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Abstract
Medullary thyroid cancer (MTC) is a relatively uncommon yet prognostically
significant thyroid cancer. Several recent advances in the biology and current
or potential treatment of MTC are notable. These include a new understanding
of the developmental biology of the thyroid C cell, which heretofore was thought
to develop from the neural crest. RET, encoded by the most common driver
gene in MTC, has been shown to be a dual function kinase, thus expanding its
potential substrate repertoire. Promising new therapeutic developments are
occurring; many have recently progressed to clinical development. There are
new insights into RET inhibitor therapy for MTC. New strategies are being
developed to inhibit the RAS proteins, which are potential therapeutic targets in
MTC. Potential emerging immunotherapies for MTC are discussed. However,
gaps in our knowledge of the basic biology of the C cell, its transformation to
MTC, and the mechanisms of resistance to therapy impede progress; further
research in these areas would have a substantial impact on the field.
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Introduction
Medullary thyroid cancer (MTC) is a relatively uncommon 
(about 1,400 new cases per year in the US) cancer of the thyroid 
C cells, yet accounts for a substantial fraction of thyroid cancer 
mortality. Excellent comprehensive reviews of the biology, 
genetics, and management of MTC have been published1–9. 
Briefly, in 25% of MTC cases, the disease is hereditary,  
occurring as part of the MEN 2 syndromes (MEN 2A, MEN 2B, 
and familial medullary thyroid cancer) due to germline activating 
mutations of the RET receptor tyrosine kinase gene. RET is also  
mutated in about 50% of sporadic cases of MTC; in both  
hereditary and sporadic cases, specific mutations are correlated 
with phenotype and prognosis4,6. MTC is resistant to cytotoxic 
chemotherapy. RET inhibitors have provided significant  
clinical benefit; two RET inhibitors, vandetanib and cabozan-
tinib, are US Food and Drug Administration (FDA)-approved for 
the treatment of advanced MTC10–12. In this short and necessarily  
selective review, I discuss some recent advances in MTC and in 
related areas that are likely to affect MTC. I have tried to point out 
some other areas in which MTC research might be productively 
focused.

Biology of medullary thyroid cancer
Medullary thyroid cancer is not derived from the neural 
crest
For almost half a century, thyroid C cells have been thought 
to be derived from the neural crest. This hypothesis was based 
largely on chick-quail xenotransplantation studies by Le Douarin 
et al.13,14, which revealed that avian calcitonin-producing  
ultimobranchial bodies were derived from the neural crest. This 
model was extrapolated to mammalian species, in which the  
ultimobranchial bodies are derived from the fourth pharyngeal  
pouch and invade the thyroid during development, differenti-
ating into C cells. The neural crest derivation of mammalian  
ultimobranchial bodies and thyroid C cells was challenged by 
Kameda et al.15, who showed by cell-lineage tracing that mouse 
ultimobranchial bodies were not derived from neural crest cells. 
Recently, Johansson et al.16 used an elegant lineage-tracing  
scheme to confirm that mouse ultimobranchial bodies and  
thyroid C cells are not derived from neural crest cells but rather 
from pharyngeal endoderm. Nevertheless, C-cell development 
is significantly influenced by neural crest-derived cells17. These  
findings may have an impact on our understanding of the  
biology of mixed histology tumors, as discussed by DeLellis and  
Mangray8. While many of these are likely to be “collision  
tumors”, the endodermal origin of both C cells and follicular  
cells strengthens the possibility that some of these tumors arise 
from a single progenitor cell.

