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Background: The differential diagnosis of tuberculous pleural effusion (TPE) 

and malignant pleural effusion (MPE) is difficult because the biochemical 

profiles are similar. The present study aimed to differentiate TPE from MPE, 

using a decision tree and a weighted sparse representation-based classification 

(WSRC) method, based on the best combination of routine pleural effusion fluid 

biomarkers. 

 Materials and Methods: The routine biomarkers of pleural fluid, including 

differential cell count, lactate dehydrogenase (LDH), protein, glucose and 

adenosine deaminase (ADA), were measured in 236 patients (100 with TPE and 

136 with MPE). A Sequential Forward Selection (SFS) algorithm was employed 

to obtain the best combination of parameters for the classification of pleural 

effusions. Moreover, WSRC was compared to the standard sparse 

representation-based classification (SRC) and the Support Vector Machine 

(SVM) methods for classification accuracy.  

Results: ADA provided the highest diagnostic performance in differentiating 

TPE from MPE, with 91.91% sensitivity and 74.0% specificity. The best 

combination of parameters for discriminating TPE from MPE included age, 

ADA, polynuclear leukocytes and lymphocytes. WSRC outperformed the SRC 

and SVM methods, with an area under the curve of 0.877, sensitivity of 93.38%, 

and specificity of 82.0%. The generated flowchart of the decision tree 

demonstrated 87.2% accuracy for discriminating TPE from MPE.  

Conclusion: This study indicates that a decision tree and a WSRC are novel, 

noninvasive, and inexpensive methods, which can be useful in discriminating 

between TPE and MPE, based on the combination of routine pleural fluid 

biomarkers. 
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INTRODUCTION 

Pleural effusion is a common complication estimated to 

affect more than 400 people per 100,000 (1). There are two 

types of pleural effusion, namely transudative and 

exudative. A transudative pleural effusion develops when 

the permeability of the capillaries in the lung is altered. 

Exudative pleural effusion reflects the presence of primary 

pleural disease and requires etiological investigation (2). 

Malignancy and tuberculosis are the leading causes of 

exudative pleural effusion and account for approximately 
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50% of all the exudates (3, 4). However, malignant (MPE) 

and tuberculous pleural effusion (TPE) have similar 

biochemical profiles and distinguishing between them can 

be difficult (3, 4). In both types, the pleural fluid is 

generally lymphocytic, with a predominance of T 

lymphocytes, particularly CD4-positive T cells (5). Since 

treatments vary noticeably, a rapid and accurate 

differential diagnosis is necessary.  

Conventional methods, such as thoracentesis and 

analysis of pleural fluid cytology, histological analysis of 

tissue obtained via surgical biopsy, image-guided biopsy 

and local anesthetic thoracoscopy, are not always helpful 

as they have limitations (2, 6-8). Cytological examinations 

of pleural fluid can help in diagnosis of 66% of definite 

cases of malignancy (9). Pleural fluid cultures are positive 

for mycobacteria in up to 20% of cases and the waiting 

time for culture results is approximately 1 month (6). 

Pleural biopsy reveals granulomas in only 46% of cases (9). 

A combination of the cytological method and biopsy can 

increase the rate of diagnosis to 73% (9). Even though 

pleuroscopy could determine the cause of pleural effusion 

in these patients with 95% accuracy, this facility is invasive 

and not available in most hospitals (10, 11). Therefore, 

developing a less-invasive, accessible and early method 

with high accuracy is greatly needed for diagnosing the 

causes of pleural effusions. 

Previous studies have reported the performance of 

various biomarkers, such as nucleated cells, lymphocytes, 

neutrophils, eosinophils, cholesterol, proteins, lactate 

dehydrogenase (LDH), adenosine deaminase (ADA), 

interleukin-6 and tumor necrosis factor-α, to differentiate 

between MPE and TPE (12-14). However, most of these 

investigations are based on each marker separately, and 

should be interpreted alongside clinical findings and with 

the results of other conventional tests (13, 14). It appears 

that a combination of biological markers can increase the 

accuracy of diagnosis (12, 13). 

Various classification models have been constructed for 

differentiating between diseases. Sparse representation-

based classification (SRC) is a new and powerful data 

processing method that has shown good performance in 

the classification of diseases (15-18). In this study, we 

propose a weighted sparse representation-based 

classification (WSRC) method, which is a modified version 

of SRC. WSRC improves the classification accuracy of the 

system through adding the weights (17).  

Making the right decision plays an important role in 

diagnostic medicine. A decision tree is an effective and 

reliable supporting tool for decision-making that provides 

an accurate classification through the use of simple 

representation of the information gathered. This model 

consists of starting points (tests or clinical questions) and 

branches which represent the alternative outcomes of each 

test or question (19).  

The aim of the present study was to differentiate 

between TPE and MPE using a decision tree and a WSRC 

method, based on the best combination of routine pleural 

fluid biomarkers. Moreover, WSRC is compared with the 

conventional classification methods in terms of 

classification accuracy. 

