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Abstract

Objective—The goal of this paper is to automatically segment perivascular spaces (PVSs) in 

brain from high-resolution 7T MR images.

Methods—We propose a structured-learning-based segmentation framework to extract the PVSs 

from high-resolution 7T MR images. Specifically, we integrate three types of vascular filter 

responses into a structured random forest for classifying voxels into two categories, i.e., PVS and 

background. In addition, we propose a novel entropy-based sampling strategy to extract 

informative samples in the background for training an explicit classification model. Since the 

vascular filters can extract various vascular features, even thin and low-contrast structures can be 

effectively extracted from noisy backgrounds. Moreover, continuous and smooth segmentation 

results can be obtained by utilizing patch-based structured labels.

Results—The performance of our proposed method is evaluated on 19 subjects with 7T MR 

images, with the Dice similarity coefficient reaching 66%.
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Conclusion—The joint use of entropy-based sampling strategy, vascular features, and structured 

learning can improve the segmentation accuracy.

Significance—Instead of manual annotation, our method provides an automatic way for PVS 

segmentation. Moreover, our method can be potentially used for other vascular structure 

segmentation because of its data-driven property.

Index Terms

Perivascular spaces; segmentation; structured random forest; vascular features; 7T MR images

I. Introduction

Perivascular spaces (PVSs), which are also known as Virchow-Robin spaces, are 

cerebrospinal fluid (CSF) filled spaces ensheathing small blood vessels as they penetrate the 

brain parenchyma [1]. The clinical significance of PVSs comes primarily from their 

tendency to dilate in abnormal cases. For example, normal brains show a few dilated PVSs, 

while an increase of dilated PVSs has been shown to correlate with the incidence of several 

neurodegenerative diseases, making PVS a notably important area of research [2], [3], [4], 

[5]. Particularly, substantial research based on dilated PVS has been used for the diagnosis 

of Alzheimer’s disease [6], stroke [7], multiple sclerosis [8], and autism [9]. In general, most 

of the current studies require the precise segmentation of PVSs to calculate quantitative 

measurements. However, manual annotation of PVSs is tedious and time-consuming. 

Therefore, accurate and automatic segmentation of PVSs is highly desirable in PVS-based 

studies.

Since PVSs are vessel-like structures, many general vessel segmentation approaches can be 

potentially applied to PVS segmentation. These methods can be roughly divided into two 

categories, i.e., unsupervised method and supervised method. Most of the unsupervised 

methods are based on the edge enhancement or detection. For example, the first-order 

intensity variation detectors (e.g., Canny edge detector [10]), second order intensity variation 

detectors (e.g., Frangi filters [11]), curvilinear detectors (e.g., stick filter [12], and optimally 

oriented flux (OOF) [13]) are prevalently used for vessel enhancement and detection. Based 

on the enhanced vessel structure, target vessels can be segmented by thresholding [14], [15], 

clustering [16], or active contour modeling [17]. So far, only a few studies have focused on 

automatic PVS segmentation from MR images in an unsupervised manner. For example, 

Descombes et al. [18] enhanced the PVSs with filters and used a region-growing approach to 

get initial segmentation, followed by a geometry prior constraint for further improving the 

segmentation accuracy. Wuerfel et al. [4] segmented the PVSs with a semi-automatic 

software by adjusting intensity threshold. Uchiyama et al. [19] adopted a gray-level 

thresholding technique to extract PVSs from MR images, where these images were first 

enhanced by a morphological white top-hat transformation. However, the segmentation 

performance is usually limited with these unsupervised techniques, since it is very 

challenging to distinguish PVSs from confounding tissue boundaries.

On the other hand, supervised methods have demonstrated superiority in vessel 

segmentation by using powerful classifiers. For example, Ricci and Perfetti [20] employed 
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support vector machine (SVM) for retinal vessel segmentation with a special designed line 

detector. Marín et al. [21] adopted neural network (NN) for retinal vessel segmentation with 

gray-level and moment invariants based features. Schneider et al. [22] used random forest 

(RF) for vessel segmentation from rat visual cortex images with rotation invariant steerable 

features.

