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Depression is a serious disorder that affects hundreds of millions of people around the world and causes poor quality of life,
problem behaviors, and limitations in activities of daily living. Therefore, the search for new therapeutic options is of high
interest and growth. Research on the relationship between depression and oxidative stress has shown important biochemical
aspects in the development of this disease. Flavonoids are a class of natural products that exhibit several pharmacological
properties, including antidepressant-like activity, and affects various physiological and biochemical functions in the body.
Studies show the clinical potential of antioxidant flavonoids in treating depressive disorders and strongly suggest that these
natural products are interesting prototype compounds in the study of new antidepressant drugs. So, this review will summarize
the chemical and pharmacological perspectives related to the discovery of flavonoids with antidepressant activity. The

mechanisms of action of these compounds are also discussed, including their actions on oxidative stress relating to depression.

1. Introduction

Besides cognitive deficits, Alzheimer’s disease (AD) is char-
acterized by noncognitive features which are the behavioral
and psychological symptoms of dementia (BPSD) [1]. Of all
the BPSD, the prevalence of depression is the most notewor-
thy, at 40% [2], and could be considered to be a risk factor for
AD [3]. The neurotoxic effects of depression include atrophy
of hippocampus linked to over secretion of cortisol or abnor-
mally low concentration of brain-derived neurotrophic factor
(BDNF) [4]. Furthermore, it has been recommended that
depression could be induced by metabolic disorders of
monoamine neurotransmitters that are engaged in noradren-
aline (NE), serotonin (5-HT), and dopamine (DA) signaling

[5]. Anxiety and depression have been shown to increase the
severity of cognitive decline in AD patients [6]. Furthermore,
anxiety is more common in individuals with dementia than
in individuals without dementia [7] and it is associated with
worse quality of life, problem behaviors, impediments in
activities of daily living, nighttime awakenings, and poorer
neuropsychological performance, even after controlling for
depression [8]. The World Health Organization (WHO) esti-
mates that around 350 million individuals suffer from
depression and anticipates that by 2020 the disorder will be
the second driving reason of disability worldwide. As of
now, there are numerous effective antidepressants available,
yet a few antidepressants caused insufficient and unsatisfac-
tory results in around 33% of all subjects treated [9-11].
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Along these lines, endeavors ought to be sought after for the
development of the newer antidepressant agents with better
efficacy and fewer side effects.

The different forms of monoamine oxidases (MAO-A
and MAO-B) were considered as relevant for key events in
intrinsic cell death pathways, particularly those focused on
oxidative stress and peroxyradical-mediated mechanisms
via causing to the production of hydrogen peroxide as a
byproduct of the reaction between the MAOs (monoamine
oxidases) and their monoamine substrates [12]. Especially
the upregulation of MAO-A prompted increments of 5-
hydroxyindoleacetic acid/5-HT ratio, oxidative stress, lead-
ing to nuclear factor-xB (NF-«B) activation, inflammation,
and apoptosis [13, 14]. The patients with chronic neurode-
generative symptoms like depression and apathy are for the
most part treated with drugs that elevate biogenic amine
levels. This common therapeutic strategy was believed to be
responsible for the generation of neurotoxic aldehydes and
enhanced oxidative stress which in turn further increases
the biogenic amine turnover. The exploratory examinations
likewise uncovered this last condition influencing and accel-
erating the course of neurodegeneration. Truth be told, the
in vivo findings from chronic, unpredictable stress-induced
depression models of mice prompted that the depression
formation was strongly emphatically connected with the
increased activities of MAOs and malondialdehyde (MDA)
amounts and diminished glutathione levels, glutathione
reductase, and glutathione peroxidase activities in the brain
[15-17]. In a current report by Czarny et al. [18], it was
accounted that elevated levels of reactive oxygen and nitro-
gen species (ROS and RNS) caused oxidative DNA damage
in depressed patients. It is well known that chronic oxidative
stress due to ROS and RNS production has a huge potential
to drive carcinogenesis by altering the expression of cancer-
related genes causing mutation and transformation. Concor-
dantly, it was discovered that gastric cancer patients with
depression are under elevated levels of oxidative stress condi-
tions that are accompanied by the dysfunction of numerous
protooncogenes [19, 20].