   

MATERIALS AND METHODS 

Data collection 

In this research, we undertook a retrospective study of 

236 patients with a diagnosis of pleural effusion due to 

tuberculosis (n=100) or cancer (n=136) who were admitted 

at Masih-Daneshvari Hospital (Tehran-Iran) between June 

2009 and July 2012, after obtaining institutional review 

board and ethics committee approval. 

The cause of pleural effusion was assessed by 

identifying malignancies in pleural biopsy carcinoma 

specimens and by identifying granuloma in biopsy 

specimens, either using positive staining or cultures of 

mycobacterium tuberculosis with exudate or sputum 

samples. Additionally, thoracoscopy and video-assisted 

thoracic surgery (VATS) was undertaken in cases where 

the diagnosis was unclear. 

At the time of admission and before any medical 

treatment was considered, pleural fluid was analyzed in 

terms of differential cell count, LDH, protein, glucose and 

ADA levels. Biochemical measurements were performed 

using standardized photometric methods (Hitachi models 
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717,917 or modular DP, Roche Diagnostics Mannheim 

Germany) and manual microscopy was used for the cell 

count. Pleural ADA was measured using an automated 

ultraviolet kinetic test (Roche diagnostic, Barcelona, Spain). 

Sparse Representation-based Classification (SRC) 

A SRC classification approach assigns sample vector  

as an input, which belongs to an unknown class. This 

approach is extended to SRC when vector  is being 

assigned to the class that is represented with training 

samples and is related to coefficients of sparse 

representation of  in the most efficient way (15, 20-22).  

Weighted sparse representation-based classification (WSRC) 

The discrimination capability of SRC is lost in datasets 

which distribute in the same direction (18). Distribution of 

data in the same direction means that the samples with the 

same vector directions are members of different classes 

(18). SRC requires normalizing the samples and leads to 

mapping the samples onto a hypersphere (18). Therefore, 

data with the same direction distribution are not separable. 

Although the mentioned normalization is ineffective for 

the solution of SRC performance, it is an inseparable 

section of the SRC algorithm. WSRC remedies the 

limitations of SRC and its performance improves through 

adding the weights (19). We proposed using the 

Minkowski distance between the new sample  and the 

related training samples as weights.  

Support Vector Machine (SVM)  

SVM is a conventional supervised learning method that 

has a favorable performance for classification of high-

dimensional data (23). SVM constructs a hyperplane in 

classifying the data to maximally separate different groups 

(24). In our analysis, we used the Statistical Pattern 

Recognition Toolbox for MATLAB. 

Cross-validation  

In this study, a leave-one-out cross-validation was 

performed for evaluating the classification performance of 

the methods. The function was trained  separate times 

(where  is the number of samples) on all the data, except 

for one sample, in each iteration for which a prediction was 

made. The average error was calculated to evaluate the 

performance of methods (25). 

Sequential Forward Selection (SFS) 

The Sequential Forward Selection (SFS) method is used 

to assess the overfitting and to select the best combination 

of parameters for classification of pleural effusions. First, 

an empty feature subset is considered. Second, a feature 

providing the best combination with the already selected 

features is added in from the rest of the features. This 

process is continued until all the features are selected (26). 

Decision tree model  

A decision tree is a type of supervised learning 

algorithm that provides a framework for analyzing all 

possible alternatives for a decision. This model simplifies 

decision-making in the presence of uncertainty. The tree 

starts with a node, a main decision, and the lines extend 

out from this node for each possible solution. If the 

solution leads to another decision, the new line extends to 

the next possible series of choices, which provide an 

overall supportive decision-making process in medicine 

(19). 

Statistical analysis 

We used GraphPad Prism V3.0 (GraphPad Software, 

San Diego, CA) for the statistical analysis of data. A chi 

square test, an unpaired t-test, or a Mann-Whitney U-test 

was used to compare the parameters of groups. Receiver 

Operating Characteristic (ROC) curves were used to 

evaluate the power of classification methods for 

discriminating tuberculous from malignant pleural 

effusions. P-values less than 0.05 were considered 

statistically significant. 

 

RESULTS 

The characterizations of patients and pleural fluid 

biomarkers for each pleural effusion group are shown in 

Table 1. The proportion of males was similar in the two 

groups. Patients with MPE were significantly older (p < 

0.0001), and had higher RBC count (p < 0.0001), LDH (p = 

0.030) and polynuclear leukocyte (p = 0.022) levels in 

pleural fluid than patients with TPE. In contrast, WBC 

counts (p = 0.001), lymphocyte (p = 0.001) and ADA (p < 

0.0001) levels in pleural fluid were significantly higher in 

the TPE group compared to the MPE group. 
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Table 1. The characterizations and pleural fluid biomarkers in patients with 

malignant and tuberculous pleural effusion 

 

