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Abstract

Analysis of CT scans for studying Chronic Obstructive Pulmonary Disease (COPD) is generally 

limited to mean scores of disease extent. However, the evolution of local pulmonary damage may 

vary between patients with discordant effects on lung physiology. This limits the explanatory 

power of mean values in clinical studies. We present local disease and deformation distributions to 

address this limitation. The disease distribution aims to quantify two aspects of parenchymal 

damage: locally diffuse/dense disease and global homogeneity/heterogeneity. The deformation 

distribution links parenchymal damage to local volume change. These distributions are exploited 

to quantify inter-patient differences. We used manifold learning to model variations of these 

distributions in 743 patients from the COPDGene study. We applied manifold fusion to combine 

distinct aspects of COPD into a single model. We demonstrated the utility of the distributions by 

comparing associations between learned embeddings and measures of severity. We also illustrated 

the potential to identify trajectories of disease progression in a manifold space of COPD.

1 Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a complex disorder arising from various 

pathological processes including emphysema and functional small airways disease (fSAD). 

The extent of emphysema and fSAD that make up overall disease burden can vary, which 

can affect lung physiology. Both disease processes can progress at different rates, 

complicating prognostication. Optimising the quantification of disease extent in COPD may 

improve the precision of disease staging and monitoring.

Analysis of lung disease from Computed Tomography (CT) has typically relied on the 

analysis of the lung using global averages. Such metrics cannot capture the anatomical 

distribution of disease. Methods have been proposed to quantify the contribution of various 

emphysema subtypes [5] or the distribution of image features [2]. Harmouche et al. [5] built 

an emphysema manifold by analysis of classified emphysema subtypes. A Severity Index (S) 

was derived from this space that is complimentary to the mean level of emphysema. In 

contrast, Bragman et al. [2] modelled local distributions of density and biomechanical 

features; exploiting them to investigate differences between subtypes of COPD whilst also 

classifying these subtypes.
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2 Method

We present a new method to quantify the spread of parenchymal disease and measure its 

effect on lung deformation. It is based on locally quantifying tissue destruction and 

deformation to capture heterogeneity or homogeneity across the lung. The outcome is a 

distribution that quantifies various aspects of lung pathophysiology that can be modelled to 

test associations with various clinical hypotheses. The distributions can be exploited to 

quantify inter-patient differences in lung tissue pathology and deformation. A single model 

of tissue disease and deformation can be obtained by combining separate embeddings 

obtained from manifold learning with manifold fusion.

2.1 Lung deformation and tissue classification

The deformation between paired breath-hold CT scans acquired at forced residual capacity 

(ℐexp, Ω*) and total lung capacity (ℐins, Ω) can be obtained using nonrigid registration. The 

output is a transformation φ mapping each coordinate x ∈ Ω → x* ∈ Ω*. Local volume 

change is characterised by the Jacobian determinant J. It is calculated on a voxel-wise basis: 

J = det (∇xφ).

Parametric Response Mapping (PRM) [4] was used to classify voxels as emphysema 

(PRMemph) and functional small airways disease (PRMfSAD). For all voxels xi ∈ ℐins, the 

tissue class zi is based on Hounsfield Unit (HU) thresholds in ℐins and ℐexp. A voxel is 

classified as PRMemph if ℐins(xi) ≤ −950 and ℐexp(φ(xi)) ≤ −856. A voxel is classified as 

PRMfSAD if ℐins(xi) > −950 and ℐexp(φ(xi)) ≤ −856. The airways and vasculature are 

segmented by only considering voxels with an HU between −500HU and −1024HU in both 

scans.

2.2 Local disease and deformation distributions

We present the concept of local feature distributions (Fig.1a and b). The aim is to quantify 

local abnormalities in lung physiology and pathology to define a signature unique to a 

patients disease state. We introduce two models: 1) local disease distributions and 2) local 

deformation distributions. The disease distributions model the spread of emphysema and 

fSAD whilst the deformation distribution characterises local volume change across the lung. 

They are created by locally sampling regions of  and J in a Cartesian grid using local 

regions of interest Ωk (ROI) where k = 1 ⋯ K indexes the center voxel of the ROI. The size 

(r × r × r) of the ROI governs the scale of the sampling.

We modelled two properties of disease spread: 1) locally diffuse/dense disease and 2) global 

homogeneity/heterogeneity. For each ROI centered at zk where z ∈ Ωk, we computed the 

fraction of PRMemph and PRMfSAD voxels; defined as υk(emph) and υk(fSAD). Dense 

disease occurred when υk(·) → 1 whilst diffuse disease was present when υk(·) → 0. The 

deviation of diffuse and dense regions in the lung defined the heterogeneity/homogeneity of 

disease spread.

A distribution f(υ(·)) for each feature was built by sampling K regions. The shape of the 

distribution is governed by the two disease properties (Fig.1a). It provides information on 
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the nature of local disease spread (diffuse or dense) and whether it is homogeneous or 

heterogeneous.