Herbal therapies may be a fascinating and successful
option in depression treatment, since a large number of
herbal preparations have demonstrated psychotherapeutic
activities. The search for new pharmacotherapy from medic-
inal herbs and constituents isolated from plant extracts for
psychiatric disorders, including depression, has advanced
expressively over the previous decade [21]. For instance, a
flavonoid-rich fraction obtained from the seed extract of
Monodora tenuifolia was able to do altogether to decrease
behavioral alterations in forced-swim stressed rats and in
addition exert protective effects against induced oxidative
stress, supporting its antidepressant effect [22]. In another
investigation, the methanolic extract from the species Byrso-
nima crassifolia (L.) Kunth (Malpighiaceae) uncovered anti-
depressant activity in the forced swimming test and the
antioxidant flavonoids rutin, quercetin, and hesperidin per-
haps are engaged with the antidepressant effects of B. crassi-
folia (L.) Kunth [23-26]. Flavonoids are a broad class of
secondary metabolites copious in plants and different foods.
They have been distinguished in an assortment of a variety
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of fruits and vegetables and confer color, flavor, and aroma,
as well as nutritional and health benefits. Polyphenol flavo-
noids are the most effective functional ingredients with bio-
logical activities. Many flavonoids possess antioxidant and
antidepressant activities [10, 24, 25]. It is widely reported that
oxidative stress assumes a critical part in the development of
various diseases [27], including psychopharmacological dis-
orders [28]. Indeed, the connection between oxidative stress
and depression has been studied and discussed in some
reviews [28-31]. Accordingly, this review provides a detailed
overview of the current state of knowledge about the antide-
pressant activities of flavonoids, as well as their relationship
with oxidative stress.

2. Methodology

The search was conducted in the scientific database PubMed,
focusing on works published during the last six years (January
2011 to December 2016). The data were selected using the fol-
lowing terms: “flavonoid” and “antidepressant” as well as the
names of experimental models of depression in animals such
as “Forced Swim Test” and “Tail Suspension Test” and “Oxi-
dative Stress.”

3. Results and Discussion

3.1. Flavonoids and BDNF Expression. BDNF is a neurotro-
phin expressed in the brain and participates in a range of
intracellular signaling processes, neuronal protection and
survival, axonal and dendritic morphology and synaptic plas-
ticity [32]. It has been documented that BDNF is involved in
a number of neuropsychiatric disorders such as affective dis-
orders, schizophrenia, addiction, eating disorders, and neu-
rodevelopmental disorders [33]. Decreased levels of BDNF
are among the most frequently validated biomarkers of
depressive disorder [32]. Importantly, reduced BDNF levels
have been reported in postmortem brain samples from AD
patients [34].

Hesperidin (1), a natural flavanone glycoside predomi-
nant in citrus fruits, has been accounted with useful thera-
peutic properties such as antidiabetic [35], antioxidant
[36], neuroprotective [37], and anticancer [38]. El-Marasy
et al. [39] reported the antidepressant effect of hesperidin
in streptozotocin-induced diabetic rats (Table 1). The out-
come of the study indicated that the effects of hesperidin
are mediated at least in part, via its modulatory effect on
hyperglycemia, its antioxidant and anti-inflammatory activ-
ities, alteration of BDNF levels, and activation of the brain’s
monoaminergic system. Furthermore, Donato et al. [40]
observed that chronic administration of hesperidin resulted
in an increase in hippocampal BDNF levels. These authors
concluded that the antidepressant effect of hesperidin is
mediated by inhibition of L-arginine-NO-cGMP pathway
and by an increase of the BDNF levels in the hippocampus.
In another examination, Li et al. [41] explored the
antidepressant-like mechanism of hesperidin in mice
exposed to chronic mild stress (CMS). The obtained results
showed the ability of hesperidin to ameliorate the reduction
of sucrose preference and reverse the augmented immobility
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(i) Increased BDNF levels sin the hippocampus
(ii) Promoted ERK phosphorylationand BDNF
expressionin the hippocampus
(iii) Restored the stress-induced down-regulation of BDNF
(iv) Activation of the BDNF signaling pathway
(v) Cytoprotective action related to elevation the expresion of