Understanding RET
A potential dramatic change in our understanding of RET kinase 
function is underway. Bagheri-Yarmand et al.18 reported that 
RET is not only a membrane-bound receptor tyrosine kinase, 
but also is localized to the nucleus. There, one of its functions 
is to inhibit the pro-apoptotic transcription factor ATF4. This 
antagonism of ATF4 activity provides a potential mechanism 
for the anti-apoptotic function of RET19. Remarkably, Bagheri- 
Yarmand et al.18 showed that RET appears to accomplish this 

inhibition by threonine phosphorylation of ATF4, marking it for 
proteolytic degradation; thus, RET is a dual specificity tyrosine-
threonine kinase. Plaza-Menacho et al.20 recently confirmed and 
extended this finding of dual specificity, showing that RET is  
autophosphorylated at serine 909 in the activation domain. 
While they show that this phosphorylation has no effect on RET  
enzymatic activity in vitro, they showed that it affects RET  
signaling in an in vivo model. In the Drosophila Ret2B model 
of MEN 2B, dRet M955T mutation, analogous to human RET  
M918T, results in a rough eye phenotype21. When a further 
dRet S946A mutation (analogous to human S909A) was intro-
duced, the rough eye phenotype was rescued. Plaza-Menacho 
et al.20 speculate that RET pS909 may function in docking of  
downstream effector proteins. This expanded specificity has the  
potential to expand the universe of substrates of RET; in any  
case, important RET effector substrate proteins still await  
identification.

Under-researched area: biology of C-cell transformation
Thus far, relatively little is known regarding the molecular steps 
of C-cell transformation leading to MTC22. This is due in large  
part to the rarity of C cells in the normal human and mouse  
thyroid, limiting their study to in situ methods. Cell-sorting  
methods applied to thyroid glands23–25 suggest that isolation of 
small numbers of normal or early dysplastic C cells may be  
feasible; functional and “omics” studies on such cell populations 
could sharply address our dearth of knowledge in this important 
area.

Genomics of medullary thyroid cancer
MTC cases typically have few mutations26. As mentioned, 
about 50% of sporadic cases have an activating point mutation 
in the RET gene. The only other common mutations identified 
in sporadic MTC are KRAS and HRAS; NRAS mutations are  
infrequent26–31. Recent reports have described ALK and RET gene 
rearrangements in sporadic MTC32,33. While these rearrangements 
are infrequent, they indicate the potential for targeted therapy in 
specific cases; perhaps even more importantly, they suggest the 
important role that these and other rearrangements may play in 
MTC. Rearrangements would not likely have been detected in 
whole exome sequencing studies of MTC26 and can play a dominant 
driver role in cancer development34–36.

Treatment of medullary thyroid cancer
RET inhibitors: fulfilling the promise
Introduction. Vandetanib and cabozantinib have changed the  
face of MTC systemic therapy, offering an effective targeted  
treatment. Nevertheless, both drugs are effective in less than half  
of patients with MTC and have significant adverse effects, and 
(even in responsive cases) resistance develops, typically within a 
few years.

Adverse effects. It is not clear which effects are off-target  
(non-RET) and which are on-target (due to RET inhibition).  
Since both vandetanib and cabozantinib are multikinase inhibi-
tors, there is some thought that more specific inhibitors may  
alleviate these effects. However, it is necessary to consider the  
possibility that the inhibition of some of the other kinases  
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targeted by these drugs contributes to their efficacy. The response  
of RET wild-type (wt) tumors may suggest that this occurs; the  
ability of both vandetanib and cabozantinib to inhibit VEGFR2 
suggests it as a potential candidate target, in which case VEGFR2-
dependent adverse effects may be inseparable from efficacy.

Resistance. As mentioned above, MTC commonly exhibits  
intrinsic resistance to RET inhibitors, and even those cases that 
are initially sensitive to RET inhibitors almost always develop 
acquired resistance, resulting in disease progression. A critical 
need in the field is an understanding of the mechanisms of intrin-
sic and acquired resistance to RET inhibitors in MTC. Numerous  
mechanisms for resistance to tyrosine kinase inhibitors (TKIs) 
have been described, including feedback signaling response,  
secondary mutations, or gene amplification in the TKI, 
bypass activation of other signaling or survival pathways, and  
pharmacokinetic/pharmacodynamic (PK/PD) issues; several 
resistance mechanisms can coexist in a single resistant tumor37.  
Mathematical modeling of resistance in other cancers has shown 
that even apparently acquired resistance may exist intrinsi-
cally as subclonal cell populations within the tumor, and such  
resistant cells can be selected by treatment38–40. That an under-
standing of the mechanisms of resistance can direct subsequent  
effective therapeutic strategies is not only intuitive; it has been 
demonstrated dramatically in many instances for TKIs and other 
targeted therapeutics41–46.

