including satellite nodules.
cAlbumin Child points, Child-Pugh Category score: 1 point = > 35 g�L�1; 2 points = 28–35 g�L�1; 3 points = < 28 g�L�1; Bilirubin Child points,

Child-Pugh Category score: 1 point = < 34.2 lmol�L�1; 2 points = 34.2–51.3 lmol�L�1; 3 points = > 51.3 lmol�L�1; Edmondson tumor

grade: 1 = Grade 1; 2 = Grade 2; 3 = Grade 3; 4 = Grade 4. –, missing data.
dFisher’s exact test (two-sided).
eMann–Whitney test.
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which potentially could result in deregulated molecular

pathways distinct from other available patients groups

with predominantly HCV-driven HCC.

2.4. Immunohistochemical staining of formalin-

fixed paraffin-embedded samples

DKK1 protein expression was determined using a

DKK1 antibody (ab61034; Abcam, Cambridge, MA,

USA) in liver FFPE tumor sections from six HCC

patients and the RGC risk subgroups (HRT and LRT)

in accordance with a standard immunohistochemistry

(IHC) protocol. Automated hematoxylin and

diaminobenzidine staining (IHC DAB1 Leica Bond

III) using a Leica Bond III Automated Stainer (Leica

Biosystems, Wetzlar, Germany) was performed using

the protocol: (a) dewaxing; (b) pretreatment; and (c)

IHC staining. The dewaxing step was performed at

72 °C, followed by pretreatment (unmasking) with the

Bond epitope retrieval 2 (ER2) solution, with washing

steps being performed using absolute alcohol and

Bond Wash Solution. IHC staining was performed

using the primary antibody and the BondTM Polymer

Refine Detection kit (Leica Biosystems) was used for

subsequent detection. After staining, the slides were

dehydrated in absolute alcohol, cleaned with xylene

and mounted with DEPEX mounting media (WVR

International, Radnor, PA, USA).

2.5. Statistical and bioinformatics analyses

To select the survival significant genes and to stratify

patients into the relatively LR and HR HCC sub-

groups, we used the one-dimensional data-driven

grouping (1-D DDg) method that was previously

developed and successfully used for survival prognosis

(Chan et al., 2012; Grinchuk et al., 2015; Motakis

et al., 2009).

We defined the CPG as the 1-D DDg-defined sur-

vival significant gene, and the expression value was

binarized using a 1-D DDg cut-off value, with patients

being stratified into low-risk (LR) or high-risk (HR)

subgroups for identical PT and AT samples (e.g. either

exclusively tumor suppressor-like or exclusively pro-

oncogenic in both tissue types from the same patient).

The statistically weighted voting grouping (SWVg)

method is a variable selection and multivariate predic-

tion statistically-based voting prediction method (Kuz-

netsov et al., 2006) that uses the 1-D DDg-derived

binary variables (predictors) of the patient risk groups

(LR and HR) as an input dataset (Motakis et al.,

2009). Following 1-D DDg, the input file is used to

obtain the statistical voting stratification of a patient

from the grouping information generated using the

binary variables. For each patient, the SWVg score is

calculated based on an optimized number of statisti-

cally weighted votes of the binary variables (Chen

et al., 2017). The estimated SWVg score cut-off was

determined by maximizing the significance of the

patient separation into HR and LR subgroups. For

each patient, the SWVg calculates the prognostic score

quantifying the risk of disease development, rank

orders the patients by their SWVg scores and separates

the patients into the LR and HR subgroups according

to the estimated cut-off score.

DEGs were identified using the GenePattern portal

(Reich et al., 2006) and the significance of the RGC

subgroup similarity was estimated using the ‘SubMap’

module in the portal (Hoshida et al., 2007). For Func-

tional Annotation and Gene Ontology (FA/GO) and

Pathway Maps analyses, we used either DAVID bioin-

formatics (da Huang et al., 2009a) or MetaCore

(https://portal.genego.com/).

A support vector regression (SVR) analysis of the

immunohistochemical section images from formalin-

fixed paraffin-embedded PT was performed as described

previously (Smola and Vapnik, 1997). Briefly, each of

the six representative HCC patients (three from the

HRT RGC subgroup and three from the LRT RGC sub-

group) had 54 (6 9 9) sub-images in the dataset. All

sub-images from the LRT and HRT patients were

labeled ‘0’ and ‘1’, respectively. This dataset was labeled

with RGB covariance matrix-based features and used to

train and test the SVR system. The image-processing

pipeline, covariance-based feature extraction system

and SVR system were implemented using IMAGEJ,

OpenCV, C++ and R (see Supporting information:

Image based analysis of immunohistochemistry slides).

Categorical variables were analyzed using a two-sided

Fisher’s exact test or the Freeman–Halton extension of

Fisher’s exact test. The Mann–Whitney U-test was

applied for continuous variables (CYTELSTUDIO, version

9; Cytel, Inc., Cambridge, MA, USA). Confidence inter-

vals for the proportions of agreement were calculated

according to the Wilson efficient-score method (New-

combe, 1998). Univariate and multivariate analyses

were performed using the Cox proportional hazards

regression model and the R ‘survival’ package.

2.6. ChIP-seq binding regions analysis in the

proximal promoters of the RGC and other gene

sets

To support the in silico prediction of the regulatory

roles of MYC in the RGC and other gene sets, we

used the publicly available ChIP-seq data for MYC
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from the HepG2 hepatocellular carcinoma cell line

(GEO ID GSM822291; see Supporting information:

ChIP-seq analysis).

3. Results

3.1. Identification of common prognostic genes

in PT and AT samples and their specific

biological characteristics

We retrospectively analyzed the clinical data and the

hepatic tissue samples from 125 HCC patients (Singa-

pore cohort) collected after surgical treatment. The

clinicopathological characteristics of the HCC patients

are presented in Tables 1 and S1.

Figure 1A shows a conventional data analysis

schema to identify prognostic biomarkers when a sub-

set of survival significant genes is selected only in

either PT or AT to identify diagnostic and prognostic

biomarkers. This method may also use DEGs in the

analysis and preselection of candidate prognostic genes

(Fig. 1B) (Mah et al., 2014; Orimo et al., 2008). By

contrast, the predictor selection and prognostic

method identifies the genes (represented by transcript

isoforms) exhibiting common expression patterns in

both the PT and AT samples termed PT-AT co-

expressed CPGs (see Materials and methods). Here,

we describe the procedure for selecting the CPGs used

to construct the CPG-based prognostic classifier to

predict HCC patient risks after curative resection.

By definition, the tumor-suppressor-like gene has

higher expression values in a tissue sample set (e.g. PT

or AT) than the corresponding 1D-DDg-defined gene

expression cut-off value and the patient belongs to a

LR subgroup (1-D DDg design 1). The pro-oncogenic

gene has higher expression values in a tissue sample

set than the 1D-DDg-defined gene expression cut-off

value and the patient belongs to the HR subgroup (1-

D DDg design 2).