BDNF and CREB

(i) Attenuated hyperglycaemia

1

(i) Restored the brain levels of

(ii) Antioxidant effect and attenuated
neuroinflammation

(iii) Potentation the GABA , receptor-Cl~ -
ion channel complex

(iv) Supression of oxidative-nitrosative-

Flavonoids

monoamines

(ii) Increased the serotonin and
dopamine levels sin the CNS

(iii) Up-regulation of monoaminergic

—)

stress

l

neurotransmitters

(i) Interaction with the 5-HT , noradrenergic a2, and
dopaminergic Dy, D,, and D5 receptors
(ii) Interaction with the x-opioid receptor
(iii) Act as TrkB receptor-specific agonist
(iv) Interaction with presynaptic 5-HT 5 receptors

FIGURE 1: Possible mechanism of action of flavonoids with antidepressant activity.

time induced by CMS. All these information endorse the
antidepressant effect of hesperidin and suggest that extracel-
lular signal-regulated kinase- (ERK-) BDNF signaling path-
way is involved in the antidepressant-like activity of this
flavanone.

Chrysin (2), a natural flavonoid predominant in bee
propolis, honey, and several plants, possesses multiple bio-
logical activities such as anti-inflammatory, antineoplastic,
hypolipidemic, and antioxidant [42-44]. In addition, Filho
et al. [45] revealed the antidepressant effect of chrysin in mice
subjected to chronic unpredictable mild stress (Table 1). The
authors proposed that upregulation of BDNF levels in the
hippocampus and prefrontal cortex of stressed mice may be
associated with the antidepressant effects of chrysin. In
another study done by the same research group members
[46], they showed that the treatment with chrysin caused
the attenuation of depressive-like behavior and hippocam-
pal changes in olfactory bulbectomized mice, reinforcing
that BDNF plays an important role in the antidepressant
effect of this flavonoid. Further, Filho et al. [47] likewise
analyzed the neurochemical parameters correlated with
the antidepressant property of chrysin in mice exposed to
unpredictable chronic stress. The authors suggested an
association existing between the antidepressant-like action
of chrysin and the proinflammatory cytokines synthesis,
5-hydroxytryptamine metabolism, kynurenine pathway, and
caspases activities.

Naringenin (3), a dietary flavonoid prevalent in the peels
of citrus fruit, has various biological actions such as a cogni-
tive enhancer [48] and inhibits monoamine oxidase activity
[49] and neuroprotection [50]. Likewise, naringenin was
found to display antidepressant effects [51]. The authors
inferred that naringenin treatment can suppress neuroendo-
crine signaling and stimulate monoamines, which bring
about upregulation of BDNF in the mice hippocampus.

Astilbin (4), a natural flavonoid heteroside displayed in
the plants of Smilax or Hypericum perforatum L., has differ-
ent pharmacological actions such as antioxidant, free radical
scavenging, and anti-inflammatory function [52, 53]. Lv et al.
[54] detailed additionally about the antidepressant effect of
astilbin. They suggested that the effects of astilbin observed
in experimental mice of depression are mediated by upregu-
lation of the BDNF signal pathway and monoaminergic neu-
rotransmitters discharge in the mice cortex.

Icariin (5) is a major bioactive compound from the spe-
cies Herba Epimedii (Epimedium brevicornum Maxim), a tra-
ditional Chinese medicinal herb, used for centuries for
treating various conditions including depression [55].
Among 19 metabolites originated of icariin, icariin has been
found to possess neuroprotective potential [55]. Wu et al.
[55] reported that icaritin is a novel antidepressant and partly
restored social defeat-induced impairment of glucocorticoid
sensitivity and hypothalamic-pituitary-adrenal (HPA) axis
hyperactivity. These effects are at least partially attributed
to normalization of the glucocorticoid receptor function
and increases in BDNF expression. In addition, Liu et al.
[56] also reported that icariin exerted an antidepressant effect
in an unpredictable chronic mild stress model of depression
in rats and is associated with the regulation of hippocampal
neuroinflammation. In another study, Wei et al. [57] investi-
gated the effects of icariin treatment in a model of depression
in rats induced by unpredictable chronic mild stress. The
obtained results suggest the therapeutic efficacy of icariin as
a potential antidepressant. Furthermore, the antidepressant
activity of this flavonoid heteroside occurs via different tar-
gets in both the hippocampus and prefrontal cortex.

7,8-Dihydroxyflavone (6) acts as a TrkB receptor-specific
agonist and can mimic BDNF action. Also, it demonstrated
therapeutic efficacy in animal models of various neurological
diseases [58] such as Parkinson’s disease, stroke [59], and
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depression [60]. Liu et al. [58] reported that 7,8-dihydroxy-
flavone can penetrate the brain-blood barrier (BBB) and
mimics BDNF action. Also, the authors reported that this
compound poses more prominent physiological activities
than other reported peptide mimetics or small molecules,
supporting the fact that 7,8-dihydroxyflavone is a superior
compound with oral bioavailability for TrkB agonist drug
development.