Some information regarding resistance to vandetanib and  
cabozantinib is available, but much further study is urgently needed. 
Both inhibitors perform poorly on RET mutants with V804M or 
V804L mutations47,48; these mutations are orthologous to the  
BCR-ABL T315I “gatekeeper” mutation which confers resistance 
to imatinib in chronic myelogenous leukemia49. A recent article  
identified RET I788N as another mutation conferring resistance 
to cabozantinib and vandetanib50; I788 is an ortholog of the V654  
residue in c-KIT, mutation of which confers resistance to  
imatinib51. PK studies of vandetanib and cabozantinib have 
been extensive. There is limited bioavailability in vivo and this 
is due in part to substantial plasma protein binding (92–94% for  
vandetanib52 and more than 99.7% for cabozantinib53,54). This  
suggests that resistance may be due in part to limited drug  
exposure within the tumor. Unfortunately, PD studies in patients 
treated with these compounds, pivotal for our understanding, have 
not been reported.

Remarkably, changes in MTC seen on progression after TKI  
therapy have not yet been reported. Such studies have been  
uniquely informative in identifying mechanisms of resistance to 
other therapeutics41–46. In such studies, progression biopsies are 
compared with pretreatment samples by using next-generation 
sequencing to look for secondary mutations, amplifications, and 
other genomic changes, transcriptomic studies such as RNA-seq, 
or proteomic studies to look for potential gene expression changes 
and pathway activation that may account for acquired resistance.  
Given the experience with disease progression on current TKIs  
and the facile availability of these technologies, one would hope 
that these elucidating correlative studies soon become standard.

Cabozantinib: who benefits? In the Efficacy of XL184 (Caboz-
antinib) in Advanced Medullary Thyroid Cancer (EXAM) phase 
3 clinical trial of cabozantinib12, MTC patients receiving the drug 
had a significantly longer progression-free survival (PFS) than  
patients receiving the placebo control (median PFS 49 versus 
17 weeks; hazard ratio [HR] = 0.28, p <0.0001). Recent  
correlative subgroup analysis indicated that patients with a  
RET M918T mutation significantly benefited from cabozan-
tinib treatment55,56. All other mutational subgroups (RET non-
M918T mutation, RAS mutation, RAS wt, RET and RAS wt, RET 
unknown status, and RET mutation of unknown significance) also 
exhibited decreased HR in response to cabozantinib treatment; 
the PFS differences in these subgroups did not reach statistical  
significance, although in some cases this was likely due to the 
small size of the subgroups. As the authors note, the effects of  
cabozantinib in these smaller subgroups will need to be resolved 
in future prospective studies. Notably, the M918T subgroup was 
the only group to exhibit a significant increase in overall survival 
(OS) (44.3 versus 18.9 months; HR = 0.60, p <0.03). Thus, it is  
clear that cabozantinib is effective for MTC patients with the  
RET M918T mutation, but in no case is it yet possible to exclude 
patients from cabozantinib treatment on the basis of mutation  
status, especially given the paucity of effective MTC treatments 
other than RET multikinase inhibitors.