Figure S1 shows the results of the 1-D DDg

method. We selected fructose-1,6-bisphosphatase 1,

FBP1, encoding the gluconeogenesis regulatory

enzyme, acting as a rate-limiting enzyme in gluconeo-

genesis and a well-known tumor suppressor in HCC

(Hirata et al., 2016; Wang et al., 2014), and fibroblast

growth factor 1, FGF1, encoding a well-known pro-

oncogenic growth factor in HCC (Lee et al., 2015;

Yang et al., 2017). Figure S1A shows the –logeP-value
distribution over the gene expression level domain,

and Fig. S1B shows two Kaplan–Maier survival func-

tions representing the relatively LR and HR subgroups

derived from 1-D DDg at the optimized gene expres-

sion cut-off value of FBP1 indicated in Fig. S1A. As

expected, FBP1 exhibited a tumor suppressor-like

expression pattern. In the case of FGF1, a pro-onco-

genic expression pattern was observed (Fig. S1C,D).

Notably, the terms ‘pro-oncogenic’ and ‘tumor sup-

pressor-like’ are used in the specific context of the sur-

vival prognosis analysis (Fig. S1). However, such gene

classifications are useful and often correlated with the

functional classification of many known tumor sup-

pressors and oncogenes, which are respectively defined

based on the pathobiological roles of the genes and

gene products in malignant cells (Chen et al., 2017).

We designated the CPG as a survival-significant

gene, for which (a) gene expression was binarized

according to the 1-D DDg gene expression cut-off

value; (b) the gene expression cut-off value was used

to stratify the cohort into LR and HR patient sub-

groups; and (c) the patient survival pattern in the

given cohort was identical for PT and AT samples

(e.g. either exclusively tumor suppressor-like or exclu-

sively pro-oncogenic in both tissue types) (Fig. 1E).

Figure S2 shows the main steps of the workflow,

including descriptions of the input and output data

sets and the analytical and experimental methods. We

used the Singapore cohort to select CPGs observed in

the 52 PT-AT paired samples. We used a multicriteria

approach.

In the first step of the CPG selection process, we

used 1-D DDg values as relatively weak selection crite-

ria for the potential prognostic variables (Wald’s

statistics P ≤ 0.1), assuming that the next-level filters

for accuracy, robustness and reproducibility criteria

will enable optimization of the number and combina-

tion of high-confidence predictors composing the final

prognostic signature. The Venn diagram analysis of

the 1-D DDg-based whole transcriptome profile screen

in PT and AT samples resulted in the identification of

a large common gene subset (Fig. 1D) comprising

2390 unique (Hg19) gene IDs.

Next, we applied a FA/GO analysis using DAVID,

version 6.7 (da Huang et al., 2009a) to shortlist the

most significantly enriched biological processes and

pathways, probably related to the most biologically or

pathologically essential CPG subsets (Fig. S2). We

identified the gene subsets of the survival significant

pro-oncogenic (e.g. Figs 1E and S3A,B) and tumor

suppressor-like (e.g. Fig. S3C,D) CPGs. We intended

to use a sample size-balanced and multicriteria

approach to select unbiased, specific and robust prog-

nostic variables. The 1000 top most significant genes

in each CPG subset have been selected. We did this

because of a probable effect of sample disbalance: dif-

ferent gene list sizes may lead to a bias in the enrich-

ment analysis test. This sample disbalance also may
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affect the ranking of large-sized GO categories, mak-

ing it difficult to compare gene categories in the gene

lists (da Huang et al., 2009b).

For the pro-oncogenic CPG subset, using DAVID,

version 6.7, we found that most confidence biological

process GO terms are determined by the genes encod-

ing translational elongation proteins (P = 2.8 9 10�25)

and ribosome (P = 5.2 9 10�19). We also found the

moderately enriched term for mitochondrion

(P = 0.01) (Fig. 1F). Figure 1E shows the results of

the survival prediction analysis for the CPG RPS3A,

the TER gene co-expressed in PT and AT samples. In

each tissue type, RPS3A showed a pro-oncogenic

prognostic pattern. The proportion of agreement

between the PT and AT stratifications was 0.731 at the

95% confidence interval (CI) (0.587–0.84). Interest-

ingly, no significant FA/GO terms were observed

among the top 1000 survival significant tumor suppres-

sor-like CPGs. Figure S3 shows two examples of the

pro-oncogenic ribosomal CPG RPL3 and the tumor

Fig. 1. Identification of CPG candidates for PT and AT as HCC prognostic biomarkers. (A, B) Traditional approaches previously used for

identifying prognostic biomarkers in HCC. (B) Biomarker candidates may be pre-selected using DEG analysis between PT and AT, followed

by survival prognostic analysis. (C, D) Scheme for identification of tumor suppressor-like and pro-oncogenic CPGs in the Singapore HCC

cohort using the 1-D DDg method for survival prognostic analysis. Only the CPG subsets with identical 1-D DDg design 1 (tumor

suppressor-like CPGs) or only with 1-D DDg design 2 (pro-oncogenic CPGs; see Materials and methods) in both PT and AT were selected.

(E) An example of pro-oncogenic CPG RPS3A identified in the Singapore HCC cohort. Kaplan–Meier survival curves were obtained using 1-D

DDg by fitting the expression values to survival data. Analyses were performed independently in PT and AT for each gene in the Singapore

(n = 52) HCC cohort. Vertical bars and P-values show the significant difference in the level of gene expression between the LR and HR

patient subgroups (Mann–Whitney test). (F) FA/GO analysis of TER genes in two distinct biological contexts (DAVID bioinformatics software).

The results of the FA/GO enrichment analysis are presented for the pro-oncogenic CPGs subset (1) 1-D DDg design 2 [the top 1000 survival

significant genes obtained according to the scheme shown in (D)] and for the subset of DEGs (2) significantly up-regulated in PT compared

to AT [the top 1000 significantly up-regulated genes, obtained according the scheme shown in (B)]. Only significant representative FA/GO

terms are shown; Fisher test P-values (P < 0.05) are Benjamini corrected and –log10 transformed.
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suppressor-like SPOP CPG according to the 1-D

DDg analysis. Typically, the survival patterns pre-

dicted by CPG in PT-AT pairs were significantly con-

cordant. For example, the proportion of agreement

between the PT and AT stratifications given by the 1-

D DDg SPOP classifier was 0.673 at the 95% CI

(0.528–0.792) and that given by the 1-D DDg RPL3

classifier was 0.67 at the 95% CI (0.492–0.767). These
findings suggest the pathobiological importance of

SPOP, RPL3 and other translational elongation and

ribosome biogenesis CPGs in AT as a novel class of

potential non-malignant tissue clinical biomarkers for

malignancy diagnostics, the prognosis of tumor

aggressiveness and ‘anti-cancerization’ tissue therapeu-

tic targeting.

We also analyzed the top 1000 significantly DEGs

up-regulated in PT compared to AT (t-test q < 0.05;

115 PT versus 52 AT samples, respectively) (Fig. 1B).

By contrast to the pro-oncogenic CPG subset, the list

of the top 1000 DEGs up-regulated in PT compared

to AT, included, as expected, cell cycle, cell division

and mitosis gene enrichment; the FA/GO terms essen-

tially predominated over the other FA/GO terms,

including TER gene terms (Fig. 1F) (i.e. the FA/GO

terms ‘GO:0000278~mitotic cell cycle’ with

P = 3.7 9 10�38 and ‘GO:0006414~translational elon-

gation’ with P = 2.9 9 10�4). Independently, PANTHER

(Thomas et al., 2006) identified similar highly enriched

and significant FA/GO terms (Fig. S4).