Hyperoside (7) is a natural flavonoid isolated from Apoc-
ynum venetum L. leaves [61]. Zheng et al. [61] reported that
hyperoside possesses antidepressant effects via cytoprotective
action related to the elevation of the expression of BDNF and
CREB through the signal pathway AC-cAMP-CREB within
the PC12 cell line. In addition, Haas et al. [62] concluded that
this flavonoid heteroside, extracted from the crude extract of
Hypericum caprifoliatum Cham. & Schltdl. (Guttiferae), pre-
sented a depressing effect on the central nervous system
(CNS) and either an antidepressant effect in rodents medi-
ated by the activation of D2-DA receptors.

Baicalein (8) is one of the most active flavonoids found in
the dry roots of Scutellaria baicalensis Georgi. It has been
reported that baicalein can get across the BBB [63]. Also, var-
ious studies have indicated that baicalein has proved to be a
superior free radical scavenger and xanthine oxidase inhibi-
tor [63, 64]. Xiong et al. [65] reported that this flavone exhib-
ited antidepressant effects. In addition, baicalein reversed the
reduction of ERK phosphorylation and the level of BDNF
expression in the hippocampus of chronic mild stress model
rats. These results suggest that baicalein produces an
antidepressant-like effect, and this effect is at least partly
mediated by hippocampal ERK-mediated neurotrophic
action. Furthermore, Li et al. [66] suggested that baicalein
could prevent the chronic mild stress-induced depressive-
like behavior through the inhibition of cyclooxygenase-2 in
rat brain and subsequently resulted in a reduction of prosta-
glandin E, levels in the brain.

3,5,6,7,8,3',4'-Heptamethoxyflavone (9) is a polymethox-
yflavone found in several citrus fruits [67]. This poly-
methoxyflavone possesses several biological activities,
including anti-inflammatory, neuroprotective, [68] and the
immunomodulatory function [67]. In a study performed by
Sawamoto et al. [69], these authors suggested that the
3,5,6,7,8,3',4'-heptamethoxyflavone exerts antidepressant
activity by inducing the expression of BDNF. This flavone
improved corticosterone-induced depression-like behavior
and repaired BDNF expression, neurogenesis, and neuro-
plasticity in the hippocampus.

3.2. Flavonoids and Monoaminergic Systems. The mono-
amine theory of depression states that depression is associ-
ated with a decrease in monoamine levels in the synaptic
cleft, namely, of the catecholamine NE and of the
indoleamine 5-HT [70]. The main biochemical causes of
depression are metabolic disorders of monoamine neuro-
transmitters that are involved in NE, 5-HT, and DA sig-
naling [5, 10]. Moreover, in many depressed patients, the
impairment of the function of the HPA axis was noticed
[71]. It has been reported that many flavonoids possess
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antioxidant, anti-inflammatory, and antidepressant activi-
ties in animal studies [72, 73].

Kaempferitrin (10) is the main secondary metabolite
extracted from the Justicia spicigera Schltdl. (Asteraceae)
plant. It has been documented that this plant is used for its
analgesic, antidiabetic, anti-inflammatory, and antiseizure
potential, as well as a tonic [74]. Cassani et al. [74]
reported that kaempferitrin exhibited antidepressant
effects in two behavior models in mice. In addition, its
effect could be related to serotonergic neurotransmitter
system action, mainly through its interaction with presyn-
aptic 5-HT,, receptors. Also, the authors suggested the
involvement of the HPA axis in the antidepressant-like
effect of kaempferitrin.

The antidepressant effect of the Hemerocallis citrina Bar-
oni is mediated by the contributions of flavonoids, especially
rutin (11) and hesperidin (1) [75]. Its antidepressant effects
are due to the interaction with serotonergic, noradrenergic,
and dopaminergic systems [76]. The antidepressant effect
of hesperidin depends on its interaction with serotonergic
5-HT, , receptors [77]. The aforementioned mechanism of
hesperidin action is also supported by Souza et al. [77] stud-
ies by interaction with the serotonergic 5-HT,, receptors.
Filho et al. [78] also reported the antidepressant effect of hes-
peridin in a mice model of anxiety, through its interaction
with x-opioid receptors, but not with the §-opioid, y-opioid,
or adenosinergic receptors.