Expansion of the lung is dependent on local biomechanical properties (emphysema) and 

airway resistance (functional small airways disease), which will affect lung deformation 

locally. To capture volume change on a local basis, the Jacobian map (J) was sampled by 

calculating the mean Jacobian (μ(J)k) for all Ωk. A distribution f(μ(J)) of these measurements 

was built to capture local volume change throughout the lung using the same process as 

above (Fig.1b).

2.3 Manifold learning of COPD distributions

We hypothesised that the heterogeneity of COPD could be modelled by the local disease and 

deformation distributions. Manifold learning can be used to capture variability in the 

distributions and learn separate embeddings for emphysema, fSAD and lung deformation. 

Fusion of these embeddings can then be performed to create various models of COPD.

Distribution distance—Inter-patient differences are computed using the Earth Movers 

Distance (ℒEMD) [11]. It is a cross-bin distance metric, which measures the minimum 

amount of work needed to transform one distribution into another. The distributions are 

quantised into separate histograms hυ(emph), hυ(fSAD) and hJ using Nb bins. They are 

normalised to sum to 1 such that they have equal mass. A closed-form solution of the ℒEMD 

can be used for one-dimensional distributions with equal mass and bins [7]. It reduces to the 

ℒ1-norm between cumulative distributions (H) of two histograms h1,(·) and h2,(·): 

.

Manifold learning and fusion—Manifold learning is used to model emphysema, fSAD 

and Jacobian distributions. The aim is to capture variations in the distributions in a 

population of COPD patients. As emphysema and fSAD occur synchronously and both 

affect lung function, the manifold fusion framework of Aljabar et al. [1] is employed to 

create a single representation of these processes.

For P subjects, the PRM classified volumes are 1, ⋯, P and their respective Jacobian 

determinant maps are J = J1, ⋯, JP. The distributions are quantised using Nb bins into their 

respective histograms hp,υ(emph), hp,υ(fSAD) and hp,J. Pairwise measures in the population are 

obtained with the ℒEMD yielding the pairwise matrices ℳemph, ℳfSAD and ℳJ. They can be 

visualised as connected graphs where each node represents a patient and the edge length is 

the ℒEMD. Isomap1 [12] is applied to each matrix. A K-nearest neighbour search is first 

performed to create a sparse representation of ℳ(·) where edges are restricted to the K-

nearest neighbourhood of each node. A full pairwise geodesic distance matrix D(·) is then 

estimated by analysis of the K-nearest graph of ℳ(·) using Djikstra’s shortest-path algorithm 

[3]. The low-dimensional embedding , p = 1, ·, P is obtained by minimisation of

1lvdmaaten.github.io/drtoolbox/
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(1)

using Multi-Dimensional Scaling. The coordinate embeddings for ℳemph, ℳfSAD and ℳJ are 

ye, yf and yJ with dimensions de, df and dJ that are selected.

Fusion of the coordinates y(·) can be performed in any combination to investigate various 

processes. For simplicity, we consider all embeddings. The coordinates are uniformly scaled 

with the scale factors se, sf and sJ such that the first component of each embedding  has a 

unit variance. These are concatenated to yield Y = (seye, sfyf, sJyJ) with dimension de + df + 

dJ. A distance matrix ℳc is obtained by calculating pairwise Euclidean distances of Y. 

Isomap is then applied to yield the combined coordinate embedding yc with dimension dc.

3 Experiments

3.1 Data processing

A total of 1, 154 scans of COPD patients (GOLD ≥ 1) were downloaded from COPDGene 

[10]. They were acquired on various scanners (GE Medical Systems, Siemens and Philips) 

with the following reconstruction algorithms: STANDARD (GE), AS+ B31f and B31f 

(Siemens), and 64 B (Philips). The Pulmonary Toolkit2 was used for lung segmentation. 

Breath-hold scans were registered with NiftyReg [9] with a modified version of the 

EMPIRE10 pipeline [8]. The transformation was a stationary velocity field parameterised by 

a cubic B-spline and the similarity measure was MIND [6]. The constraint term was the 

bending energy of the velocity field, weighted at 1% for all stages of the pipeline. After 

manual inspection of the registrations, 743 patients were selected. Scans were rejected if 

there were major errors close to the fissures and the lung boundary.

The sampling size of the ROIs was r = 20mm, consistent with the size of the secondary 

pulmonary lobule. Sampling was performed with a Cartesian grid of center voxels spaced 

every 5mm. We chose a value of Nb = 60 as its effect on pairwise distances was minimal 

with increasing Nb when Nb > 50.

The dimensionality d of y and the parameter K for each embedding were determined by 

estimating the reconstruction quality of the lower-dimensional coordinates. The residual 

variance  between the distances in ℳ(·) and the pairwise distances of y(·) was 

considered. For each embedding step (ye, yf and yJ), we determined the combination of K 
and d that minimised the residual variance. Grid-search parameters were set to d* ∈ [1, 5] 

and K* ∈ [5, 100]. Final parameters were K = [50, 30, 45] and d = [5, 5, 4] for ye, yf and yJ. 