Thus, these findings suggest that, in AT, the genes

encoding translation elongation, ribosome machinery

components and ribosomal biogenesis in general might

pre-exist in malignant predisposition (e.g. pre-cancer

tissue initiated by mutations, viral, metabolic or epige-

netic reprogramming) and/or PT-activated ‘canceriza-

tion’ behaviors. In both cases, pro-tumorigenic

cellular/tissue behavior in AT may be the result of

switching-on/exerting cellular extra-ribosomal func-

tions (Coulouarn et al., 2006; Kim et al., 2004; Lind-

strom, 2009; Wang et al., 2015b). In pathobiological

and clinical contexts, the TER CPGs could be consid-

ered novel and perspective diagnostic factors of host–
cancer interactions and prognostic biomarkers. The

prognostic utility of TER CPGs is based on the detec-

tion of similar pathobiological alterations and disease

outcome prediction patterns in PT and AT. The differ-

ences in the expression profiles between PT and AT, as

expected, are predominantly defined by cell cycle/mito-

sis genes. As described below, we performed several

basic computational and experimental analyses

addressing the pathobiology characteristics of TER

CPGs and their clinical significance.

3.2. RGC: identification, robustness and

reproducibility across cohorts

Using Singapore cohort gene expression and patient’s

survival data, we tested the utility of the identified

CPGs as multigene prognostic HCC biomarkers.

Based on the previous steps of the workflow (Fig. S2),

‘GO:0006412~translational elongation’ displayed the

strong term enrichment P-values among the other

CPG GO terms (Figs. 1F and S4). We used the 44

gene symbols under this term, referred to as ‘TER

genes (Singapore)’ (Table S3). The 44 gene subset

includes two translational elongation genes (EEF1A1

and EEF1B2); the other 42 genes were specified by cel-

lular component category as ‘GO:0005840~ribosome’.

By using the same method as we applied in Singapore

cohort, we identified stratification cut-off values of

individual genes and selected pro-oncogenic CPGs in

the LGI cohort PT – AT paired samples. We also car-

ried out GO enrichment analysis. As result, we identi-

fied 60 CPGs (Table S4) specified the highest enriched

gene term ‘GO:0006412-transcriptional elongation’

(Fig. S5A). The next most significant GO term was

‘GO:0005840~ribosome’. Remarkably, an independent

identification of the pro-oncogenic CPGs in the

Singapore and LCI cohorts led to a highly significant

overlapping between the CPGs identified in the LCI

and Singapore cohorts (hypergeometric test,

P = 1.5 9 1080; Fig. S5B). Next, we applied 1-D DDg

to the 115 available PT samples in Singapore cohort

as a discovery dataset and selected the CPGs satisfying

the Wald statistics cut-off value at P < 0.05. As result

of SWVg implementation (see Methods), the 24 most

prognostically significant ribosome genes were selected

from the PT TER genes (Singapore) and formed our

HCC prognostic model (Table S5A). Table 2 provides

an annotation of these 24 ribosomal genes. The inte-

grated SWVg risk score was calculated for each indi-

vidual patient. The SWVg scores for all patients were

refitted to the survival data, and the optimal SWVg

score cut-off value for patient stratification was deter-

mined (cut-off = 1.42; Fig. 2A). The classifier success-

fully stratified the Singapore HCC patients using either

PT (Fig. 2C) or AT (Fig. 3A) microarray data sets:

P = 9.3 9 10�6, hazard ratio = 8.20 (3.24–20.8) for

PT-based prognostic stratification and P = 0.03, haz-

ard ratio = 4.97 (1.21–20.35) for AT-based prognostic

stratification. We referred to this new CPG-based

HCC classifier as the RGC.

Next, to test the reproducibility and robustness of

the RGC, we performed a validation analysis of the

classifier using data from an independent HCC cohort
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(LCI cohort, 206 HCC patients, Methods). In the con-

texts of robustness and reproducibility of the potential

RGC predictors, we carried out a comparison of the

1D DDg results obtained in Singapore and LGI data-

sets. Our results, presented in Table S5 suggest a high

probability of occurrence of the same survival signifi-

cant genes in PT of LGI cohort and ability to use

Singapore PT data as a training set to develop multi-

gene prognostic signature(s) (see also Supporting infor-

mation: Comparison of 1D DDg results obtained in

the Singapore and LGI datasets). The individual stra-

tification gene expression cut-off values obtained from

the 1-D DDg and the SWVg risk score cut-off value

(cut-off = 1.42) in the Singapore cohort were used for

LCI patient stratification (Fig. 2B). The strict fixation

of the pro-oncogenic type of prognosis variables and

parameter values in the 1-D DDg and SWVg proce-

dures in the Singapore cohort (training) enabled a

prognosis prediction blinded to the survival data (de-

fined by overall survival, OS) in the validation (LCI)

cohort (at Wald P = 0.004) (Fig. 2D). The stratifica-

tion results in two datasets Singapore and LCI

(Fig. 2C,D) can be represented by the fractions of

patients within each cohort of particular interest, such

as HR. This event is represented in the Singapore and

LCI cohorts with the proportions 38/115 = 0.33 and

53/206 = 0.26, respectively. We found that the 95% CI

for the difference between these proportions was not

significant, which suggests subpopulation similarity

across different cohorts. Independently, the inter-

cohort subgroups agreement analysis using the Sub-

Map algorithm (Hoshida et al., 2007) revealed that the

ordered HRT and LRT subgroups based on the results

of patient stratification displayed significant agreement

between the Singapore and LCI cohorts (Fig. 2E).

Thus, these results suggest that the RGC enables the

identification of the robust predicting system for HCC

inter-cohort prognosis.

Finally, we also addressed the question of whether the

highly enriched DEGs differentiating PT and AT could

provide a reproducible prognostic signature of HCC.

Using Singapore data, we selected the DEG subset

identified under the three most highly enriched

FA/GO terms (‘GO:0000278~mitotic cell cycle’,

‘GO:0051301~cell division’ and ‘GO:0007067~mitotic

nuclear division’) (Fig. 1F). These genes were further

processed using 1-D DDg, as described in the Materials

and methods. We further selected the genes that dis-

played significant Wald P-values (P < 0.05) in the

Kaplan–Meier survival analysis (Table S6). Next,

SWVg analysis generated a 41-gene prognostic signature

represented by mitosis/cell cycle genes (Table S6). The

41-gene prognostic signature displayed significant HCC

patient partitioning in the Singapore cohort (Fig. S6A).

Table 2. Pro-oncogenic ribosomal genes of the 24-gene HCC prognostic classifier.