However, there are several challenges for directly applying these supervised learning 

methods to PVS segmentation: 1) Since PVSs are extremely narrow and have low contrast 

compared with their neighboring tissues (see Fig. 1), general features may not be able to 

capture the discriminative characteristics of PVSs given confounding background. 2) 

Informative tubular structures of PVSs cannot be considered in conventional supervised 

learning methods, thus often leading to discontinuous and unsmooth segmentation results. 

However, using a simple global geometrical constraint may cause overfitting, since PVSs 

can appear at any location and also have large shape variations (e.g., different lengths, 

widths, and curvatures). 3) The number of PVS voxels is smaller than that of background 

voxels, while there are also enormous amounts of uninformative voxels in the background, 

which makes it difficult to train a reliable classifier with conventional random voxel 

sampling methods.

To address these challenges, we propose a structured-learning-based framework for PVS 

segmentation using high-resolution 7T MR images. Specifically, we first introduce an 

entropy-based sampling strategy to remove redundant voxels in the background. From the 

informative samples, we extract three types of vascular features, based on steerable filters, 

Frangi filter, and OOF, to capture various characteristics of PVSs and their neighborhoods. 

We integrate these feature responses into a structured RF (SRF) to classify voxels into 

positive (i.e., PVS) and negative (i.e., background) classes. The structured RF effectively 

utilizes the patch based structured labels in the training stage, which allows for continuous 

and smooth segmentation in our method.

The remaining sections are organized as follows. Section II introduces the data used in this 

paper. Section III describes our PVS segmentation procedure, including region-of-interest 

generation, voxel sampling, feature extraction, and classification using SRF. Section IV 

reports experimental results and compares our method with other thresholding-based 

methods. In Section V, several important phenomena caused by replacing components of our 

method are discussed respectively. Finally, the conclusion is given in Section VI.

II. Materials

A 7T Siemens Scanner with a 32-channel head coil and a single-channel volume transmit 

coil (Nova Medical, Wilmington, MA) were used during our data acquisition.

Both T1- and T2-weighted 3D MR images were scanned for each subject with spatial 

resolution of 0.65 × 0.65 × 0.65mm3 and 0.5×0.5×0.5mm3 (or 0.4×0.4×0.4mm3), 

respectively. Specifically, the MPRAGE sequence [23] was adopted to acquire the T1-

weighed images, with T E = 1.89ms and T R = 6000ms. The 3D variable flip angle turbo-

spin echo sequence [24] was adopted to acquire the T2-weighted images, with T E = 457ms 
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and T R = 5000ms for the resolution of 0.5× 0.5× 0.5mm3, or T E = 319ms and T R = 

5000ms for the resolution of 0.4 × 0.4 × 0.4mm3.

In total, we acquired 19 image sets from 19 subjects. The manual segmentation was carried 

out by a MR scientist and a computer scientist specialized in image analysis. Both manual 

raters have more than 7 years research experience in image analysis. The segmentation 

procedure was repeated alternatively between these two manual raters until a final consensus 

is reached. The detailed procedure for generating manual segmentation was given in [25].

III. Method

In the previous work [25], we have focused on the MRI protocol optimization and the 

feasibility of characterizing PVS morphology from the optimized MR images. The 

segmentation of PVSs was obtained by manual correction of results obtained from a simple 

threshold-based method. In this paper, we focus on automatic segmentation of PVSs using 

structured learning and vascular features. As shown in Fig. 2, our method is comprised of 

two stages. In the training stage, we first generate a region-of-interest (ROI) using T1-

weighted image. Then, we sample training voxels according to the probabilities calculated 

with local entropies using T2-weighted images. Next, the vascular features from T2-

weighted images are extracted to describe the local structure of each voxel, and the patch-

based structured labels are also extracted from the binary segmentation (PVS) maps as 

multiple target labels. We finally train a SRF model using those both vascular features and 

structured labels. In the testing stage, we first extract vascular features for each voxel in the 

ROI, and then feed these features into the pre-trained SRF model. In this way, the PVS 

segmentation can be performed in each testing image in a classification manner.

