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The craniofacial complex is composed of fundamental components such as bloodvessels and
nerves,andalsoavarietyof specialized tissues suchascraniofacialbones,cartilages,muscles,
ligaments, and the highly specialized and unique organs, the teeth. Together, these structures
provide many functions including speech, mastication, and aesthetics of the craniofacial
complex. Craniofacial defects not only influence the structure and function of the jaws and
face, but may also result in deleterious psychosocial issues, emphasizing the need for rapid
and effective, precise, and aesthetic reconstruction of craniofacial tissues. In a broad sense,
craniofacial tissue reconstructions share many of the same issues as noncraniofacial tissue
reconstructions. Therefore, many concepts and therapies for general tissue engineering can
and have been used for craniofacial tissue regeneration. Still, repair of craniofacial defects
presents unique challenges, mainly because of their complex and unique 3D geometry.

The most common causes of craniofacial de-
fects are congenital birth defects (1/700

live births), trauma, inflammation, and cancer
surgeries (Miura et al. 2006). Among these, the
most prevalent is acute trauma, including falls,
assaults, sports injuries, and vehicle crashes
(Rocchi et al. 2007; Grayson et al. 2015; Hunter
et al. 2015). Significant facial trauma can also
result from battlefield injuries, particularly
when combined with an increased survivability
of wounded soldiers because of improved bat-
tlefield medical care and body armor. A recent
report indicated that craniomaxillofacial inju-
ries can represent up to 26% of all battlefield
injuries, as occurred in Operation Iraqi Free-
dom/Operation Enduring Freedom (Afghani-
stan) (Lew et al. 2010). Congenital anomalies
(CAs) are major causes of infant mortality and
childhood morbidity, affecting 2%–3% of all

babies (Mossey and Castilla 2003). Genetic
birth defects, environmental exposure, and folic
acid deficiency are the main causes of CA.

Craniofacial bone reconstruction plays a
crucial role in craniofacial repairs, because
they provide support for adjacent soft tissues
and anchorage for dental structures, thereby
guiding the structural stability and appearance
of the face (Fig. 1) (Petrovic et al. 2012). Espe-
cially for extensive craniofacial injuries, success-
ful regeneration of craniofacial bone is necessary
to restore normal function of the craniofacial
complex (Genden 2010; Ward et al. 2010).
With sufficient bone structure, it is compara-
tively easier to restore the soft tissues of the cra-
niofacial complex to form the facial features. An
extreme example of this is the world’s first par-
tial face transplant from a cadaver to a living
human, which was performed on November
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27, 2005, and which has been performed glob-
ally since then (Petrini 2015). In addition, in
March 2010, a team of 30 Spanish doctors per-
formed the first full-face transplant in the world
(Garrett et al. 2015). These accomplishments
stress the importance of craniofacial bone defect
reconstruction as a fundamental first step for
successful craniofacial regeneration.

CRANIOFACIAL BONE ENGINEERING

As described above, bone repair is a crucial and
fundamental step of craniofacial reconstruc-
tion. Living bone is in a continuous state of
dynamic equilibrium consisting of bone resorp-

tion, regeneration, and remodeling. Bone has an
innate ability for a limited amount of self-repair
following traumatic injury. In 1982, Enlow hy-
pothesized that some areas of the face remodel
by bony deposition, whereas others remodel by
bony resorption (Enlow 1982).

Bone Reconstruction

Bone reconstruction has a long history. The ear-
liest attempt to repair bone defects was reported
in Edgar Smith papyrus, ca. 2000 BC, using met-
als (Frommelt 1987). And, in 1668, the first bone
graft was performed by Van Meekren on a patient
with a cranial defect, via a xenograft (Van Meek-

Figure 1. Schematic of the layered structure of craniofacial tissues. The skull and craniofacial bones provide the
structural support for the muscle, vascular network, and skin (from catalog.biodigital.com/storeImages/
detail/cranio_dvd.jpg).
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ren 1682). Since then, a variety of techniques
using different combinations of autogenous, al-
logeneic, and prosthetic materials have been
used to achieve bone reconstruction. By far, au-
togenous bone grafting has generally yielded the
most favorable results (Hokugo et al. 2004; Vo-
gelin et al. 2005; Gimbel et al. 2007). Still, a better
understanding of the basic biology of autoge-
nous bone graft procedures will allow for a
more educated and predictable utilization of
bone reconstruction procedures in clinical prac-
tice. What is currently known is that shortly after
bone graft transplantation, hematoma forma-
tion occurs around the graft. Next, an inflamma-
tory reaction occurs around the graft lasting for
5–7 days, at which time the hematoma and
surrounding tissue reorganizes into a dense fi-
brovascular stroma around the graft. Vascular
invasion by the host brings cells with osteogenic
potential into the graft, after 10–14 days. Infil-
trating host cells subsequently differentiate into
osteoblasts that deposit new bone, and into os-
teoclasts that resorb necrotic bone, facilitating
bone graft penetration by host vascular tissue.
Cortical grafts in the onlay position show only
superficial revascularization in the first 10 � 21
days, and central revascularization by 8 � 16
weeks (Chen et al. 1994; Ozaki and Buchman
1998). Since the earliest vessels do not enter the
graft until later, incompletely revascularized re-
gions of necrotic graft may persist indefinite-
ly, sealed off from the viable regions of the
graft. Entrapped cores of dead bone can only be
resorbed with appropriate revascularizaion.
Therefore, rapid and efficient revascularization
plays a key role in bone graft survival, and can be
influenced by a variety of conditions including
prior irradiation, immune response, and condi-
tions at the recipient site such as the presence of
necrotic bone, scarring, and infection (Lukash
et al. 1984). Existing healthy bone can also serve
to direct healthy matrix bone deposition.