Number

Host gene

symbol Illumina probe ID RNA ID

Host gene description

(UCSC genome browser)

Chromosome

band

1 RPL9 ILMN_1750507 NM_001024921 Ribosomal protein L9 4p13

2 RPL12 ILMN_2116366 NM_000976 Ribosomal protein L12 9q34

3 RPL26 ILMN_1731546 NM_000987 Ribosomal protein L26 17p13

4 RPL37 ILMN_2191634 NM_000997 Ribosomal protein L37 5p13.1

5 RPL31 ILMN_1754195 NM_000993 Ribosomal protein L31 2q11.2

6 RPL41 ILMN_2331890 NM_001035267 Ribosomal protein L41 12q13

7 RPL30 ILMN_1754303 NM_000989 Ribosomal protein L30 8q22

8 RPS9 ILMN_1749447 NM_001013 Ribosomal protein S9 19q13.4

9 RPS15A ILMN_1787949 NM_001030009 Ribosomal protein S15a 16p12.3

10 RPS25 ILMN_1746516 NM_001028 Ribosomal protein S25 11q23.3

11 RPS11 ILMN_1740587 NM_001015 Ribosomal protein S11 19q13.3

12 RPS4X ILMN_2166831 NM_001007 Ribosomal protein S4, X-linked Xq13.1

13 RPL19 ILMN_1701832 NM_000981 Ribosomal protein L19 17q12

14 RPL32 ILMN_2400143 NM_001007073 Ribosomal protein L32 3q13.3-q21

15 RPS5 ILMN_1707810 NM_001009 Ribosomal protein S5 19q13.4

16 RPL34 ILMN_1706873 NM_000995 Ribosomal protein L34 4q25

17 RPL3 ILMN_2319994 NM_001033853 Ribosomal protein L3 22q13

18 RPL36 ILMN_1685088 NM_033643 Ribosomal protein L36 19p13.2

19 RPS2 ILMN_2218277 NM_002952 Ribosomal protein S2 16p13.3

20 RPL15 ILMN_1762747 NM_002948 Ribosomal protein L15 3p24.1

21 RPS13 ILMN_1777344 NM_001017 Ribosomal protein S13 11p

22 RPL18A ILMN_2141452 NM_000980 Ribosomal protein l18a 19p13.11

23 RPS12 ILMN_1782621 NM_001016 Ribosomal protein S12 6q23

24 RPL17 ILMN_1655422 NM_000985 Ribosomal protein L17 18q21
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However, this signature failed in validation in the LCI

cohort (using the same procedure as that used for the

RGC described above) (Fig. S6B). Non-significant

result we also observed in AT of LCI cohort (Fig. S5D

versus Fig. S5C). The lack of reproducibility could be

explained by the relatively high inter-cohort variation in

the environmental, ethnic, clinical and pathological

parameters that are relevant to cell cycle/mitotic gene

expression and relevant pathways.

By contrast, the RGC signature (based on the CPG

model; Table S5A) led to reproducible predictions and

consistent results for individual predictor genes (see

Tables 2 and S5A) and their multigene classifier

(Fig. 2C,D; Table S5A).

Altogether, these results indicate the relatively high

robustness of the prognostic model to inter-cohort

variations in environmental, ethnic, clinical and

pathological parameters to CPGs expression and rele-

vant pathways.

3.3. RGC is an independent prognostic factor for

HCC progression

The list of clinicopathological parameters available for

analysis in Singapore and LCI cohorts is presented in

Table 1. For many of these parameters, we detected

significant differences in distributions between Singa-

pore and LCI cohorts (Table 1; see also the Support-

ing information: Comparison of standard

clinicopathological parameters between the Singapore

and LCI cohorts). Such differences between the

cohorts could probably be explained by the differences

in the environmental factors, healthcare systems and

non-identical study design between LCI (Roessler

Fig. 2. Cross-cohort validation of the RGC in PT. (A, B) The results of the SWV procedure for the selected 24 ribosomal genes in the

Singapore (A) and LCI (B) HCC patient cohorts (see Results). Green: LR HCC patients (LRT subgroup); blue: HR HCC patients (HRT

subgroup). (C, D) Kaplan–Meier survival curves for integrated patient partitions in the Singapore and LCI HCC cohorts, respectively. x-axis:

OS, years; y-axis: patient survival probability. (E) Subclass association matrix obtained as a result summary of the SubMap analysis (see

Materials and methods). The bottom left red quadrant indicates the significant similarity between the two LRT subgroups, the top right

quadrant indicates the significant similarity between the two HRT subgroups (in the Singapore and LCI cohorts, respectively).
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et al., 2010) and Singapore cohorts and/or various

accepted HCC patient diagnoses and treatment guideli-

nes between LCI and Singapore cohorts (Han et al.,

2011). We used univariate and multivariate Cox regres-

sion analyses to compare the prognostic performance

of the RGC with these clinical factors (Table 3).

In the Singapore cohort, the parameters metastasis

and extra-hepatic invasion were excluded from the anal-

ysis as a result of their low informativeness. HCV status

was excluded because of a substantial amount of miss-

ing data in the Singapore and LCI cohorts (Table 1).

Univariate analysis shows that in addition to albu-

min expression (P = 0.03), tumor, node and metasta-

sis (TNM) staging (P = 0.007) and Barcelona clinic

liver cancer (BCLC) staging (P = 0.002), the RGC

classification was a significant indicator for OS

(P = 9.4 9 10�6) in the Singapore cohort. In the LCI

cohort, significant prognostic powers were observed

for the RGC (P = 0.004), tumor size (P = 0.01),

multiple/solitary tumor formation (P = 0.02) and cir-

rhosis status (P = 0.04). The TNM and BCLC stag-

ing displayed the best prognostic performances

(P = 4.0 9 10�7 and P = 1.4 9 10�8, respectively).

In the univariate analysis, combining the overall data

for the training and validation cohorts revealed the

following prognostically significant variables: AFP

level (P = 0.02), tumor size (P = 0.03), multiple/soli-

tary tumors (P = 0.009), liver cirrhosis status

(P = 0.02), TNM staging (P = 6.6 9 10�9), BCLC

staging (P = 2.1 9 10�10) and the RGC

(P = 1.6 9 10�6). Interestingly, in additional associa-

tion analyses of RGC with clinical phenotypes

(Table S7), we detected its significant association with

AFP levels (P = 1.8 9 10�7) and BCLC classification

(P = 0.004) in the LCI cohort and with AFP level

(P = 1.0 9 10�3), multinodular tumors (P = 0.03)

Fig. 3. RGC-based stratification in AT and PT. (A, B) Training and cross-cohort validation of the RGC in AT. Kaplan–Meier survival curves for

integrated patient partitions in the Singapore and LCI HCC cohorts, correspondingly. (C) Contingency table for HCC patient stratification in

PT and AT in the LCI cohort. The combined LR subgroup LRT&A included the patients stratified only as LR using gene expression

information from PT and AT (blue). The HR subgroup HRT&A included the remaining patients (pink). (D) Combined stratification (cohort

validation model) using information from PT and AT in the LCI cohort.
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and BCLC staging (P = 0.005) in the overall cohort

(Table S7). However, in the multivariate analysis

(Table 3), the RGC classification retained its indepen-

dent prognostic value (P = 0.0002 in Singapore cohort,

P = 0.04 in the LCI cohort and P = 5.5 9 10�5 com-

pared to TNM staging (P = 0.03) and BCLC staging

(P = 0.003), in the overall cohort) (Table 3). These

analyses suggest that the RGC could be considered an

independent prognostic factor for HCC.