A. Region-of-interest Generation

In this paper, we focus only on the PVSs within white matter (WM), which plays an 

important role in the clearance of metabolic wastes from the brain. Moreover, T2-weighted 

MRI is the best modality to identify all PVSs [26]. Therefore, we extract the WM tissue in 

the T2-weighted image as our ROI for PVS segmentation. Since image contrast between 

WM and gray matter (GM) is clearer in the T1-weighted image rather than the T2-weighted 

image, we first rigidly align the T1-weighted image to the T2-weighted image, and then 

perform skull stripping and WM tissue segmentation on the aligned T1-weighted image. 

Accordingly, we can obtain the WM segmentation in the T2-weighted image space. 

Specifically, we adopt FLIRT [27], [28], BET [29] and FAST [30] tools from FSL [31] to 

implement the aforementioned rigid alignment, skull stripping, and tissue segmentation, 

respectively.

B. Voxel Sampling Strategy

In general, the number of PVS voxels is much smaller (i.e., ranging from several thousands 

to tens of thousands) than the total number of voxels in the WM (i.e., millions). To avoid 

class-imbalanced problem, we select all PVS voxels as positive samples, and use only a 

small portion of voxels in the background as negative samples. Since the background 

includes a large number of uninformative (or less informative) voxels from the uniform 
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regions while a relatively small number of informative voxels, it is not reasonable to 

randomly sample the negative samples from background. In order to balance the proportions 

of uninformative (or less informative) and informative voxels, we propose to sample the 

voxels according to the probabilities calculated by local entropies around voxels in the 

background, as shown in Fig. 3.

Specifically, for a region around a specific voxel , the local entropy  is defined as

(1)

where i is a possible intensity value, and  is the probability distribution of intensity i 

within a spherical region  centered at  with a radius of s. That is, a larger value of 

 denotes that the voxel  is more informative.

Then, we sample the voxel  with the probability of , which is defined as

(2)

where ω is a coefficient used to directly adjust the sampling probability and also control the 

total number of sampled voxels. In doing so, most of the informative voxels can be sampled 

from background.

C. Feature Extraction

For many vessel segmentation problems, the orientations of the vessels (e.g., retinal vessels 

and pulmonary vessels) are generally irregular. Therefore, the orientation invariance is an 

important property of features. However, unlike conventional vessel segmentation problems, 

PVSs have roughly regular orientations that point to ventricles filled with CSF, as shown in 

Fig. 2 (b) (PVS segmentation). Considering the useful orientation information of PVSs, we 

extract three types of vascular features based on three filters (steerable filters, Frangi filter, 

and OOF) from T2-weighted images. For each type of these features, we also employ multi-

scale representation to capture both coarse and fine structural features.

1) Steerable-Filter-based Features—Since Gaussian derivative filters are steerable, any 

arbitrary oriented responses of the first-order and second-order Gaussian derivative filters 

can be obtained by the linear combinations of some basis filter responses [32], [33]. Due to 

the selective band-pass property of the first-order and second-order Gaussian derivative 

filters, the steerable filters are prevalent for extracting local features [34], [35], [36]

Assume the definition of a basic Gaussian-like filter G as:

(3)
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where σ2 is the variance of this Gaussian-like filter. The basis filters for the first derivative 

and second derivative Gaussian filters are the first and second derivatives with respect to the 

three coordinate directions (x, y, z), respectively, i.e., Gx, Gy, Gz, Gxx, Gxy, Gxz, Gyy, Gyz, 

and Gzz.

On the other hand, give an arbitrary orientation , which is defined by spherical 

coordinates (θ, ϕ) as follows:

(4)

Considering the symmetry of filters, we let θ ∈ [0, π] and π ∈ [0, π]. Therefore, the 

oriented first-order derivative of Gaussian filter can be calculated as:

(5)

The oriented second-order derivative of Gaussian filter can be calculated as:

(6)

Since all basis filters are x – y − z separable, the three dimensional convolution can be 

implemented by three one-dimensional convolutions on the directions of x, y, and z 
successively. In doing so, it is efficient to get their filtering responses. In this study, we 

extract the 3D steerable-filter-based features including the responses of a Gaussian filter, 9 

oriented first-order Gaussian derivative filters, and 9 orientated second-order Gaussian 

derivative filters. Therefore, there are 19 features for each scale of steerable filters (where 

the scale is defined by the standard deviation of Gaussian/Gaussian derivative filters).