If, as suggested by the correlative data in the EXAM trial, MTC 
with RET M918T mutations derives more clinical benefit from 
cabozantinib than do other MTC subgroups, what might be 
the mechanism? Here, our understanding is impeded by our  
limited knowledge of the biology of RET mutations. A few  
transcriptomic studies have compared MTC cases with RET  
M918T mutations versus other RET mutations57–60, but further  
work is necessary, since some of the studies were underpowered 
and consensus among other studies was lacking. One poten-
tially important difference between M918T and other RET muta-
tions is in substrate specificity. RET M918T has a relaxed and 
altered substrate preference61. This is due to destabilization of the  
substrate recognition domain, which also leads to increased  
kinase activity62–64. Speculatively, this altered kinase activity 
could lead to greater oncogene addiction, which would result in  
augmented clinical activity of RET inhibitors.

By what mechanism might cabozantinib provide benefit to  
MTC cases without RET mutations? The potential for other  
kinase targets of cabozantinib (including VEGFR2, MET, TIE2, 
RON, and others)65 to contribute to angiogenesis65, malignant  
transformation66, or other MTC functions has been discussed55.  
The possibility also exists that wt RET is important in the biology 
of MTC.

New RET inhibitors. Several new RET inhibitors have been 
reported67. Some of these compounds have been designed for 
increased potency, increased specificity (especially as compared 
with KDR inhibition), improved PKs, or the ability to inhibit  
RET gatekeeper mutants. The following four interesting  
compounds are currently in clinical trials.
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Alectinib (Roche) is an ALK inhibitor approved for ALK- 
rearranged non-small cell lung cancer. It is highly specific, inhib-
iting little other than ALK and RET (concentration resulting 
in inhibition of 50% of activity [IC

50
] for RET = 4.8 nM)68. At 

somewhat higher concentrations, alectinib also effectively targets 
the RET gatekeeper mutants, V804L (32 nM) and V804M  
(53 nM). While alectinib effectively reduced phospho-RET  
levels in MTC cell (TT) xenografts, it had little effect on MTC 
xenograft growth68. This suggests that another target, in addition 
to RET, may serve to maintain growth in MTC cells. Whether this 
intrinsic resistance will be seen clinically in MTC is unknown but 
should be determined shortly; a phase 1 trial for alectinib in MTC 
and other RET-driven thyroid and lung cancers (NCT03131206)  
is ongoing.

BLU-667 (Blueprint Medicines) inhibits RET at subnanomo-
lar concentrations69. It efficiently inhibits the RET V804M gate-
keeper mutant at similar concentrations and has 70-fold specificity  
versus KDR. It is in a phase 1 clinical trial (NCT03037385) for 
cancers with activating RET gene alterations, including MTC.

LOXO-292 (Loxo Oncology) inhibits RET at nanomolar  
concentrations70. It also inhibits the RET gatekeeper mutant at  
similar concentrations. Importantly, LOXO-292 has been shown 
to be very specific for RET in kinase assays. Its efficacy in inhib-
iting the growth of MTC cell xenografts further confirms that  
targeting RET alone is a viable therapeutic strategy in MTC.  
LOXO-292 is in a phase 1 clinical trial (NCT03157128) for  
cancers with activating RET gene alterations, including MTC.

RXDX-105 (Ignyta) was originally developed as a BRAF  
inhibitor (IC

50
 = 14 nM)71. It also efficiently inhibits wt RET  

(IC
50

 = 1.5 nM)71. This suggests the potential for RXDX-105 to 
act as a combination treatment, targeting RET and the RAF-MEK- 
ERK pathway, a combination which may be synergistic in MTC 
cells (72 and unpublished results). RXDX-105 is reported to have 
96–100% bioavailability71, a substantial improvement over other 
RET inhibitors. However, while RXDX-105 does not inhibit 
KDR, it is a broad-specificity inhibitor71, so it may have significant 
adverse effects. Moreover, since it does not have activity against 
CRAF, one can envision “paradoxical activation” of the RAF-
MEK-ERK pathway73–75. Nevertheless, in an ongoing phase 1  
trial of RXDX-105 for RET-driven solid tumors (NCT01877811),  
a partial response was noted in a lung adenocarcinoma patient  
with a RET gene rearrangement76.