3.4. The PT RGC prognostic pattern is

reproducible in AT data

We tested the performance of the RGC using the AT

expression data of the Singapore (training) and LCI

cohorts (validation). For prognosis using AT data, we

implemented the same stratification algorithm as

implemented for the discovery of RGC in the analysis

of PT data (Fig. 2). The use of AT data for RGC

training resulted in a significant Singapore HCC

patient stratification (the HRA and LRA subgroups,

Wald P < 0.05) (Fig. 3A). Additionally, the difference

between the agreement scores of the HR proportions

between PT and AT was not significant, suggesting a

similarity of stratification between the PT and AT

using RGCs in the Singapore cohort. The strict fixa-

tion of the pro-oncogenic type of prognosis variables

and parameter values in the 1-D DDg and SWVg pro-

cedures in the Singapore cohort (training) enabled a

prognosis prediction blinded to the survival data in the

validation (LCI) cohort (at Wald P = 0.03) (Fig. 3B).

Notably, the 41-gene signature based on cell cycle

genes generated from DEGs between PT and AT

(Table S6) failed in cross-cohort validation in AT

(Fig. S6C,D) and would have questionable clinical

utility.

3.5. RGC power can be improved by combining

PT and AT gene expression data

Next, we proposed that the grouping of common LR

patients from relatively low-risk LRT and LTA progno-

sis subgroups identified in PT and AT could improve

the stratifying power of the RGC. We combined person-

alized RGC data from the PT and AT datasets and con-

structed HRT&A and LRT&A subgroups (Fig. 3C).

Using LCI data as an example, we observed a positive

interaction effect. The Wald P-value in the combined

classifier was P = 1.2 9 10�4 (Fig. 3D) compared to

P = 0.003 and P = 0.03 in the PT-based (Fig. 2D)

and AT-based (Fig. 3B) stratification prognostic mod-

els, respectively. We also tested the other combination

scenario, alternative to that shown in Fig. 3C,

stratifying common HR patients from HRA and HRT

subgroups as a combined HRT&A patient subgroup.

However, an imbalanced stratification into risk sub-

groups (i.e. n = 196 in the LR subgroup and n = 10 in

the HR subgroup) was observed that limits predictive

power (not shown data). We concluded that the prog-

nostic power of the original PT-based RGC can be

improved using RGC obtained from AT.

3.6. The RGC-based stratification of HCC patients

reveals deregulated pathways in PT and AT

The deregulated pathway associated with RGC-defined

HCC patient risk subgroups might be useful for

designing new molecular targets and developing thera-

pies for RGC-stratified HCC patients. Using DAVID

software, the FA/GO enrichment analysis of the up-

regulated DEGs observed in the HR subgroups (HRT

and HRA) revealed FA/GO terms related to ribosomes,

translation and the cell cycle in both the PT and AT,

although the high enrichment of terms related to cyto-

plasmic vesicles was only observed in AT (Fig. 4A).

The DEGs down-regulated in the HRT and HRA sub-

groups displayed various common enriched terms,

including deregulated liver metabolism [FA/GO terms

‘lipid metabolism,’ ‘carboxylic acid metabolic process’

(SP_PIR_KEYWORDS)] and mitochondrial dysfunc-

tion [e.g. FA/GO terms ‘GO:0005739~ mitochondrion’

and ‘oxidoreductase’ (SP_PIR_KEYWORDS)]

(Fig. 4A).

Exclusively in PT (Fig. S7A), MetaCore Pathway

Maps Analysis identified the deregulation of the genes

involved in the WNT pathway (Fig. S7B). DKK1,

DVL3, b-catenin (CTNNB1), casein kinase II

(CSNK2A and CSNK2A2) and LEF1 were significantly

up-regulated, whereas GSK3-b (GSK3B) was signifi-

cantly down-regulated (Fig. S8). These gene expression

alterations are characteristic of WNT pathway deregu-

lation (Tannock and Hill, 2013).

TGFBR2 and MYC were significantly overexpressed

in the up-regulated DEGs of both HRT and HRA

patient subgroups (Tables S8 and S9). Our results,

shown in Fig. 5 and Supporting information (section:

MYC as a key regulator of ribosomal pathway in

HCC PT and AT), provide the evidences that MYC

is a key positive transcription regulator of the RGC

and TER genes in PT and AT. MetaCore identified

MYC as the most significant transcription factor inter-

actor among the DEGs in the both PT and AT

(Fig. 5D and Tables S8 and S9). Furthermore, com-

bining gene expression correlation, FA/GO and ChIP-

seq analyses revealed that MYC might be the primary

positive transcription regulator of the genes involved
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in the TER pathway (Fig. 5; Tables S3 and S10) in

both PT and AT cells (Figs 5C and S9; see also the

Supporting information: MYC as a key regulator of

ribosomal pathway in HCC PT and AT).

MetaCore Pathway Map analysis suggested that

DNA double-strand break repair was characteristic of

the PT but not AT (Fig. S7B). In both PT and AT, we

identified the enrichment for cell cycle, cytoskeleton

remodeling, and vascular endothelial growth factor

and transforming growth factor-b receptor signaling.

The ‘GO localization’ category identified common GO

terms for PT and AT for extracellular vesicles and

exosomes, cell adherence junctions, focal adhesions

and ribosomes (Fig. 4B), which suggested a

deregulation of extracellular exosomal transport in the

HRT and HRA HCC subgroups. For the PT-specific

gene subset, we found no association with extracellular

vesicles. However, the AT-specific subset was addition-

ally associated with extracellular exosomes and endo-

somes. In the common PT and AT gene subset, 15

RGC genes were annotated under the MetaCore term

‘extracellular exosome’ (Fig. S7C). In the AT-specific

subset, at least eleven genes annotated under the term

‘endosome’ have previously been associated with endo-

some-specific functions (Fig. S7C and Table S11).

Within the up-regulated AT-specific DEGs subset, we

identified multiple enriched Pathway Maps, indicating

an activated immune response in the AT (Fig. S7B).

Fig. 4. Comparison of biological pathways between the RGC-derived HCC patient subgroups in PT and AT (DAVID and MetaCore software).

(A) DAVID FA/GO heat map analysis (excluding 24 genes comprising the RGC) for the DEG subsets. Up-regulated and down-regulated DEGs

in HR subgroups (HRT and HRA) after RGC-stratification in PT and AT and common for the Singapore and LCI cohorts. (B) Venn diagram and

MetaCore cellular compartments heatmap analysis of tissue-specific and common prognostic DEGs for PT and AT up-regulated in HRT and

HRA subgroups in the two studied cohorts. Gray cells: nonsignificant FA/GO terms. Color gradient: significant FA/GO terms [Benjamini

corrected Fisher test –log10 P-values (P < 0.05)].
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Importantly, the comparison between nonstratified

PT and AT in the Singapore and LCI cohorts revealed

global systematic differences in the gene expression pro-

files between these tissue types for common PT and AT

prognostic pathways (Fig. 6A,B). However, after RGC-

based stratification, the representative common prog-

nostic pathways (TER, cell cycle/cell division, extracel-

lular exosome, focal adhesion and liver metabolism)

(Table S12) displayed distinct characteristic gene

expression patterns within the PT and AT (Fig. 6C,D).