Histologically, two types of bone can easily
be distinguished: cancellous bone and cortical
bone. Cortical bone is the compact bone that
covers the surface of most bones. Cancellous
bone, which makes up much of the enlarged
ends (epiphyses) of the long bones and flat
bones of the skull, is less dense than cortical

bone, because of its higher surface area to
mass ratio. Revascularization of cancellous
bone grafts occurs more rapidly and completely
than cortical bone grafts, because the large pores
between the trabeculae in cancellous bone grafts
permit the unobstructed invasion of vascular
tissue, and rapid diffusion of nutrients from
the host bed, thereby promoting osteogenic
cell survival and increased osteogenesis (Pin-
holt et al. 1994). Cancellous bone grafts can
be completely revascularized and ultimately
replaced with new bone in several weeks to
months, whereas cortical bone graft revascular-
ization can proceed slowly and incompletely
(Teng et al. 2013; Martuscelli et al. 2014). The
dense lamellar structure of cortical bone limits
vascular invasion, in which vasculature invasion
is constrained to preexisting pathways and pro-
ceeds from the graft periphery to the interior of
the graft. Furthermore, osteoclastic enlarge-
ment of the Haversian and Volkmann’s canals
must occur before blood vessels are able to pen-
etrate the cortical bone graft, and vascular inva-
sion is limited by the dense lamellar structure of
cortical bone, where vasculature invasion is
constrained to preexisting pores and proceeds
from the graft periphery to the interior of the
graft (Burchardt 1983). Therefore, cancellous
bone grafts are well suited to treat bone gaps,
because they revascularize quickly and stimu-
late significant new bone formation through
osteoinduction. Conversely, cortical bone grafts
are often used in cases of bone volume defi-
ciency, where they can survive longer with
limited resorption and retain a certain level of
mechanical strength after transplantation (Neu
2000; Uhm et al. 2000).

The small population of cells present within
autogenous bone grafts are what largely con-
tribute to its superiority over other bone substi-
tutes (Mulliken et al. 1984; Oklund et al. 1986).
Osteogenic cells from the periosteum, endoste-
um, marrow, and intracortical elements of the
graft contribute to graft viability and osteoid
production (Burchardt 1987). And if the bone
graft contains periosteum, the periosteum can
provide blood supply and osteoprogenitor cells
that further facilitate early vascularization and
bone formation (Eyre-Brook 1984; Skawina and
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Gorczyca 1984). Unfortunately, adult perioste-
um loses this osteogenic ability after being de-
tached from the ordinal bone surface (Melcher
and Accursi 1971; Weng et al. 2000). Shortly
after transplantation, most of the osteocytes
present within the graft undergo necrosis, there-
by rendering the graft relatively inert. One of the
approaches used in clinic to increase the sur-
vival rate of large bone grafts is to first implant
the grafts into highly vascularized muscle tissue,
to facilitate vascular ingrowth and to develop a
vascular pedicle suitable for microsurgical anas-
tomosis (Warnke et al. 2004; Mesimäki et al.
2009). This practice is somewhat limited be-
cause of donor-site morbidity and the amount
of bone that can be harvested (Burchardt 1987).

To overcome these issues, stem-cell-based
bone-tissue engineering has been recognized
as a promising alternative for bone reconstruc-
tions. As far back as 1968, Friedenstein’s team
first reported that fibroblast-like cells isolated
from bone marrow not only had the ability to
differentiate to haematopoietic cells, but also
had the potential for osteogenic differentiation
(Friedenstein et al. 1968; Friedenstein 1976). At
that time, the cells were named “mechanocytes.”
Subsequent studies showed that these cells were
chondrogenic and adipogenic (Owen and Frie-
denstein 1988). To date, these cells are com-
monly called mesenchymal stem cells (MSCs)
(Beyer Nardi and da Silva Meirelles 2006). In
addition to bone marrow, cells with MSC-like
characteristics have been isolated from a variety
of tissues including adult adipose, dental, and
skeletal muscle tissues (Zuk et al. 2001; Qu-Pe-
tersen et al. 2002; Feisst et al. 2014). MSC-me-
diated bone regeneration has been widely tested
in several clinical trials, demonstrating that local
delivery of MSCs can enhance bone regenera-
tion (Grayson et al. 2015).