Luteolin (12) is a common flavonoid with various phar-
macological actions such as antioxidant, anticancer, mem-
ory-enhancing, and anxiolytic, indicating that luteolin
could easily penetrate the BBB [79]. De la Pefia et al. [80]
reported that luteolin mediates the antidepressant effects of
Cirsium japonicum Fisch. ex DC., possibly by potentiation
of the GABA , receptor-Cl-ion channel complex. Also, Ishi-
saka et al. [79] have shown that luteolin attenuated the
expression of endoplasmic reticulum stress-related proteins
in the hippocampus of corticosterone-treated depression
model mice.

Vitexin (13) is a flavone glycoside present in foodstufts
and nutraceuticals [81]. It has been shown that vitexin has
multiple pharmacological effects such as inhibitory effects
on adipogenesis [82], platelet aggregation [83], a-glucosidase
[84] and urease [85], and antitumor/antimetastatic [86],
antioxidant [87], anti-inflammatory, [88] and peripheral
analgesic [89] activities. Among plants, Passiflora incarnata
L. (Passifloraceae) have been found to be the main source
of vitexin, with significant effects on the CNS, including anxi-
olytic effects. Can et al. [81] reported that vitexin possess
antidepressant effect mediated by an increase in catechol-
amine levels in the synaptic cleft as well as by interactions
with the serotonergic 5-HT, ,, noradrenergic ,, and dopa-
minergic D, D,, and D; receptors.

Amentoflavone (14) is a natural flavonoid with many bio-
logical properties such as antioxidative, anti-inflammatory,
and neuroprotective effects [90]. Ishola et al. [91] reported
the antidepressant and anxiolytic effects of amentoflavone
isolated from Cnestis ferruginea Vahl ex DC. in mice. The
authors concluded that amentoflavone produces its antide-
pressant effects through interactions with the 5-HT, receptor
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and al- and a2-adrenoceptors while the anxiolytic effect
involved the ionotropic GABA receptor.

Naringenin (3) is a flavanone found in high amounts
in the peels of citrus fruits with several biological effects
such as neuroprotective [92] and monoamine oxidase
inhibitory activity [34]. Moreover, naringenin exhibited
antidepressant effects via monoaminergic systems [93]. Yi
et al. [94] reported the antidepressant-like behavioral, neu-
rochemical, and neuroendocrine effects of naringenin in
the mouse repeated the tail suspension test. The authors
concluded that the antidepressant effects of naringenin
may be mediated by an interaction with neuroendocrine
and neurochemical systems.

Fisetin (15) is a natural flavonoid found especially in
strawberries and other fruits or vegetables. This flavonoid
has various biological activities, including antioxidant, anti-
inflammatory, and neuroprotective effects [95, 96]. Zhen
et al. [97] reported that the antidepressant-like effect of fise-
tin involves the serotonergic and noradrenergic systems.
The authors concluded that the positive effects of fisetin on
the depressive response are likely mediated via the central
serotonergic and noradrenergic system by inhibiting the
monoamine oxidase enzyme activity. In another study, Yu
et al. [98] evaluated the ability of fisetin to modulate
depressive-like behavior in a lipopolysaccharide- (LPS-)
induced acute neuroinflammation model. The authors con-
cluded that fisetin is a potential candidate for clinical mental
disorder therapy since it can correct depressive-like behavior
in LPS-induced depression in mice model.

Nobiletin (16) is a dietary flavonoid abundant in the peels
of citrus with many potential health benefits. It has been
reported that nobiletin exerts protective effects on 3-amyloid
peptide-induced impairment of learning ability [99],
improved the memory impairment, reduced the S-amyloid
peptide levels [100], and had neuroprotective effects on
ischemia-induced neuronal death in the hippocampal CAl
region [101]. Yi et al. [102] reported the involvement of
monoaminergic systems in the antidepressant-like effect of
nobiletin. The authors concluded that the antidepressant-
like effect of nobiletin seems to be mediated by an interaction
with the serotonergic (5-HT, , and 5-HT, receptors), norad-
renergic (al-adrenoceptor), and dopaminergic (D, and D,
receptors) systems.