3.7. Validation of the RGC and RGC-associated

genes using quantitative RT-PCR in the

Singapore cohort

We assessed the reproducibility of the gene expres-

sion measurements in the microarray platform with

quantitative RT-PCR experiments using RNA sam-

ples from the Singapore cohort. We selected eight

representative ribosomal genes from the RGC, seven

representative up-regulated WNT pathway genes and

Fig. 5. The computational analyses and hypothetical data-driven model suggest the role of the TER pathway in PT and AT of HCC patients.

(A, B) Correlation analyses of MYC in the Singapore and LCI cohorts in PT, AT. x-axis: Kendall’s Tau correlation coefficient; y-axis:

cumulative relative frequency. Black circles: correlation coefficients for TER gene sets (‘TER gene set (Singapore)’ and ‘TER gene set (LCI)’;

white circles: correlation coefficients for random control gene set (see also the Supporting information: MYC as a key regulator of ribosomal

pathway in HCC PT and AT). Dashed lines indicate medians for correlation coefficients distributions. (C) Frequencies of MYC ChIP-seq

binding regions in HepG2 cells in the vicinity of proximal promoters (+200/�500 bp) in TER gene sets and DEGs up-regulated in HRT

subgroups. x-axis: various gene sets; y-axis: frequency of ChIP-seq binding regions (%). Differences in the frequencies assessed using

Fisher’s exact test (see the Supporting information: MYC as a key regulator of ribosomal pathway in HCC PT and AT). (D) MetaCore

transcription factors interactors significantly enriched for the DEGs after RGC stratification in PT and AT. x-axis: �log10 transformation of

FDR-corrected P-values (P < 0.05); y-axis: MetaCore terms for transcription factor (TF) interactors. (E) Correlation analysis of MYC with eight

representative TER genes and five genes involved in liver metabolism based on quantitative RT-PCR data from 92 PT samples from the

Singapore cohort. PCC, Pearson’s correlation coefficient. (F) Hypothetical data-driven model of the TER pathway in PT and AT of HCC

patients. Red and blue arrows: genes up-regulated and genes down-regulated in HR HCC patient subgroups, respectively. TER, translation

elongation/ribosomal genes; CC/CD, cell cycle/cell division genes; EE and FA, extracellular exosome and focal adhesion genes, respectively.

LM, genes involved in liver metabolism.
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five representative down-regulated genes involved in

liver metabolism in the HRT subgroups in both

cohorts. For the eight tested RGC genes (RPL9,

RPL12, RPL26, RPL31, RPL41, RPS9, RPS25 and

RPS4X) and four tested up-regulated WNT pathway

genes (MYC, ENC1, CTNNB1 and LEF1), we

observed a strong and significant correlation with

the microarray results (Fig. S10). We also tested the

consistency in differential gene expression in these

samples by comparing patients from the HRT and

LRT subgroups originally classified using microarray

gene expression data (Fig. S11). The quantitative

RT-PCR analysis indicated that the 15 up-regulated

genes from the HRT subgroup (based on the

microarray data, Fig. S11A,B) were up-regulated in

randomly selected patients from the HRT subgroup

compared to the LRT subgroup (Fig. S11D); the five

down-regulated genes from the HRT subgroup (based

on the microarray data) (Fig. S11C) were down-

regulated in randomly selected patients from the

HRT subgroup compared to the LRT subgroup

(Fig. S11D).

Finally, the RGC stratification power using the

quantitative RT-PCR expression data was comparable

to that of the microarray expression data (Fig. S11E

versus Fig. 2C). In total, we analyzed PT from 92

HCC patients from Singapore cohort. The patients

were selected at random. Patient’s stratification was

HRA
(AT)

LRT
(PT)

HRT
( PT)

LRA
(AT)

All AT
Log2 : 13.82.7 9.2Log2 :

All PT

HRA
(AT)

LRT
(PT)

HRT
( PT)

LRA
(AT)

15.710.02

All ATAll PT

TER 

CC/CD

LM

EE

FA

RGC
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CC/CD
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FA
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CC/CD

LM

EE
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TER 

CC/CD

LM

EE
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B
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Fig. 6. Gene expression heatmap for representative genes of common prognostic pathways in the nonstratified and RGC-stratified PT and

AT. The heatmap before (A, B) and after (C, D) stratification of HCC patients using the RGC. (A, C) Singapore cohort. (B, D) LCI HCC cohort.

The pathways for the up-regulated or down-regulated DEGs in HR subgroups were selected as gene sets enriched under the specific FA/

GO terms (Table S12). TER, genes enriched under the FA/GO term ‘GO:0006414~translational elongation’ in PT; CC/CD: cell cycle/cell

division genes enriched under the FA/GO terms ‘GO:0007049~cell cycle’ and ‘cell division’ (SP_PIR_KEYWORDS); EE and FA, extracellular

exosome and focal adhesion genes enriched under the ‘GO localization’ terms (MetaCore) ‘extracellular exosome’ and ‘focal adhesion’,

respectively. LM, representative mitochondrial and oxidoreductase DEGs down-regulated in HR subgroups in both PT and AT and enriched

under the FA/GO terms ‘GO:0005739~mitochondrion’ and ‘oxidoreductase’. Mitochondria is known as an integrative energy hub of diverse

liver metabolism pathways (Degli Esposti et al., 2012). Heat map spectrum displays log2 transformed gene expression values.
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carried out according to the microarray identified

RGC genes, detected in PT samples by the qRT-PCR

(Fig. 2C). The quantitative RT-PCR based risk strati-

fication analysis results (Fig. S11E) suggest the appli-

cability of our prognostic model for quantitative

stratification of the LR and HR HCC patients.

3.8. DKK1 is a potential prognostic factor and

drug target

DKK1 was found to be the most up-regulated gene

in the HRT subgroups after whole transcriptome

screening. We thus also tested whether DKK1 gene

expression was associated with the RGC-based

classification at the protein level in the Singapore

HCC cohort. First, we selected six representative

HCC patients from the Singapore cohort (three

from HRT and three from LRT subgroups). Sec-

ond, we analyzed liver tumor FFPE section images

(Methods, Supporting information: Image based

analysis of immunohistochemistry slides) using a

training and cross-validation protocol for the SVR

system (Smola and Vapnik, 1997). We tested all

possible pairs of the HRT versus LRT patients

(nine pairs) by measuring the SVR scores of the

corresponding tumor tissue images. As expected,

the average predicted DKK1 SVR score of the

LRT patient images was significantly less than that

of the HRT patient images of the nine pairs

(Fig. S12). We proposed DKK1 as a potential

prognostic factor and drug target for a preclinical

study of anti-DKK1 therapy in HCC.