2) Frangi-based Features—The Frangi-based measurements are extracted based on the 

Hessian matrix consisting of second-order derivative of Gaussian filter responses [11], and 

the Hessian matrix (H) can be written as:

(7)

where ∗ is a convolution operator. Therefore, the three eigenvalues, i.e., γ1 > γ2 > γ3, can 

be calculated based on the Hessian matrix. In our study, we first extract 3 features based on 

the eigenvalues, which are . We also extract 2 orientation 

features based on the eigenvector (x1, y1, z1) corresponding to the maximum eigenvalue γ1, 
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which are ( , ). Therefore, there are 5 features for each 

scale of Gaussian derivative filters (here, the scale is defined by the standard deviation of 

Gaussian derivative filters).

3) Optimally Oriented Flux (OOF)-based Features—The OOF has been proven to be 

effective to enhance the curvilinear structures by quantifying the amount of projected image 

gradient flowing in or out of a local spherical region [13]. The OOF matrix (i.e., ) is a 3 

× 3 matrix, with the entry (i.e.,  at i-th row and j-th column defined as:

(8)

where  is the voxel coordinate, Sr is a local spherical region with radius r, 

, is a gradient vector,  is the outward unit 

normal of ∂Sr, and dA is the infinitesimal area on ∂Sr.

The major difference between the Frangi-based features and OOF-based features is the 

computations of Hessian matrix and OOF matrix. Particularly, the eigenvalues and 

eigenvectors of OOF matrix are grounded on the analysis of image gradient on the local 

spherical surface.

We extract 4 features based on the first two eigenvalues (i.e., λ1 and λ2) of the OOF Hessian 

matrix, which are (λ1, λ2, , λ1 + λ2). Moreover, we extract 2 orientation 

features based on the eigenvector  corresponding to the maximum eigenvalue λ1, 

which are . Therefore, there are 6 features for each 

scale of spherical region (where the scale is defined by the radius of spherical region in 

calculating the flux).

D. Classification Using Structured Random Forest

Random forest (RF) classifier is a combination of tree predictors [37]. For a general RF-

based segmentation task, the input space corresponds to the extracted local appearance 

features around each voxel, and the output space corresponds to the label of that voxel. As a 

matter of fact, the PVSs have line-like structures such that the neighborhood labels have 

certain structured coherence. Therefore, we perform the structured learning strategy in our 

task, thus addressing the problem of learning a mapping where the input or output space 

may represent the complex morphological structures.

In our task, the output space can be structured, so that we utilize the structured patch-based 

labels (i.e., the cubic patch with a size of k × k × k) in the in output space. Specifically, in 

the training stage, we first extract vascular features for each voxel sampled from T2-

weighted image, as well as a corresponding cubic label patch from manually segmented 
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binary image. Then, a SRF (multi-label) model is trained using the features and labels. In the 

testing stage, we similarly extract the respective features for all voxels in the WM tissue 

from a testing T2-weighted image. Then, the features are fed to the trained SRF model, and 

each voxel outputs a labeled patch. By assigning the patch-based labels to the neighboring 

voxels, each voxel receives k3 label values, and we take the majority value as the final label 

for this voxel. Eventually, by using the structured labels, the local structural constraint of 

PVSs in the label space can be naturally incorporated into the SRF model.

In general, since most of PVSs point to the ventricles, PVSs within each hemisphere have 

roughly statistical regularity of orientations. To reduce the orientation divergence of PVSs, 

we learn two SRF models separately, with one for the left hemisphere and another for the 

right hemisphere. Finally, voxels from each hemisphere of the testing image are fed to the 

corresponding trained SRF model for labeling.