Comparison of Craniofacial
and Noncraniofacial Bone

Generally speaking, craniofacial bones are flat
bones that share similar turnover and injury re-
pair mechanisms of other skeletal bones, but
with their own specific properties (Leucht
et al. 2008). Whereas most of the knowledge

gained from skeletal bone reconstruction can
be applied to the craniofacial bone field, the
unique features and properties of craniofacial
bone regeneration require some additional con-
siderations.

One of the major differences between cra-
niofacial and noncraniofacial bones is their em-
bryonic origin. The cranial neural crest gives rise
to branchial arch–derived craniofacial bones
and cartilages, whereas the axial skeleton is de-
rived from the somites, and the lateral plate me-
soderm forms the limb skeleton. Bone forma-
tion, or osteogenesis, is the transformation of
preexisting mesenchymal tissue to calcified
bone tissue. There are two major modes of
bone formation: intramembranous and endo-
chondral ossification. Intramembranous ossifi-
cation is the direct conversion of mesenchymal
tissue into bone, whereas endochondral ossifi-
cation consists of mesenchymal cells that first
differentiate to form a cartilage template that is
later replaced by bone. Bones of the skull pri-
marily form through intramembranous bone
formation, with some contributions by endo-
chondral ossification (Bilezikian et al. 2002).
For example, Meckel’s cartilage forms at the
proximal end of the mandible then largely dis-
appears as the mandible ossifies, thereby playing
an important role in mandibular morphogene-
sis (Ramaesh and Bard 2003; Tsutsui et al. 2008).
During intramembranous ossification of the
skull, neural crest–derived mesenchymal cells
proliferate into compact condensations. Some
of these cells develop into capillaries, whereas
others change their shape to become osteoblasts,
which secrete a collagen–proteoglycan matrix
that is able to bind calcium salts. As calcification
proceeds, bony spicules radiate out from regions
where ossification began. Eventually, the entire
region of calcified spicules becomes surrounded
by compact mesenchymal cells that form the
periosteum. The cells on the inner surface of
the periosteum also become osteoblasts and de-
posit osteoid matrix parallel to that of the exist-
ing spicules. In this manner, many layers of bone
are formed.

Craniofacial and noncraniofacial bones also
show different homeostatic mechanisms. Sever-
al publications showed that bone grafts from the

W. Zhang and P.C. Yelick

4 Cite this article as Cold Spring Harb Perspect Med 2018;8:a025775

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



craniofacial skeleton had better survival and
longer volumetric maintenance as compared
to bone harvested from the iliac crest, rib, and
tibia (Peer 1951; Sullivan and Szwajkun 1991).
In addition, reports have indicated that mem-
branous bone grafts retained their volume bet-
ter than endochondral bone grafts (Zins and
Whitaker 1979, 1983). In 1999, Buchman and
Ozaki’s results suggested that bone volume
maintenance may be the result of microarchi-
tecture of the bone graft, based on the fact that
intramembranous-derived craniofacial bone has
a higher proportion of cortical bone as com-
pared to endochondral bone (Buchman and
Ozaki 1999). Evidence for this includes the
fact that, under external stimuli such as ovari-
ectomy and malnutrition, rat mandibular tra-
becular bone and bone mineral density loss
occurs at a lower rate than in tibial primary
spongiosa (Mavropoulos et al. 2007). Further-
more, the fact that certain bone diseases only
affect the maxilla and mandible, such as bis-
phosphonate-related osteonecrosis of the jaw
(BRONJ) (Price et al. 2004) and hyperparathy-
roid jaw tumor syndrome (Simonds et al. 2002),
also suggest that different homeostatic mecha-
nisms exist between craniofacial and noncra-
niofacial bones.

It remains ambiguous as to what causes
these differences between craniofacial and skel-
etal bones, because osteoblast differentiation
in both types of bone is regulated by the same
key factors, including the transcription factors
Runx2 and osterix (Ducy et al. 1997; Otto et al.
1997; Nakashima et al. 2002). Still, it has been
shown that several growth factors, receptors,
and associated signaling cascades play distinct
roles in the craniofacial versus axial and appen-
dicular skeleton (Abzhanov et al. 2007; De Cos-
ter et al. 2007; Kimmel et al. 2007).

CRANIOFACIAL BONE REGENERATION

Taken together, craniofacial and long bones
are not only derived from different germ layers,
but also show distinct characteristics. These re-
sults emphasize the need to take these differenc-
es into account when considering craniofacial
bone–regeneration strategies.

Craniofacial Bone Graft

Similar to other bone reconstructions, autog-
enous bone grafts are considered to be the
gold standard for reconstructing craniofacial
bone defects (Gruss et al. 1985; Manson et al.
1985). The iliac crest and rib bones, all derived
from the mesoderm, are among the more com-
monly used donor sites for bone grafting in
craniofacial surgeries because they can be read-
ily harvested while minimally impacting the
host. Other than the common shortcomings
of bone grafts, such as limited harvest amount
and donor site morbidity, the major concern
with using these bones is that they do not
show the characteristics of natural jawbone.