3.9. RGC-based HCC stratification outperformed

several known multigene HCC classifiers

The validation analyses of RGC in PT or AT HCC

samples and univariate and multivariate analyses of

the RGC suggest its robustness and reproducibility

across HCC patient cohorts. We compared the prog-

nostic power, robustness and reproducibility of the

RGC with those of several published prognostic HCC

multigene signatures. The comparison of the RGC

with the 65-gene risk signature (Kim et al., 2012), the

16-gene G1–G6 signature (Boyault et al., 2007), the

vascular invasion gene signature (Minguez et al., 2011)

and the 186-gene survival signature proposed for the

analysis in AT (Hoshida et al., 2008) revealed the

prognostic outperformance of the RGC in PT or AT

in the cohorts under investigation (see Supporting

information: RGC-based HCC stratification perfor-

mance). Briefly, in the combined overall HCC group,

the first three gene signatures displayed nonsignificant

prognostic power: 65-gene risk signature, P = 0.12,

hazard ratio = 0.73 (95% CI = 0.50–1.09); the 16-gene

G1–G6 signature, P = 0.3, hazard ratio = 1.24 (95%

CI = 0.84–1.84); vascular invasion gene signature,

P = 0.3, hazard ratio = 1.27 (95% CI = 0.86–1.87)
(not shown). The 5-gene risk score signature proposed

by Nault et al. (2013) was the only gene signature

showing a significant prognostic value in PT, compara-

ble with the RGC: 5-gene risk score, P = 3.1 9 10�6,

hazard ratio = 2.57 (95% CI = 1.73–3.81) versus

RGC, P = 1.6 9 10�6, hazard ratio = 2.63 (95%

CI = 1.77–3.92), respectively (Fig. S13A,B). Compar-

ison of the patients stratified in the RGC-derived HRT

subgroups with the HR patients, identified using the 5-

gene score signature in the two HCC groups, revealed

substantial differences in their stratification: more than

50% of patients from HRT subgroup were stratified

using the 5-gene score signature as a LR subgroup

(Fig. S13C).

The RGC displayed stronger prognostic power com-

pared to the 186-gene survival signature in AT [RGC:

P = 4.7 9 10�3, hazard ratio = 2.01 (95% CI = 1.24–
3.26); 186-gene signature: P = 0.01, hazard

ratio = 1.77 (95% CI = 1.13–2.77)] (Fig. S13D,E).

Interestingly, the combined use of the 186-gene signa-

ture with the RGC substantially improved the prog-

nostic power [Wald P = 8.6 9 10�4, hazard

ratio = 2.43 (95% CI = 1.42–3.87)] (Fig. S13F).
Finally, the RGC retained its prognostic power in

multivariate analysis in PT compared to the 5-gene

risk score [RGC, P = 3.2 9 10�4, hazard ratio = 2.15

(95% CI = 1.42–3.25] versus 5-gene risk score signa-

ture [P = 5.7 9 10�4, hazard ratio = 2.07 (95%

CI = 1.37–3.14)] and in AT compared with the 186-

gene survival signature [RGC, P = 0.02, hazard

ratio = 1.80 (95% CI = 1.10–2.95)] versus 186-gene

survival signature [P = 0.04, hazard ratio = 1.62

(95% CI = 1.02–2.56)] (Fig. S13G).

These results showed the superiority or independent

prognostic power of the RGC compared to other pro-

posed multigene prognostic signatures.

4. Discussion

Previous studies have identified the pathobiological

pathways and clinically relevant HCC prognostic clas-

sifiers that utilized PT; PT with the AT serving as a

negative control; or AT alone (Hoshida et al., 2008).

However, increasing evidence indicates the presence of

common co-regulatory processes, signaling pathways

and molecular mechanisms that drive PT and AT com-

partments (Polyak et al., 2009), resulting in their inter-

connection and complex regulatory patterns.
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In the present study, we developed a prognostic

stratification approach to identify common oncogenic

pathways and survival significant prognostic variables

in the PT and AT of HCC patients with resectable PT.

This methodological approach revealed common co-

expression patterns for multiple PT- and AT-asso-

ciated TER pathway genes that are reproducibly asso-

ciated with aggressive HCC. Further analysis

suggested that this might reflect the pathophysiological

mechanics of the TER pathway in HCC progression.

We identified 24-ribosomal gene classifier (termed

RGC) that displayed the significant PT-associated

prognostic power in the studied HCC patient cohorts.

The RGC was clinically (Fig. 2C,D) and genetically

(i.e. identical enriched biological gene sets) (Fig. 2E)

reproducible in a large independent HCC patient data-

set. The RGC retained its significant and independent

prognostic power in a multivariate analysis compared

to the traditional clinicopathological parameters of

HCC (Table 3). A comparison of RGC with the 65-

gene risk signature (Kim et al., 2012), the 16-gene G1–
G6 signature (Boyault et al., 2007) and the vascular

invasion gene signature (Minguez et al., 2011), previ-

ously proposed for prognosis in PT, demonstrated the

outperforming prognostic power of the RGC. The

RGC displayed comparable and independent prognos-

tic potential (i.e. clinical reproducibility) compared to

the 5-gene score signature of Nault et al. (2013)

(Fig. S13A–C), which was also developed for HCC

patients with curative resection. However, in contrast

to the RGC, the genetic reproducibility of the 5-gene

score signature remains unclear because it has not

been tested (Nault et al., 2013). Notably, the alterna-

tive proliferative 41-gene cell cycle gene signature gen-

erated from DEGs between PT and AT failed in cross-

cohort validation (Fig. S6), indicating the limitations

of cell cycle-based DEG approach(s) for generating a

reproducible HCC prognostic classifier.

RGC could be considered for prognosis using gene

expression information not only from PT, but also

from AT in the same HCC patients (Fig. 4A–B). Com-

parison of the RGC with the 186-gene survival signa-

ture, previously developed for prognosis in AT

(Hoshida et al., 2008), revealed a stronger and inde-

pendent prognostic value for the RGC in the studied

cohorts (see Materials and methods; Fig. S13; see also

the Supporting information: RGC-based HCC stratifi-

cation performance). Thus, the RGC could potentially

be used for pre-surgery prognostic patient stratification

using AT biopsy tissue samples. The AT-based RGC

stratification could minimize the risks of post-biopsy

tumor dissemination and intrahepatic metastasis. Inter-

estingly, the combined use of the RGC with the 186-

gene survival signature (Fig. S13F) or the RGC alone

in both PT and AT (Fig. 3D) can significantly improve

the post-surgical prognostic power of the RGC.

The tumor suppressor genes FBP1 and SPOP

and their products acting as CPGs in HCC livers may

also be important diagnostic and prognostic biomark-

ers and therapeutic targets.

The data analysis of DEGs in the RGC-derived HR

patient subgroups in the PT revealed the deregulation

of key WNT pathway-associated genes, including

DKK1, MYC, CTNNB1 and LEF1. Therefore, the

RGC prognostic stratification in the PT reflects the

deregulation of the upstream regulatory molecular

machinery towards the WNT-b-catenin-MYC axis.