IV. Experiments

A. Parameter Setting

Two-fold cross validation is used to evaluate the segmentation performance. In order to 

expand the training dataset, each training image is further left-right flipped to generate one 

more training image. The parameters are set as follows. For white matter segmentation, we 

adopt default parameters for FLIRT, BET and FAST. For extracting multi-scale steerable-

filter-based features, the standard deviations of Gaussian filters are set as [0.5, 1.5, 2.5, 3.5], 

thus obtaining 76 features in total. For extracting multi-scale OOF-based features, the flux 

radii are set as [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4], thus generating 48 features in total. For 

extracting Frangi-based features, the standard deviations of Gaussian filters are set as [0.5, 1, 

1.5, 2, 2.5, 3, 3.5], thus obtaining 35 features in total. Here, we select slightly denser scales 

for generating OOF and Frangi-based features than steerable-filter-based features, to avoid 

the imbalance of different types of features. To extract patch-based labels, the patch size is 

set as 3×3×3. For voxel sampling, the radius s is set as 10, and the coefficient parameter ω is 

set as 15 to keep the proportion between positive voxels and negative voxels to be roughly 

1:5. For training the SRF classifier, 10 independent trees are trained and the depth of each 

tree is set as 20.

B. Evaluation Criteria

In order to evaluate the segmentation performance, we define the following four 

performance measurements by comparing the predicted segmentation image with the 

manually annotated ground-truth. 1) True Positives (TP): predicted PVS voxels inside the 

ground-truth PVS segmentation. 2) False Positives (FP): predicted PVS voxels outside the 

ground-truth PVS segmentation. 3) True Negatives (TN): predicted background voxels 

outside the ground-truth PVS segmentation. 4) False Negatives (FN): predicted background 

voxels inside the ground-truth PVS segmentation.

Note that TN is generally a very large value compared with other measurements due to the 

severe unbalanced number of voxels (i.e., PVS vs. background). To avoid such influence, 
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only the Dice similarity coefficient (DSC), sensitivity (SEN), and positive prediction value 

(PPV) are calculated as evaluation criteria, as shown below:

(9)

In summary, DSC reflects the overall segmentation performance, SEN indicates the 

capability of detecting the PVS voxels, and PPV represents the capability of discarding the 

confounding background voxels.

C. Experimental Results

In our experiment, we compare our method with the methods of Frangi [11] and OOF [13] 

with a thresholding strategy, denoting as FT and OT, respectively. For the implementation of 

these two methods, we acquired the source codes from the websites in [38] and [39], 

respectively. For a fair comparison, we also pre-selected the ROI of WM for the two 

competing methods.

Table I and Fig. 4 show the segmentation results achieved by different methods. As can be 

seen, our method achieves the best result, compared with those two thresholding-based 

methods (i.e., FT and OT), demonstrating the effectiveness of our learning-based framework. 

We also shows the results using RF (not structured) and the vascular features. It can be seen 

that the use of SRF achieves roughly 6% improvement (in terms of DSC) as compared with 

the standard RF, and more than 14% (in terms of DSC) as compared with two thresholding-

based methods.

Figure 4 (b) and (c) also show the corresponding SEN and PPV of different methods. By 

comparing these two criteria, we can observe two phenomena: 1) The PPVs achieved by the 

two thresholding-based segmentation methods (i.e., FT and OT) are much lower than those 

of the two learning-based methods (i.e., RF and SRF). 2) Compared with RF, SRF improves 

the segmentation performance more significant in SEN than PPV. That is, the PPV of RF is 

about 4 percent lower than that of SRF, while the SEN of RF is about 7 percent lower than 

that of SRF.

In order to give more evident explanation, we visualize the segmentation results of several 

typical PVSs in Fig. 5. 1) It is clear that the methods of FT and OT can detect most of the 

PVSs. The major problem of the two thresholding-based method is that they cannot 

distinguish the PVSs from the confounding tissue boundaries. Many confounding 

boundaries are wrongly classified as PVSs, leading to a large number of false positive 

voxels. However, the learning-based methods well solve such problem. Therefore, the PPVs 

of the two learning-based methods (i.e., RF and SRF) are significantly improved compared 

with those of the two thresholding-based methods. 2) The results achieved by RF model are 

generally better than those of two thresholding-based methods. However, the results of the 

RF model are often discontinuous and unsmooth. On the other hand, the SRF improves such 

circumstance because of the use of local structural constraint in the label space. Since there 

exist some PVS voxels that may be wrongly classified as background using RF 
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(unstructured), the number of false negative voxels increases. This leads to a relatively low 

SEN of RF, compared with SRF.