As previously discussed, lack of vasculariza-
tion can lead to graft resorption with resultant
loss of the geometric structure of the bone graft
(Peer 1951). Periosteum preservation can im-
prove graft survival in the craniofacial region
(Thompson and Casson 1970) by facilitating
early revascularization (Knize 1974). Condi-
tions at the implant site also influence graft re-
vascularization (Zins et al. 1984). Although
muscle coverage results in increased bone graft
revascularization (Ermis and Poole 1992), facial
muscles generally originate from the surface of
the skull and craniofacial bones, and craniofa-
cial injuries are commonly associated with mus-
cle damage, which negatively influences the in-
growth of blood vessels. Previously reports have
shown that for mandibular defects small bony
defects (,4 to 6 cm) can successfully be treated
with nonvascularized cortical-cancellous bone
grafts, whereas larger continuity defects require
vascularized grafts (Hidalgo 1989; Pogrel et al.
1997).

Another issue is that most craniofacial bones
show extremely complex 3D shapes as com-
pared to long bones. It is, therefore, exceedingly
difficult to select and reshape vascularized au-
tologous iliac crest, fibula, or ribs to precisely fit
craniofacial bone defects.

Previous publications have shown that rigid
fixation can improve bone graft volume reten-
tion, by facilitating primary bone healing and
rapid revascularization, especially in bones re-
quired for motion such as the femur (Phillips
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and Rahn 1988; Lin et al. 1990). In contrast, most
craniofacial bones show little motion, with the
exception of the mandible. Even for the mandi-
ble, liquid food can be provided to restrain man-
dibular movement during the bone-healing
process. While it may seem that rigid fixation
would not significantly improve fixed craniofa-
cial bone graft survival, a clinical study of 363
patients undergoing nasal reconstruction over
a 14-year period showed that exceptional bone
graft survival occurred when rigid interosseous
stabilization was used (Jackson et al. 1998).

Craniofacial Bone Substitute

Stem Cells for Craniofacial Reconstruction

The main obstacles of using autologous bone
for grafting is that it is only available in limited
amounts (Neovius and Engstrand 2010). To
overcome this critical shortcoming, and to cre-
ate bone grafts of sufficient complex geometry,
the field of bone-tissue engineering has been
created as a practical approach to treat cranio-
facial skeletal defects by combining bioactive
carriers, cells, and growth factors. Stem-cell-
mediated bone repair has been used in clinical
trials to regenerate large craniomaxillofacial de-
fects to slow the process of bone degeneration in
patients with osteonecrosis of the femoral head
and for prophylactic treatment of distal tibial
fractures (Grayson et al. 2015). To date, all of
the MSC sources that have displayed promising
osteogenic potential for bone regeneration also
have been proposed as potential cell sources for
craniofacial bone–tissue engineering (Cowan
et al. 2004; Griffin et al. 2014).

The most well-characterized and used stem
cells for bone regeneration are adult bone mar-
row stem cells (BMSCs). BMSCs are also the
first type of cell tested for craniofacial bone re-
generation. In 2001, augmented repair of cranial
defects was observed by combining autologous
sheep BMSCs with calcium alginate gel (Shang
et al. 2001). Since then, MSCs from a variety of
species, including mouse, rat, rabbit, canine,
and porcine, have been confirmed as suitable
cells for craniofacial bone repair (Abukawa
et al. 2009; Zou et al. 2011; Lin et al. 2012).

Successful craniofacial ossifications have been
achieved using autologous BMSC-seeded bio-
scaffolds in several clinical studies (Kaigler et al.
2010; Behnia et al. 2012).

Adipose-derived mesenchymal cells (AMCs)
are another type of commonly used cells for
bone regeneration (Gimble et al. 2006; Sandor
and Suuronen 2008). Recently, AMCs have
emerged as a potential cell source for craniofa-
cial tissue engineering (Zuk et al. 2001, 2002).
Compared to BMCs, AMCs are more accessible
and can be harvested in larger amounts. It has
been shown that AMCs and BMCs isolated from
the same donor showed similar growth kinetics
and cell senescence (De Ugarte et al. 2003). In
2004, Longaker’s group first showed that the
AMCs promoted bone regeneration of critical-
size calvarial defects, when seeded onto hy-
droxyapatite-coated poly-lactic-co-glycolic acid
scaffolds (Cowan et al. 2004). Many subsequent
publications have shown that AMCs are a prom-
ising cell source for craniofacial bone regenera-
tion when combined with a variety of scaffold
materials (Gomes et al. 2012; Azevedo-Neto
et al. 2013; Jin et al. 2014).

Certain types of perinatal stem cells, includ-
ing umbilical cord–derived mesenchymal stem
cells (Chen et al. 2013), amniotic epithelial cells
(Barboni et al. 2013), and amniotic fluid mes-
enchymal cells (Berardinelli et al. 2013), have
also shown osteogenic differentiation capacity
and, therefore, the potential for craniofacial
bone regeneration. One of the main advantages
of these cells for promoting craniofacial bone
regeneration is their ability to promote blood
vessel formation (Maraldi et al. 2013).