RAS as a therapeutic target in medullary thyroid cancer
The discovery of RAS mutations in MTC26–31 highlighted the  
possibility of targeting RAS therapeutically in some cases of  
MTC; since RET signaling functions in part through RAS  
activation77, RAS inhibition also may be a potential therapeutic 
strategy in MTC with RET mutations. However, RAS has a long  
history as an intractable target78–80. It was realized early that  
targeting RAS-guanosine triphosphate (RAS-GTP) interaction 
would be difficult since GTP has picomolar affinity for RAS 
while GTP is present at millimolar concentrations in cells81. A 
substantial effort to block RAS attachment to the cell membrane 

by blocking farnesyltransferase was unsuccessful because of alter-
native cellular mechanisms (geranylgeranylation) of membrane 
attachment78,79,82–84. Blocking RAS downstream signaling has 
been attractive but has commonly suffered from ineffective-
ness of blocking one pathway and toxicity of blocking multiple  
pathways85. In recent years, with advances in drug and protein 
biochemistry, there has been renewed interest and preclinical  
success in directly inhibiting RAS via a multitude of novel  
strategies, including small-molecule binding, inhibition of protein  
interactions, and antisense approaches86–111. A review of this  
rapidly advancing field, other than the several examples below, 
is outside the scope of this review, and the reader is directed to 
the cited references. In addition, it must be noted that some 
of the promising therapeutic approaches target specific RAS  
mutations; at least one of these targeted mutations, KRAS 
G12C87,91,92,95,100, is rarely found in MTC31.

PDE6δ inhibitors. The prenyl-binding chaperone protein PDE6δ 
is necessary for RAS membrane localization111. Early PDE6δ 
inhibitors, including deltarasin and deltazinone, had low nanomo-
lar affinity for PDE6δ but required micromolar concentrations for 
RAS inhibitory activity in intact cells88,99. This discrepancy was  
recently reported to be due to inhibitor release mediated by the 
release factor Arl2104. Newly designed PDE6δ inhibitors with  
subnanomolar affinity have been shown to be effective in cells 
and can block KRAS-dependent cell proliferation104. A third  
generation of highly specific PDE6δ inhibitors covalently binds 
the active site of PDE6δ, rendering these compounds refractory  
to Arl2-mediated release105.

Farnesyltransferase inhibition. As mentioned above, the  
farnesyltransferase inhibitors (FTIs) failed because of alternative  
prenylation of RAS proteins. However, HRAS, the most  
commonly mutated RAS gene in MTC, cannot employ this  
alternative prenylation strategy and is dependent upon farnesyl-
transferase for activity. Thus, HRAS-driven cancers should be  
sensitive to FTIs. This hypothesis is being tested in a phase 2  
study of the FTI tipifarnib for HRAS mutant thyroid or head and 
neck cancers (NCT02383927). Interestingly, a phase 1 clinical 
trial of a combination of the FTI tipifarnib and the multikinase  
(including RET) inhibitor sorafenib showed significant activity 
for MTC with or without RET mutations; HRAS mutation status 
was not evaluated112. While the response rate was greater than that 
seen in another trial employing sorafenib alone113, the trials were 
not powered for statistical comparison. If this combination is  
effective, it may be due to additional targets of tipifarnib112, or to 
synergistic pathway inhibition by tipifarnib and sorafenib, simi-
lar to the synergy reported in studies of sorafenib and the MEK  
inhibitor selumetinib in MTC cells in vitro72.

Farnesyltransferase-mediated delivery of covalent RAS  
inhibitors. In this recently reported, very novel approach, endog-
enous farnesyltransferase activity was hijacked to mislocal-
ize KRAS by blocking normal prenylation mediated by both  
farnesyltransferase and geranylgeranyltransferase106. Thus, a  
farnesyltransferase neosubstrate was designed that binds cova-
lently to the RAS CAAX moiety yet does not promote membrane  
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localization. In cell culture, treatment with this neosubstrate 
resulted in decreased RAS signaling. The effects were modest, and  
specificity for transformed cells and efficacy in vivo were not 
addressed. Nevertheless, this report represents the first step in the 
development of a promising strategy to overcome the ability of 
KRAS to evade the therapeutic effects of prenylation inhibitors.