V. Parameter Analysis and Discussions

A. Sampling Strategy

In our method, we sample voxels from background with their probabilities in proportion to 

the corresponding local entropies. For comparison, we show the result achieved by the 

method that simply randomly sample the voxels from background. As shown in Fig. 6, the 

proposed entropy-based sampling (ES) strategy improves the segmentation performance by 

more than 8% in terms of DSC for both RF and SRF classifiers. Figure 7 also shows several 

examples of PVS segmentations, by different sampling strategies. As indicated, random 

sampling strategy has potential risk of wrongly classifying the confounding boundary voxels 

as PVSs. Specifically, if we randomly sample the background voxels, many voxels that are 

similar to PVSs may not be sampled for training, due to the existence of much more 

uninformative voxels in background. On the other hand, the simple use of redundant 

unrepresentative sampled voxels for training may adversely affects the accuracy of 

classification model. As shown in Fig. 7, our method (i.e., ES+SRF) can distinguish voxels 

that are similar to the PVSs, but not PVSs, compared with random sampling strategy.

B. Vascular Features

We also conduct experiments by replacing the vascular features with patch-based intensity 

features, Haar-like features, and 3D HOG features [40]. For intensity feature extraction, the 

patch size is 11 × 11 × 11. For Haar-like features, we calculate differences between the sums 

of voxels of areas inside the cubic, which can be within a fixed patch with the size of 

11×11×11. For HOG feature extraction, there are 16 orientations, and 2×2×2 cells, and each 

cell size is 5×5×5. For fair comparison, different types of features are separately used to 

train the corresponding SRF classifiers. Figure 8 shows that the best result is achieved using 

our vascular features. This can be attributed to the fact that vascular features can enhance 

vascular structures by removing potential noises.

C. Feature Scale Selection

One important parameter for feature extraction is the scale range for multi-scale 

representation. In our experiment, we define the scales of vascular features by their 

frequencies of being selected in all split nodes of a trained classification model. Specifically, 

we feed redundant features with many scales to train a classification model. Then, we count 

the frequencies of selected features in terms of their scales. As shown in Fig. 9, the 

distribution demonstrates the importance of each scale in extracting vascular features. 

Finally, we only use the scales in the reasonable range for each feature type, as introduced in 

our parameter setting part.

D. Effect of Noise

In this section, we analyze the robustness of our method with respect to noise. We add white 

Gaussian noise with zero mean and a certain standard deviation that depends on specific T2-

weighted MR image, to obtain the expected signal to noise ratio (SNR). As shown in Fig. 
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10, both of the two learning-based methods (i.e., RF and SRF) are more robust to noise 

compared with the two thresholding-based methods (i.e., FT and OT). Moreover, it also 

suggests that our vascular features are more robust to the noise.

E. Limitations of the Proposed Method

Although our method has improved the segmentation performance compared with existing 

thresholding-based methods, there are still some limitations. Figure 11 illustrates several 

cases of failed segmentations. As can be seen, there are some major types of failed 

situations. 1) One type of failed segmentation occurs on the PVSs close to the gray matter 

boundary (see the first row in Fig. 11). That may attribute to the fact that the patch 

appearance close to that PVS is not clear, and the strong filtering responses of boundary lead 

to ambiguous vascular features. Some high-level learning-based features (e.g., deep-

learning-based features) may overcome such difficulty and then improve the segmentation 

performance. 2) It is difficult for our method to detect the PVSs with subject-specific shape 

structure (see the second row in Fig. 11). For the PVSs with their specific shape structures 

not included in the training dataset, they are not easily to detect, since our learning-based 

method is not heuristic. Such failures may be caused by the limited number of training 

subjects in our current study. Although we have flipped the training images in order to 

generate more training samples, the total number of training images is still limited. A 

potential way of solving this problem is to extend the training dataset by including the 

synthetic images with artificial variable-shape PVSs. 3) It is also difficult to detect too weak 

PVSs, although we have extracted vascular features to enhance vascular structures (see the 

third row in Fig. 11). Some enhancing and denoising techniques might be useful to 

preprocess images before our feature extraction stage.