As described above, most craniofacial tis-
sues are derived from the neural crest. Paraxial
mesoderm–derived iliac crest bone and osteo-
blasts show distinctly different properties than
neural crest cell (NCC)-derived craniofacial
bones and osteoblasts (Chai and Maxson
2006; Oppenheimer et al. 2008; Aghaloo et al.
2010), making them less desirable for craniofa-
cial reparative bone applications. Therefore, a
variety of cell populations harvested from the
craniofacial complex have been examined for
utility in craniofacial bone regeneration (Zhao
and Chai 2015).
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These studies showed that, similar to long
bones, the periosteum of craniofacial bones
contains progenitor cells that support craniofa-
cial bone repair (Ochareon and Herring 2011).
Craniofacial bone marrow cells have also been
well characterized. A recent study using labeled
NCC and mesoderm-derived bone marrow cells
showed bone defect healing via the selective re-
cruitment of cells from their respective tissues
embryonic origin (Leucht et al. 2008), thereby
reinforcing the presence of embryonic site-spe-
cific differences in craniofacial versus appendic-
ular skeleton–derived BMSCs. A rat study
showed that in vitro cultured mandible–de-
rived BMSCs showed higher alkaline phospha-
tase activity, mineralization, and osteoblast gene
expression, and formed 70% larger bone nod-
ules containing threefold more mineralized
bone, as compared to long-bone BMSCs (Agha-
loo et al. 2010). It has also been shown that
human stromal cells isolated from mandibular
or maxillary marrow showed increased cell pro-
liferation, stronger expression of osteoblastic
markers, and delayed senescence as compared
to iliac crest–derived marrow cells harvested
from the same patient (Akintoye et al. 2006).
But the relatively small size and anatomic com-
plexity of the maxilla and mandible render the
efficient isolation of bone marrow stem cells a
difficult process (Yang et al. 2014).

Recently, a new type of BMSC, isolated from
calvarial bone sutures, has shown utility for
craniofacial bone regeneration (Zhao et al.
2015). In 2015, Chai’s group identified Gli1þ

cells present within the calvarial suture mesen-
chyme of adult mice that can give rise to both an
osteogenic front, periosteum, dura, and cranio-
facial bones. In humans, cranial sutures normal-
ly fuse between 20 and 30 years of age, whereas
facial sutures fuse after �50 years of age (Se-
narath-Yapa et al. 2012; Badve et al. 2013), sug-
gesting the possibility of isolating these cells for
use in craniofacial bone regeneration. Still, the
limited amount of suture mesenchyme prevents
harvest of large numbers of cells.

All of the tissues found in teeth originate
from the neural crest. Stem cells isolated from
adult dental tissues, including dental pulp stem
cells (DPSCs) (Gronthos et al. 2000; Papaccio

et al. 2006; Zhang et al. 2008), stem cells from
human exfoliated deciduous teeth (SHED)
(Miura et al. 2003), periodontal ligament stem
cells (PDLSCs) (Seo et al. 2004), and periapical
stem cells (PSCs) (Han et al. 2010), all showed
potential for osteo/odontogenic differentiation
and the ability to form calcified dentin or os-
teodentin-like tissue. Therefore, these cell pop-
ulations can be used not only to regenerate
these same dental tissues, but also for craniofa-
cial and noncraniofacial bone–tissue regene-
ration. In particular, DPSCs, which can be easily
isolated from extracted wisdom teeth, showed
a higher proliferation rate as compared to
bone marrow–derived MSCs under the same
culture conditions, potentially attributable to
the strong expression of the cell-cycle activator,
cyclin-dependent kinase 6 (Shi et al. 2001).

Widespread use of dental tissue–derived
stem cells is somewhat limited by the size of
the available tissues that can be used. Compar-
atively, it may be easier to harvest gingiva-de-
rived mesenchymal stem cells (GMSCs), which
also share the multilineage differentiation po-
tential (Zhang et al. 2009). It has been shown
that human GMSCs can support new bone for-
mation in both mandibular and calvarial de-
fects at 2 months in rat postsurgical reconstruc-
tions (Wang et al. 2011).

Cleft lip and palate (CL/P) are among the
most common congenital malformations, oc-
curring in 1/700 live births (Tolarova and Cer-
venka 1998). Standard surgical treatment of
CL/P patients involves the removal of small
pieces of orbicular oris muscle (Shkoukani
et al. 2013). Bone reconstructive repair of a crit-
ical-size cranial defect was successfully achieved
using muscle cells derived from these discarded
tissues (Bueno et al. 2009).