Inhibition of RAS-effector interaction. RAS activates its 
downstream effectors by interaction with their RAS-binding 
domains (RBDs). Many of the small-molecule RAS direct 
inhibitors in development appear to work by disrupting these  
interactions97,98,103. Notably, rigosertib, a kinase inhibitor already 
in phase 3 clinical development for myelodysplastic syndrome,  
was recently shown to be a RAS mimetic, binding to the RBDs 
of RAF, PI3K, and RAL-GEF, preventing interaction with RAS  
and pathway activation94. Rigosertib was shown to inhibit  
tumorigenesis in several RAS-driven xenograft models.

Antisense oligonucleotides. While therapeutic antisense tech-
nology has been hampered by delivery issues, a recent article  
showed that KRAS expression can be efficiently silenced in vivo  
by systemic treatment with modified 2’,4’-constrained ethyl  
antisense oligonucleotides107; toxicity was not seen, and xenograft 
growth inhibition was demonstrated. If successful in further  
studies, such an approach may also be applicable to KRAS, HRAS, 
and RET mutations in MTC.

Immunotherapy for medullary thyroid cancer
Exciting recent advances have been made in immunotherapy for 
a variety of cancers114–118. The current state of immunotherapy 
for thyroid cancer, including MTC, was reviewed recently119.  
While effective immunotherapy has not yet reached MTC, there  
are several points of interest.

Immune checkpoint therapy. It is not clear whether immune  
checkpoint therapy has promise in MTC. As noted, MTC 
has a low mutation burden26. MTC also has very low expres-
sion of the immune checkpoint ligand PD-L1120; both of these 
correlate with poor response to checkpoint blockade118,121,122.  
Nevertheless, in early preclinical and clinical studies, MTC cell 
or calcitonin vaccines elicited a T-cell response, with apparent  
antitumor activity123–126, suggesting the possibility that check-
point blockade, perhaps in combination with a vaccine, may be 
effective. A phase 2 clinical trial (NCT03072160) employing the  
PD-1 checkpoint-blocking antibody pembrolizumab for MTC will  
begin to explore this potential therapeutic strategy.

Adoptive cell therapies: tumor-infiltrating lymphocyte, T-cell  
receptor, and chimeric antigen receptor transfer127–130. The low 
mutation burden of MTC renders these exciting strategies some-
what challenging. Analysis of the most common RET muta-
tions (M918T, C634 mutations) using NetMHC 3.4 software131 
failed to identify neoepitopes for avid major histocompatibility  
complex (MHC) binding in the most common serotypes (unpub-
lished data). Wild-type (and mutated) RET have several epitopes 
predicted to bind avidly to common MHC alleles; while these 
could be targeted as potential tumor-associated antigens, the  

expression of RET in normal cells throughout the body132,133 raises 
significant safety concerns of off-tumor toxicity134,135.

Wang et al. reported recently that peptides surrounding the  
commonly mutated KRAS G12 position are avidly bound and  
presented by the HLA-A11*01 serotype136, facilitating recogni-
tion of these KRAS neoepitopes by T-cell receptors. Wang et al.  
demonstrated that KRAS G12V and KRAS G12D could be  
recognized by T cells. They isolated high-affinity T-cell recep-
tors specific for these neoepitopes and showed that adoptive 
transfer of peripheral blood lymphocytes transduced with these  
KRAS-specific T-cell receptors could effect an antitumor immune 
response against xenografts harboring the cognate KRAS  
mutation. While this epitope is not presented by most other com-
mon MHC serotypes, Wang et al. note that HLA-A11*01 is 
present in 14% of the U.S. Caucasian population and in 40% of  
residents of southern China. Moreover, HRAS and NRAS are  
identical with KRAS in this region, so this strategy could be 
effective for all RAS isoforms. A phase 1 clinical trial has been 
opened for HLA-A11*01-positive patients with tumors harbor-
ing a KRAS G12V mutation (NCT03190941); this trial is open to  
MTC patients.