Moreover, the imaging of PVSs is still an ongoing direction. Existing MR sequences may 

not show all PVSs, or the shown PVSs are still not easily to be manually annotated. 

Therefore, it is still very challenging to provide accurate ground-truth PVSs for training our 

model. The development of new MR sequence can potentially improve the imaging quality 

of PVSs, and thus provides more accurate ground truth, which can eventually improve our 

segmentation performance.

F. Future Work

In this paper, we focus only on the PVSs within the white matter, which plays an important 

role in the clearance of metabolic wastes from the brain. It may provide important insight 

into the pathophysiology of disease to understand the age dependent changes of PVS 

morphology within the white matter and also characterize its possible abnormality in 

Alzheimer’s disease and mild cognitive impairment. In our future work, instead of using the 

white-matter ROI, we will also segment the PVSs in whole brain, which may have broader 

clinical applications in intracerebral haemorrhage [41], Alzheimer’s disease [42], stroke 

[43], general elderly population analysis [44], and sleep [45].

In addition, we focus only on the PVS segmentation from MR images of young healthy 

volunteers, where few lacunar infarcts were present. Our method needs to be further 

improved for discriminating PVSs from small lacunar infarcts in the studies of PVSs in 
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elderly subjects suffering from neurodegenerative diseases where lacunar infarcts are 

commonly observed [46]. One potential approach is to utilize different geometric shapes of 

the two structures, since PVSs have a linear structure while lacunar infarct is more isotropic. 

This will be our future research topic.

VI. Conclusion

In this paper, we have presented a structured-learning-based segmentation framework for 

PVS segmentation. Specifically, we defined vascular features to better distinguish PVSs 

from the complex background, and further used the patch-based structured labels to preserve 

local structure of segmented PVSs. Moreover, a novel voxel sampling strategy was proposed 

to further improve the segmentation performance. The experimental results indicated the 

superior segmentation performance of our proposed method in effective segmentation of 

PVSs.
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Fig. 1. 
PVSs in the T2-weighted MR images.
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Fig. 2. 
Schematic diagram of the proposed method. (a) Training stage. The WM ROI is first 

extracted. Then, the voxels are sampled with the proposed sampling strategy, followed by 

the vascular feature extraction and structured label extraction. Finally, SRF classifier is 

trained. (b) Testing stage. The WM ROI is first extracted. Then, the vascular features are 

extracted for all voxels within the ROI. The structured labels can be predicted using the 

trained classifier. Finally, the PVS voxels can be further determined using these predicted 

structured labels.
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Fig. 3. 
Sampling procedure. (a) T2-weighted image. (b) Entropy map within the ROI of white 

matter. (c) Sampled voxels from background.
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Fig. 4. 
Quantitative evaluation of segmentation results compared with different methods. (a) DSC. 

(b) SEN. (c) PPV. FT and OT indicate the thresholding-based method in [11] and [13], 

respectively. RF and SRF indicate the learning-based methods using random forest and 

structured random forest, respectively.
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Fig. 5. 
Illustrations of typical PVS segmentations.
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Fig. 6. 
Comparison between different voxel sampling strategies. RS denotes the conventional 

random sampling strategy and ES denotes the proposed entropy-based sampling strategy. (a) 

DSC. (b) SEN. (c) PPV.
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Fig. 7. 
Illustration of segmentation results of using two different voxel sampling strategies. RS 

denotes the conventional random sampling strategy and ES denotes the proposed entropy-

based sampling strategy. The falsely segmented PVSs are marked by circles.
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Fig. 8. 
Comparison among different features. (a) DSC. (b) SEN. (c) PPV.
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Fig. 9. 
Frequencies of features being selected in different scales. The horizontal axis indicates the 

scale of each feature type. The vertical axis indicates the frequency of features being 

selected.
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Fig. 10. 
Segmentation results with respect to different noise levels.
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Fig. 11. 
Illustration of failed segmentations. The failed segmentations are marked by circles.
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