Stem cells and/or scaffolds loaded with
active growth factors, which stimulate osteopro-
genitor cells to differentiate toward osteogenic
support of the new bone formation, are also com-
monly used for bone-tissue engineering (Fried-
laender et al. 2001; Terheyden et al. 2004). One of
the most commonly used growth factors for cra-
niofacial bone regeneration is bone morphogen-
ic protein (BMP) (Terheyden et al. 2001a,b;
Warnke and Coren 2003; Warnke et al. 2004).
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Challenges for the Use of Stem Cells
in Craniofacial Tissue–Engineering
Applications

One of the main obstacles in translating exper-
imental observations into clinical practice is the
relatively poor mechanistic understanding of
stem-cell-mediated therapies. In vivo stem-cell
therapy requires large numbers of cells; insuffi-
cient cell numbers will not provide positive out-
comes (Habisch et al. 2007). Despite the obvi-
ous benefits associated with cell delivery for
bone regeneration, very few transplanted cells
survive long term following transplantation
(Dupont et al. 2010). The current lack of reliable
methods to control MSC fate, especially in the
in vivo condition, is one of the main problems
that needs to be addressed. Better understand-
ing of methods to optimize regenerative ap-
proaches is required before stem-cell-mediated
therapies can be implemented as standard care
in regenerative medicine.

MSC isolation and selection is another chal-
lenge. For most clinical applications, only a lim-
ited amount of viable tissue is available for
stem-cell isolation (Sodek and McKee 2000).
In addition, MSC selection and enrichment is
hampered by lack of a single definitive stem-cell
marker (Gronthos et al. 2003). Current isolation
methods can achieve heterogeneous cell popu-
lations at best, and the proportions of MSC pro-
genitors in these enriched MSC populations can
vary even when the samples are obtained from
the same donor at the same time (Digirolamo
et al. 1999). Previous reports have indicated that
only �30% of the initial adherent bone mar-
row–derived MSC clones showed trilineage (os-
teo/adipo/chondro) differentiation potential
(Pittenger et al. 1999; Muraglia et al. 2000).
Furthermore, only half of the single colony–
derived clones transplanted with hydroxyapa-
tite-tricalcium phosphate ceramic scaffolds
showed bone formation in vivo (Kuznetsov et
al. 1997). Although current clinical trials have
shown that it is not necessary to generate puri-
fied cell populations to achieve positive results
in the clinic (Prockop 2007), it is possible that
more purified MSC populations will help to
achieve more reliable clinical outcomes.

There also is a need for optimized methods
to store and expand enriched MSC populations
while maintaining the “stemness” of the MSCs,
as required for advanced clinical application.
This is because MSCs tend to spontaneously
differentiate into various cell types over time
in culture (Banfi et al. 2000; Izadpanah et al.
2008) and MSCs lose their multipotentiality
after six or seven passages in in vitro cell culture
(Colter et al. 2000; Sekiya et al. 2002). One of the
most promising solutions is to create 3D culture
conditions that resemble the in vivo stem-cell
niche (Bara et al. 2015; Xiong et al. 2015). To
date, no standardized methods have been
achieved for this approach, despite many di-
verse attempts (Chow et al. 2001a,b). For exam-
ple, a variety of tissue culture media have been
tested, including those with low serum, various
substitutes for fetal bovine serum (FBS) such as
autologous serum, fresh frozen plasma, and hu-
man platelet lysates (Lange et al. 2007; Le Blanc
et al. 2007), and a variety of serum-free media
(Sekiya et al. 2002; Müller et al. 2006; Agata et al.
2009; Lindroos et al. 2009). Avariety of 3D scaf-
fold tissue culture methods have also been test-
ed as in vitro 3D stem-cell niche systems, in-
cluding the 3D hanging drop model (Schmal
et al. 2013), bioreactor (Santos et al. 2016),
and 3D printing (Alessandri et al. 2016).

CRANIOFACIAL RECONSTRUCTION

Craniofacial reconstruction involves the regen-
eration of multiple hard and soft tissues that are
well vascularized and innervated. For better
outcomes, it is ideal to regenerate the craniofa-
cial tissues “all-in-one,” including both soft and
hard tissues. A concept of the “biological boun-
dary” was introduced in 1989 (Whitaker 1989),
which emphasized that the soft tissue envelope
has a genetically predetermined shape that is
inclined to remain constant. However, soft con-
nective tissues show faster growth rates as com-
pared to hard tissues, because of the fact that
soft tissue cellular components show higher
rates of migration. Therefore, one of the main
challenges for successful bone healing is pre-
venting the ingrowth of connective tissue into
the bone space, especially for large and complex
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craniofacial bone repair. To achieve this, the
concept of guided tissue regeneration, which
can be achieved by placing an inert membrane
barrier over the defect to block the ingrowth of
connective tissue, has been widely used for suc-
cessful craniofacial reconstruction (Dahlin et al.
1988, 1990).

Computer-Aided Design (CAD)

One central challenge for successful craniofacial
reconstruction is how to mimic the complex 3D
structure and multicellular interactions that
naturally occur in complex craniofacial struc-
tures (Thesleff et al. 2011). Resorption of bone
grafts or regenerated bones often occurs after
bone reconstruction. Minor bone resorption
may not significantly influence the successful
repair of long bones, but can seriously affect
craniofacial reconstruction outcomes, again be-
cause of the complex geometry and small sizes
of many craniofacial bones. Craniofacial recon-
struction requires more accurate regenerative
approaches to achieve desirable outcomes.