Quercetin (17) is a dietary flavonoid presented in high
amount in onion, apple, broccoli, and wine, as well as plants
like Ginkgo biloba L. and green tea [103]. It has been reported
that quercetin is a powerful radical scavenger flavonol and so
that it fortifies the antioxidant defense system [104]. In addi-
tion, quercetin increase 5-HT and norepinephrine availabil-
ity in synaptic cleft that seems to be dysregulated in
depression. Demir et al. [105] reported antidepressant-like
effects of quercetin in diabetic rats (Table 1). The authors
concluded that quercetin may be considered as a partially
useful supplement for the treatment of diabetic depression,
and the antidepressant-like properties of quercetin seem to
be independent of the HPA axis. Furthermore, Scheggi
et al. [106] reported antidepressant activity of Hypericum
perforatum L. (Hypericaceae) related to the flavonoid com-
ponents of this species including quercetin. Also, Rinwa
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and Kumar [107] have shown that quercetin suppresses the
microglial neuroinflammatory response and induces the
antidepressant-like effect in olfactory bulbectomized rats.

3.3. Antioxidant Effect of Antidepressant Flavonoids. Con-
temporary endeavours are being given to explore novel natu-
ral remedies for better positive effect with no or less toxic
effects alternatives to conventional antidepressants. Despite
not being fully studied or understood, naturally occurring
flavonoids have demonstrated less or more neuroprotective
activities. The neuroprotective mechanisms of antidepressant
effects remain to stay vague, in spite of the fact that it is pro-
posed that flavonoids generally exert their antidepressant-
like effects via altering behavior, cytokine levels, oxidative
stress, and energy metabolism parameters. In addition to
antioxidative action, each flavonoid follows its idiocratical
one or more different pathways from these general routes
against advancement and progression of depression
including prevention of mitochondrial membrane potential
dissipation, agonizing GABA-benzodiazepine receptors
interaction with x-opioid receptors and kynurenine path-
way (KP), acetylcholinesterase activity regulation, helping
to maintain brain plasticity, inhibition of L-arginine-NO,
extracellular signal-related kinase (ERK) 1/2 and AKT
phosphorylation pathways, modulation of intracellular cal-
cium overload and K' channels, downregulation of Bax,
caspases 3 and 9, and cytochrome C (Cyt-C) protein
expression, and upregulation of Bcl protein expression
were also afforded to positive impacts of flavonoids in
the treatment depression [108-112].

Due to their serious side effects of the current MAO
inhibitors and the urgent need for novel ones, natural prod-
ucts have been considered as alluring focuses for pharmacol-
ogists. Exceptionally, a few reports obviously settled higher
effectiveness by flavonoids compared to placebo intake and
a similar activity was observed when comparing to several
antidepressant drugs. Among these flavonoids that display
antidepressive-like activity such as hesperidin (1), naringenin
(3), quercetin (17), and astilbin (4) have been appeared to
diminish depressive symptoms in animals experimental trials
or in vitro models (Figure 1), mainly for the most part by
means of the (i) inhibiting monoamine oxidases (MAOs)
and (ii) altering oxidative/antioxidant defenses and/or (iii)
inflammatory responses [113-115].

Several flavonoids have been appeared to avert against
neurodegenerative disorders and depressive insults. How-
ever, limited studies are recorded in the literature with
respect to the neuroprotective mechanisms of these naturally
occurring compounds more particularly in the treatment of
depressive disorders. From the literature scanning, it was
clearly comprehended that the conceivable mode of action
of flavonoids included quenching free radical elements and
the stimulation of internal antioxidant enzymes mainly. In
fact, hesperidin led to the decrease of ROS generation,
enhances of superoxide dismutase (SOD) and glutathione
(GSH) levels, and reduced MDA formation in cultured dif-
ferent human cell lines including HaCaT and ARPE-19 cells
[116-118]. While amentoflavone (14) displays inhibitory
consequences on the productions of superoxide anion and
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total reactive oxygen species (ROS) [119] and neuroprotec-
tive activity by means of restoration of the reduced superox-
ide dismutase (SOD) activity, glutathione reductase (GR)
activity, and glutathione content induced by glutamate
[120]. Vitexin (13) is another flavonoid that shows neuropro-
tective action demonstrated in studies. In the mechanism of
action, suppression of isoflurane-induced caspase-3 activa-
tion and increased f3-secretase 1 levels in PC12 cells was pro-
posed. It has also been reported to decrease the levels of
isoflurane-induced cytosolic calcium and reactive oxygen
species [121]. Likewise, cellular ROS production induced by
several oxidative damaging agents was attenuated by pre-
treatment with chrysin (2) [122], naringenin (3) [123], astil-
bin (4) [53], icariin (5) [124], 7,8-dihydroxyflavone (6) [125],
hyperoside (7) [126], baicalein (8) [127], rutin (11) [128],
luteolin (12) [129], fisetin (15) [130], nobiletin (16) [131],
kaempferitrin (10) [132], and quercetin (17) [133].