DKK1 has previously been demonstrated as a

promising diagnostic and prognostic factor of HCC

(Shen et al., 2012; Yu et al., 2009). After RGC-based

stratification, DKK1 was the most up-regulated DEG

between the HRT and LRT subgroups (PT) in both

LCI and Singapore cohorts (Table S8) and was found

to be a pro-oncogenic prognostic factor (Fig. S12A,

B). This finding was validated using quantitative

RT-PCR (Fig. S11), strongly confirming the results of

previous reports. Additionally, quantitative DKK1

immunostaining demonstrated a significant association

between DKK1 overexpression and the RGC classifica-

tion (Fig. S12; see the Supporting information: Image

based analysis of immunochemistry slides). Because

DKK1 has been demonstrated to be a pathologically

essential and strong prognostic factor in several stud-

ies, including ours, DKK1 could be a potential candi-

date for a future preclinical study of anti-DKK1

therapy in HCC, as described for myeloma (Fulciniti

et al., 2009) and osteosarcoma (Goldstein et al.,

2016).

The results of the present study suggest that the sub-

set of TER pathway genes (including the RGC genes)

and multiple DEGs associated with alterations of this

pathway might simultaneously be controlled by MYC

in the PT and AT cells of HCC patients (Fig. 5A–E).
By contrast to PT, we did not observe a significant

enrichment of deregulated WNT pathway genes in AT

(Fig. S7B), indicating that other factors, such as pro-

gression of viral HBV and/or chronic liver disease

(Chan et al., 2004), may deregulate AT-associated

MYC expression and TER pathway genes during

HCC progression. Interestingly, the HBx HBV viral

protein can cooperate with MYC to support ribosome

biogenesis in HCC cell lines (Shukla and Kumar,

2012).

CPG-based prognostic biomarker preselection

resulted in the detection of enriched FA/GO terms,

where the enrichment for TER genes substantially
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predominated over the enrichment for cell cycle/cell

division genes (Figs 1F and S4; see also the Support-

ing information: MYC as a key regulator of ribosomal

pathway in HCC PT and AT).

Furthermore, we found that HR patient HCC sub-

groups after RGC stratification were characterized by

a predominance of up-regulated TER genes and a sub-

set of down-regulated liver metabolism genes (Fig. 4).

In this respect, an interesting study (Coulouarn et al.,

2006) described a comparison of the global gene

expression profiles of liver pre-neoplastic nodules in

three transgenic mouse models with the over-expres-

sion of c-Myc alone, E2f1 alone, and both E2f1/c-

Myc, respectively. Interestingly, the gene expression

profiles for the liver pre-neoplastic nodules detected in

the c-Myc over-expression mouse model were specifi-

cally characterized by induction of the genes involved

in protein synthesis and the repression of the genes

regulating liver metabolism. Noteworthy, the gene

expression patterns observed in HRT and HRA sub-

groups (Fig. 4) displayed a remarkable similarity with

that of the transgenic Myc mouse model of pre-neo-

plastic liver nodules. We suggest that the results and

RGC-based prognostic model developed in the present

study probably reflect the essential pathobiological

processes in early-stage MYC-driven malignization in

AT liver cells, which consequently affect tumor pro-

gression and poor OS of HCC patients.

Recent studies support this notion, highlighting

many examples of the tumorigenic extra-ribosomal

functions of the genes involved in translation (Kim

et al., 2004; Wang et al., 2015b) and their active and

important roles in cell cycle regulation and apoptosis

(Stumpf et al., 2013). At certain stages of tumorigene-

sis, TER pathway genes could play a role in pro-onco-

genic dysregulation, malignization and cancer

progression in liver tissue. In this context, uncontrolled

cell cycle and cell division, as major features of malig-

nancy and progression drivers distinguishing PT from

AT (Fig. 1F), may be considered just as another com-

ponent of the entire pathobiology process.

Details of the molecular mechanisms underlying the

co-expression of pro-oncogenic TER genes in PT and

AT are not understood; this could be the subject of

future studies. However, this does not exclude the pos-

sibility that the TER (and many other RGC-associated

genes, some of which were described and considered in

the present study) is responsible for the cross-tissue

interactions between PT and AT during HCC progres-

sion. For example, TGFBR2, a key extracellular signal-

ing regulator in multiple cancers (Morris et al., 2012),

was significantly overexpressed in the HR RGC

subgroups in both the PT and AT. The TER pathway

genes were significantly associated with genes encoding

extracellular vesicular and exosomal components, focal

adhesions and adherence junctions (Fig. 4), assuming

the hypothetical transfer of ribosomal mRNAs and

proteins between the PT and AT as the potential cellu-

lar reprogramming/malignization factors. Notably, the

mRNAs of multiple TER pathway-associated genes

and rRNAs are often abundant in microvesicles/exo-

somes secreted by cancer cells (Jenjaroenpun et al.,

2013; Van Deun et al., 2014).

Thus, we propose the HCC-liver tissue interaction

model (Fig. 5F) in which the up-regulation of riboso-

mal CPGs expression could support tumor cell growth

and proliferation in PT by enhancing protein synthesis

and additionally inducing similar ribosome biogenesis

pathways in AT via the extra-ribosomal functions. In

addition, CPG products could be involved in tumori-

genic signaling pathways through activated extracellu-

lar exosomal trafficking (Fig. 5F).

The HR patient subgroups identified using the RGC

in PT and AT (Figs 2 and 3) would have wide-ranging

targeted treatment options throughout a single molecu-

lar cascade (Figs 4 and S8), thus enabling the further

identification of novel and efficient drugs for patient

subgroups with poor clinical outcomes (see also the

Supporting information: Potential therapeutic interven-

tion strategies after RGC-based HCC risk stratifica-

tion). Finally, the simultaneous targeting of common

prognostic genes and pathways in PT and AT may be

considered as an alternative approach for potentially

reducing post-surgery disease relapse.

The RGC stratification is comparatively simple (24

prognostic genes) and robust, yielding biologically con-

sistent and reproducible patient stratification (Fig. 2)

with a thoroughly characterized pathway deregulation

(Figs 4 and S8) for use as a practical HCC prognostic

assay.

There are limitations associated with the present

study. First, the tissues and clinical data were collected

retrospectively. Thus, this prognostic model needs fur-

ther validation in a prospective study. Second, the pre-

sent study only included HCC patients who underwent

surgical resection; they are a selected group and some

of our results may be not automatically extrapolated

to other clinical HCC groups. For example, the RGC

was cross-cohort validated in the LCI cohort, which

predominantly includes HBV-related HCC patients

(91%) with liver cirrhosis (92%); the RGC prognostic

utility for non-HBV-related HCC patients and/or

those without liver cirrhosis needs to be confirmed in

another study.
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In summary, our predictor selection and survival

prediction analysis identified the ribosome biogenesis

genes co-expressed in PT and AT from 321 HCC

patients. The 44 TER CPGs could be considered as

perspective HCC malignancy and prognostic biomark-

ers and targets for therapeutic implementations. We

proposed that the PT-inducted ribosomal biogenesis

associated with the activation of TER pathways leads

to extracellular signaling and ‘assimilation’ of a pro-

tumorigenic state in AT cells. In PT and AT, we intro-

duced the 24-ribosome gene-based prognostic classifier

suggesting a pathophysiological role of the ribosome

biogenesis in both tissues.
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