Antibody-drug conjugates. MTC and other neuroendocrine 
tumors commonly express DLL3, a Notch ligand, on their cell  
surface137,138. A DLL3 antibody linked to a DNA crosslinker  
warhead (Rovalpituzumab tesirine; Rova-T) was shown to  
efficiently inhibit the growth of DLL3-expressing xenografts; 
notably, tumor-initiating cells were also targeted. A phase 1 trial 
of Rova-T in small cell lung cancer showed significant clinical 
activity, almost exclusively in DLL3-highly expressing tumors139.  
A phase 2 trial of Rova-T in DLL3-expressing solid tumors,  
including a cohort for MTC, is now open (NCT02709889).

Intracellular antibodies. In general, antibody targeting of intra-
cellular targets has been challenging. However, a recent report  
describes the construction and preclinical use of a monoclonal 
antibody that penetrates the cytoplasm and targets activated  
RAS140. The antibody was modified to achieve cellular uptake 
by endocytosis, followed by endosomal escape into the cytosol. 
By binding activated RAS, the antibody disrupted downstream  
signaling pathways and interfered with cell growth. While activity 
in vivo was modest, several strategies were discussed to increase  
in vivo activity. If successful, this promising, albeit nascent,  
strategy may be applicable not only for RAS but also for targeting 
other intracellular targets, including RET M918T in MTC.

Peptide receptor radionuclide therapy
Neuroendocrine cancers, including MTC, frequently express  
somatostatin receptors (SSTRs), and the potential use of somato-
statin analogs for imaging, therapy, or therapeutic targeting has  
been a common focus for many years. In a recently reported  
phase 3 trial, midgut neuroendocrine tumors were successfully 
treated by using peptide receptor radionuclide therapy (PRRT)141. 
Tumors were stratified by 111In-DOTATATE scintigraphy for  
SSTR expression; in SSTR-positive midgut neuroendocrine  
tumors (NETs), 177Lu-DOTATATE (Lutathera) treatment resulted 
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in highly significant prolongation of PFS and OS and modestly 
increased objective response rate (ORR). These results have  
led to European approval of Lutathera for the treatment of  
midgut NETs; a new drug application has been submitted to 
the FDA. Could this PRRT strategy work in MTC? In five 
small studies in MTC, using either 90Y- or 177Lu- somatostatin  
analogs142–146 (reviewed in147), a modest ORR and frequent stable 
disease were seen. One might envision PRRT as a salvage therapy, 
stratifying MTC patients with 68Ga-SST analog positron emission 
tomography (PET) (68Ga-SST analog PET is more sensitive than 
111In-DOTATATE scintigraphy and detects lesions in about 70% 
of MTC patients with advanced or recurrent disease147–151). One  
concern regarding the potential use of PRRT for MTC is that  
SSTR expression in MTC has been reported to be focal rather than 
uniform151,152; this tumor heterogeneity could significantly limit 
efficacy.

Conclusions
The array of exciting directions for advancing our under-
standing of MTC, and especially for achieving more effective  
therapies, has never been more promising. Nevertheless, it 
must be emphasized that further advances will require careful 
design of basic, translational, and clinical research. Preclinical 
resources, including cell lines, animal models, and patient-derived  
xenografts, are currently very limited. A better understanding  
of the biology of the C cell and its transformation to MTC is  
critical. As discussed above, it is imperative to understand the 

mechanisms of MTC progression on therapy, and this will require 
extensive analysis of progression biopsies. The recent and future 
advances in the field validate the tireless and ingenious effort that 
so many researchers have devoted.
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