Currently, with the development of 3D
computer tomography (CT) and CAD tech-
niques, CT/CAD-based scaffold design can
greatly benefit the accurate regeneration of cra-
niofacial bones. One of the most commonly
used strategies for accurate craniofacial recon-
struction is the use of titanium scaffolds manu-
factured by the CT/CAD technique, based on
the fact that nonabsorbable titanium scaffolds
can achieve appropriately detailed complex cra-
niofacial anatomical geometry. Terheyden’s
group has used a titanium mesh cage filled
with bone mineral blocks infiltrated with 7 mg
recombinant hBMP7 and 20 ml of the patient’s
bone marrow to successfully restore mandibular
defects greater than 7 cm (Warnke et al. 2004).
The titanium mesh cage was first implanted into
the patient’s right latissimus dorsi muscle for 7
weeks before being transplanted as a free bone
muscle flap. Eventually, the reconstructed man-
dible achieved the desired aesthetic and masti-
cative functional levels. In another case, a tita-
nium mesh was prefabricated and filled with b

tricalcium phosphate (b-TCP) granules that
were soaked in rhBMP-2 for 48 h before infil-

trating with cultured adipose-derived stem cells
(ASCs). In this instance, sufficient new bone
developed to support dental implants in 10
months (Sandor et al. 2013). A combination
of milled bone from the iliac crest, ASCs isolated
from fat tissue harvested from the gluteal region,
and autologous fibrin glue have also been used
to treat multiple fractures (Lendeckel et al.
2004). Bone regeneration was observed within
3 months of surgery in these cases. Functional
and anatomically correct repair of a maxillary
defect was achieved using a microvascular cus-
tom-made ectopic bone flap developed from a
titanium cage filled with b-TCP granules mixed
autologous ASCs (Thesleff et al. 2011). To date,
titanium cages filled with granules, cancellous
bone chips, or bone blocks have been shown by
far to be the best strategy for bone restoration of
large craniofacial defects.

While conventional regenerative strategies
have failed to regenerate or mimic the 3D com-
plexity of the multicellular interactions occur-
ring in native craniofacial tissues, 3D cell culture
in bioreactors combined with gene therapy or
growth factors have shown promise for in-
creased survival of bone substitutes (Scherbe-
rich et al. 2007; Cordonnier et al. 2010; Sohier
et al. 2010).

3D Printing

3D bioprinting of tissue provides a promising
approach to customize various combinations of
biomaterials and cell sources to achieve complex
3D architectures. 3D printing is a method that
fabricates objects by building consecutive layers
of scaffold material plus cells layer by layer, until
the desired 3D volumetric structures are
achieved (Derby 2012). In this way, 3D printing
techniques can provide precise spatial control of
the functional components. For the purpose of
tissue regeneration, it is possible to print cells
directly, to print cell-laden biomaterials, or to
print scaffold-free cell aggregates. Currently,
there are three types of commercially available
3D printers for tissue engineering: inkjet print-
ers (Klebe 1988), laser-based printers (Guille-
mot et al. 2010), and microextrusion printers
(Fig. 2) (Cohen et al. 2006). Inkjet printers, the
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most commonly used type of printer for both
nonbiological and biological applications, print
structures using a drop-on-demand process
(Murphy and Atala 2014). Inkjet bioprinters
have successfully been used to fabricate bone.
This technique can greatly benefit craniofacial
bone constructs because it provides fairly rapid
and “customer-fit” reconstruction of complex
surface bone (Saijo et al. 2009; Azuma et al.
2014). Inkjet bioprinting techniques have also
been tested for functional in situ skin regener-
ation (Skardal et al. 2012). Microextrusion
printers use pneumatic or mechanical (piston
or screw) dispensing systems to extrude contin-
uous beads of material and/or cells (Chang
et al. 2008; Visser et al. 2013). Microextrusion
bioprinters have been used to fabricate multiple
tissue types, including branched vascular trees
(Norotte et al. 2009), islet tissue (Xu et al. 2010),
and aortic valves (Duan et al. 2013). Laser-
based bioprinter design is based on a laser-in-
duced forward transfer technique using a laser
beam (Chrisey 2000). To date, laser-based bio-
printers have been successfully used to print
cellularized skin (Colina et al. 2005).

Current 3D techniques for craniofacial re-
generation are largely limited to bone and car-
tilage tissues (Schek et al. 2005; Reichert et al.
2012). Hierarchical composite scaffolds, con-
sisting of both soft and hard tissue components,
have successfully been used for periodontal
complex regeneration (Vaquette et al. 2012;
Costa et al. 2014; Ivanovski et al. 2014). Laser-
based bioprinters have been used to deposit
nanohydroxyapatite in a mouse calvarial 3D
defect model (Keriquel et al. 2010). Similarly,
3D-printed biphasic scaffolds containing poly-
(epsilon)-caprolactone and hydroxyapatite in
the size and shape of teeth have been tested, as
well as 3D-printed dental epithelial (DE) and
dental mesenchymal (DM) cell aggregates, to
use as in vitro models for DE–DM cell interac-
tions observed in natural tooth development
(Kim et al. 2010).