We considered a model of the disease distributions (ye, yf → yc1) and a model also 

including the deformation (ye, yf, yJ → yc2). Parameters for both models were Kc1 = 55 and 

Kc2 = 60 with dc1 = 4 and dc2 = 4.

2github.com/tomdoel/pulmonarytoolkit
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3.2 Associations with disease severity

Correlations between the embeddings and distribution moments were computed (Table 1). 

The first and second components of the embeddings had strong to moderate correlations 

with the distribution parameters, demonstrating that manifold learning of the distributions 

modelled the variation in the population.

We considered several models to predict COPD severity using FEV1%predicted 

and FEV1/FVC (Table 2). We considered three simple models (mean PRMemph, mean 

PRMfSAD and mean Jacobian μ(J)) and compared them to univariate and multivariate 

models of embedding coordinates (y). The univariate models  showed moderate 

improvement over the simple mean models. However, the combined models (  and ) 

improved model prediction. The multivariate models demonstrated best performance, with 

model 2 (yc2 = ye + yf + yJ) performing best, even after adjusting for an increase in 

variables. It had a Bayesian Information Criterion (BIC) of 620 compared to 625 (yc1) and 

633, 650 and 648 for PRMemph, PRMfSAD and μ(J) respectively. The increase in explanatory 

power was also seen when correlating the first component of the combined models 

with FEV1%predicted. The first components of the combined models had Pearson 

coefficients of r = 0.67, p < 0.001 and r = 0.70, p < 0.001 respectively. Coefficients for the 

mean models were r = −0.63, p < 0.001, r = −0.50, p < 0.001 and r = 0.52, p < 0.001 

respectively. We also used manifold fusion to create a joint model between mean values of 

PRMemph and PRMfSAD and a second with PRMemph, PRMfSAD and μ(J). Pairwise mean 

differences were used to create ℳ(·). Correlation of the first component was r = 0.60, p < 

0.001 and r = −0.65, p < 0.001 respectively. This corroborated the utility of combining 

embeddings based on the local distributions ( , p < 0.001).

3.3 Trajectories of emphysema and fSAD progression

It is likely that trajectories of disease progression in COPD vary depending on the dominant 

disease phenotype. We assessed whether we can model these in the tissue disease model 

(yc1). We parameterised yc1 using the emphysema and fSAD distributions as covariates (l) 

with kernel regression:  where K is a Gaussian kernel and υ is a 

normalisation constant. The covariate was the ℒEMD between the distributions and an 

idealised healthy distribution (distribution peak at υ = 0). The outcome is two trajectories in 

the manifold space (Fig.3a). The emphysema trajectory can be considered as the path taken 

when emphysema progression is dominant and vice-versa for fSAD. We classified patients 

based on these trajectories. A patient is seen to follow an emphysema progression trajectory 

if it is closest to yc(l(emph)). At the baseline, patients are classified as both emphysema and 

fSAD subtypes. When considering two sets of patients stratified by trajectory, the 

explanatory power of the embeddings improved in comparison to yc1 (Table 2). The 

emphysema regression produced an adjusted-r2 of 0.52 and 0.63 when predicting 

FEV1%predicted and FEV1/FVC respectively whilst fSAD was 0.45 and 0.62.
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4 Discussion and Conclusion

We have presented a method to parameterise distributions of various local features 

implicated in COPD progression. The disease distributions model local aspects of tissue 

destruction whilst modelling global properties of heterogeneity and homogeneity. The 

deformation distribution quantifies the local effect of disease on lung function. Patients 

exhibiting different mechanisms of tissue destruction can have identical global averages yet 

can display different disease distributions. These differences are likely to cause differences 

in local biomechanical properties, which are captured by the deformation distribution.

We have shown that models of the proposed distributions better predict COPD severity than 

conventional metrics (Table 2). We have shown that embeddings based on distribution 

dissimilarities have stronger correlations with FEV1%predicted than those learned from 

mean differences. Both these results suggest that the position of a patient in the manifold 

space of yc1 or yc2 is critical for assessing COPD. This was observed in the trajectory 

classification (Fig.3). Determining the trajectory that a patient is following may help inform 

therapeutic decisions and improve our understanding of COPD progression.

Complexity of the modelling may be increased to model more specific information about 

lung pathophysiology. Separate manifolds can be produced on a lobar basis. This is likely to 

further increase the explanatory power of the models since inter-lobar disease metrics 

correlate with different aspects of physiology. The detection of regional differences in local 

deformation may add further important information regarding the pathophysiology of a 

patient.
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Fig. 1. 
Local disease and deformation distributions.
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Fig. 2. 
Projection of embeddings a) yc1 and b) yc2 with FEV1%predicted overlayed.
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Fig. 3. 
a) Three-dimensional projection of yc1 and b) classified trajectories of yc1.
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