Another revealed the antioxidative mechanism of
action of flavonoids was through the chelation of transi-
tion metal elements. Then, these natural compounds
enabled metals to chelate or binds to metal ions in
humans and animals to block them being accessible to
oxidation [116]. Now, hesperidin (1) [36], naringenin (3)
[123], astilbin (4) [134], luteolin (12) [135], and quercetin
(17) [136] appeared to chelate metal ions such as iron,
copper, and zinc in showing their antiradical properties.
Notwithstanding free radicals scavenging and chelating of
metal ions, several flavonoids, including hesperidin (1),
astilbin (4), luteolin (12), baicalein (8), and quercetin
(17), played key roles in inhibiting free radical generating
enzymes such as myeloperoxidase, xanthine oxidase, lipox-
ygenase, microsomal monooxygenase, and NADPH oxi-
dase [137-143]. The polymethoxyflavones nobiletin (16)
and 3,5,6,7,8,3',4'-heptamethoxyﬂavone (9), found in
young fruits of Citrus unshiu Marc., inhibit NO produc-
tion, LPS-induced iNOS protein, and mRNA expression
by NF-xB activation and p38-mitogen-activated protein
kinase (MAPK) phosphorylation. Interestingly, the young
citrus fruit demonstrated a neuroprotective effect by delay-
ing neurodegeneration in hippocampal CAl neurons of
the Mongolian gerbil after global ischemia [144]. It is
revealed that depression is closely associated with altered
cellular resilience, selective structural changes, and neuro-
nal atrophy of the hippocampus [145, 146]. Therefore, a
possible reversal of these changes structures by constitu-
ents of the plant, such as antioxidant flavonoids nobiletin
(16) and 3,5,6,7,8,3/,4'-heptamethoxyﬂavone (9), should
be an interesting way to treat this behavioral disorder.
Truth be told, it has as of late been exhibited that orally
administered  3,5,6,7,8,3',4'-heptamethoxyflavone  (9) is
beneficial for the upregulation of BDNF in the hippocam-
pus via the ERK1/2/MAP system. These information ought
to be identified with the antidepressant effects of this com-
pound [147].

Hyperoside (7) inhibits 13-HPODE-induced ROS pro-
duction in PC-12 cells. This compound is found in Apocy-
num venetum L. which likewise has antidepressant and
antioxidant activity. Hyperoside (7) is one of the constituents
in the extract of this plant that contribute to these activities.
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Whereas oxidative stress may be associated with the advance-
ment of depression, both extract and compound 7 must have
protective action against oxidative stress in nerve cells [148].

Once more, this class of compounds might act as antide-
pressant agents endowed with multiple mechanisms of action
in the CNS, increasing central neurotransmission, limiting
the reabsorption of bioamines by synaptosomes, and modu-
lating the neuroendocrine and GABA , systems [149]. Curi-
ously, support with several flavonoids strengthened the
pharmacokinetic efficacy of many medications for depres-
sion. The flavonoids hesperidin (1) and naringenin (3)
enhanced the area under the curve (AUC), maximum plasma
concentration (C,,,), and elimination half-life (¢, ,) of rasa-
giline, a selective monoamine oxidase-B inhibitor, with a
concomitant reduction in clearance (CL/F) in both single
and multiple dose studies [150], while quercetin (17) affects
glutamatergic neurotransmission in rat brain [151] evidenc-
ing the action of this compound in the glutamateric
framework.

4. Conclusions

Considering that oxidative stress is unequivocally associ-
ated with the advancement of depression, the reported
data suggest that the utilization of these flavonoids may
help in reducing the symptoms of depression, notably via
supplementation of dietary flavonoids in which they are
significantly related with the minimization of depression
risk due to their great antioxidative natures. Regrettably,
advanced investigations are needed to fully understand
the mode of action to neuroprotection, biotransformation
of their metabolites in the body, and interaction properties
with receptors related to depression.
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