The 3D printing techniques designed to
achieve functional organ regeneration is still in
its infancy (Ho et al. 2015). 3D-printed scaf-
folds, tissue analogs, and organs have been pro-
posed as exciting alternatives to address some of

these key challenges now facing the fields of
regenerative medicine and dentistry (Derby
2012; Murphy and Atala 2014). This technique
has the advantages of enabling the precise posi-
tioning of cells and biomaterials in 3D with
finely tuned internal and external architectures,
while being customizable to patient-specific
needs (Obregon et al. 2015).

The craniofacial complex contains multiple
types of highly integrated hard and soft tissues.
It would be beneficial to regenerate composite
hard and soft tissues at the same time, to achieve
rapid functional recovery of regenerated cranio-
facial tissues. Teeth are somewhat unique com-
ponents of the craniofacial complex. Since teeth
are anchored in maxillary and mandibular jaw-
bones, methods to generate jawbone together
with dental tissues, in addition to 3D printing,
are currently being investigated, with some suc-
cess (Fig. 3) (Duailibi et al. 2008; Abukawa et al.
2009). A major obstacle in this approach is the
design of methods and approaches that main-
tain the integrity of both the bone and tooth
structures, while allowing them to be function-
ally integrated. Prior reports showed that bio-
engineered tooth constructs were surrounded
by newly formed bone, precluding tooth erup-
tion and proper function (Cowan et al. 2004).
The clinical use of composite tissue regenera-
tion, such as cartilage and bone and vascular-
ized muscle, is still in its infancy, and further
studies are needed to perfect these highly prom-
ising approaches.

One of the main obstacles of current 3D
printing techniques is the size limit of the print-
out structure, mainly because hydrogel, the
most commonly used injecting material, pro-
vides inadequate structural support (Chang
et al. 2011). Recently, a new integrated tissue-
organ printer (ITOP) has been developed to
target the generation of stable human-scale tis-
sue constructs (Kang et al. 2016). The key to this
method is to print a sacrificial scaffold adjacent
to the cell-laden hydrogel. The cell-laden hydro-
gel protects cell viability and supports cell ex-
pansion and differentiation. The sacrificial scaf-
folding material provides the initial structural
and architectural integrity and, on removal, also
provides diffusable microchannels to facilitate
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nutrient perfusion. This technique has been
used to fabricate human-scale mandibular
bone, ear-shaped cartilage, and organized skel-
etal muscle.

Another major challenge of the 3D printing
technique is how to precisely integrate biologi-
cal components and gradients for composite
tissue engineering. Compared to other tissue-
regeneration methods, 3D printing can provide
fairly accurate control of different tissues. Still,
3D printing has its own limitations, mainly be-
cause the formation of 3D structures is based on
the accumulation of 2D structures. For example,
accurately mimicking the branching patterns of
the vascular tree has remained a big challenge of
3D printing (Kolesky et al. 2016).

CONCLUSIONS

Successful reconstruction of the craniofacial
complex requires full restoration of both func-

tional and aesthetic aspects of the face. Stem-
cell-mediated tissue-regeneration approaches
provide the potential for highly successful cra-
niofacial tissue-regeneration. Despite increased
knowledge and characterization of MSCs,
and the mounting enthusiasm for the use of
MSCs in regenerative therapies in humans,
the detailed mechanisms of MSCs proliferation
and differentiation are still not fully under-
stood.

This lack of understanding has not permit-
ted the full use of stromal cells to facilitate or
enhance tissue repair in clinical practice be-
cause of fear of potential unwarranted deleteri-
ous behaviors of the transplanted cells (Grayson
et al. 2015). Despite these concerns, stem-
cell-mediated regenerative strategies, combined
with precise CAD approaches, are anticipated to
eventually provide many new and promising
methods for successful craniofacial reparative
therapies.

A B

D E
b

d

p
c

pdl

C

Figure 3. Composite bone–tooth constructs. (A) Tooth scaffolds composed of a dental mesenchymal (DM) cell
seeded polyglycolide/poly-L-lactide (PGA/PLLA) scaffold sphere to mimic the dental papilla, and a dental
epithelial (DE) cell seeded gelfoam strip to mimic the enamel organ. (B) Lattice bone scaffolds made by poly-DL-
lactic-co-glycolic acid (PLGA), seeded with iliac crest–derived mesenchymal stem cells (MSCs) and grown in
the rotational oxygen-permeable bioreactor system (ROBS) for 6 weeks. (C) Fabricated tooth–bone construct
seeded with cells before implantation. (D) Surgical implant site before wound closure. (E) Bioengineered dental
tissues that closely resembled those of naturally formed pig tooth tissues surrounded by alveolar bone. Scale bar
¼ 100 mm. b, bone; bm, bone marrow; d, dentin; e, enamel; p, pulp; pdl, periodontal ligament.
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