 MPE (n = 136) TPE (n = 100) p value 

Male, n (%) 72 (52.94) 65 (65.00) 0.064 

Age, year 62.21 (14.81) 42.70 (20.70) < 0.0001 

Red blood cell, ×103/µL 288.65 (445.89) 105.18 (300.54) < 0.0001 

White blood cell, ×103/µL 1.96 (4.60) 4.43 (10.16) 0.001 

Polynuclear leukocytes, % 22.49 (47.75) 12.83 (22.33) 0.022 

Lymphocyte, % 77.87 (25.73) 86.31 (22.70) 0.001 

Glucose, mg/dL 112.85 (67.31) 92.21 (48.05) 0.110 

Protein, mg/dL 4.34 (1.04) 5.41 (5.12) 0.212 

LDH, IU/L 726.17 (655.25) 702.61 (479.47) 0.030 

ADA, U/L 22.21 (15.30) 70.02 (34.63) < 0.0001 

Data are presented as mean (standard deviation)  

MPE, malignant pleural effusion  

TPE, tuberculous pleural effusion 

 

Table 2 compared the performance of age and various 

biomarkers of pleural fluid for differentiating TPE from 

MPE using the WSRC method. ADA yielded the most 

favorable discriminating ability (sensitivity, 91.91%; and 

specificity, 74.0%), followed by age (sensitivity, 92.65%; 

and specificity, 51.0%). 

The SFS algorithm was employed to obtain the best 

combination of parameters for the classification of pleural 

effusion. This optimal set of discriminators not only yields 

high accuracy with the minimum possible number of 

parameters, but also offers insight into the factors affecting 

the classification. The final best combination of parameters 

for discriminating TPE from MPE included age, ADA, 

polynuclear leukocytes and lymphocytes. Density 

estimates of these parameters are shown in Figure 1.  

Table 3 shows WSRC, SRC, and SVM performance in 

differentiating TPE from MPE, based on the combination of 

four parameters including age, ADA, polynuclear 

leukocytes, and lymphocytes. The areas under the curves 

for the all three methods were good. SRC and SVM 

methods had similar discriminating performance, with the 

area under the curve of 0.867 (95% CI: 0.816-0.919), 

sensitivity of 90.44% (95% CI: 84.21-94.81), and specificity 

of 83.0% (95% CI: 74.18-89.77). However, WSRC 

outperformed the SRC and SVM methods, with area under 

the curve of 0.877 (95% CI: 0.826-0.927), sensitivity of 

93.38% (95% CI: 87.81-96.93), and specificity of 82.0% (95% 

CI: 73.05-88.97). 

Figure 2 displays the suggested decision tree to 

discriminate between the tuberculous and the malignant 

effusions. The generated flowchart of the decision tree had 

a train accuracy of 88.8% and test accuracy of 87.2%. 

 

Table 2. The performance of age and the biomarkers of pleural fluid in discriminating tuberculous from malignant pleural effusions using WSRC 

 
 Age RBC WBC Poly nuclear Lymphocyte Sugar Protein LDH ADA 

Se (95% CI) 92.65 

(86.89-96.42) 

93.38 

(87.81-96.93) 

98.53 

(94.79-99.82) 

100.00 

(97.32-100.0) 

66.91 

(58.33-74.74) 

69.12 

(60.63-76.75) 

89.71 

(83.33-94.26) 

77.94 

(70.03-84.59) 

91.91 

(85.99-95.89) 

Sp (95% CI) 51.00 

(40.80-61.14) 

0.00 

(0.00-3.62) 

5.00 

(1.64-11.28) 

0.00 

(0.00-3.62) 

37.00 

(27.56-47.24) 

44.00 

(34.08-54.28) 

17.00 

(10.23-25.82) 

27.00 

(18.61-36.80) 

74.00 

(64.27-82.26) 

LR+ (95% CI) 1.89 

(1.54-2.32) 

0.93 

(0.89-0.98) 

1.04 

(0.99-1.09) 

1.00 

(1.00-1.00) 

1.06 

(0.88-1.29) 

1.23 

(1.00-1.52) 

1.08 

(0.97-1.20) 

1.07 

(0.92-1.24) 

3.54 

(2.53-4.94) 

LR- (95% CI) 0.14 

(0.08-0.27) 

NaN 0.29 

(0.06-1.49) 

NaN 0.89 

(0.63-1.27) 

0.70 

(0.50-0.98) 

0.61 

(0.31-1.17) 

0.82 

(0.52-1.28) 

0.11 

(0.06-0.19) 

PPV (95% CI) 72.00 

(64.73-78.51) 

55.95 

(49.23-62.51) 

58.52 

(51.84-64.79) 

57.63 

(51.05-64.01) 

59.09 

(50.89-66.94) 

62.67 

(54.40-70.42) 

59.51 

(52.45-66.29) 

59.22 

(51.64-66.49) 

82.78 

(75.80-88.43) 

NPV (95% CI) 83.61 

(71.91-91.85) 

0.00 

(0.00-33.63) 

71.43 

(29.04-96.33) 

NaN 45.12 

(34.10-56.51) 

51.16 

(40.14-62.10) 

54.84 

(36.03-72.68) 

47.37 

(33.98-61.03) 

87.06 

(78.02-93.36) 

 

WSRC, Weighted Sparse Representation based Classification; Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; LR+, positive likelihood ratio; LR-, 

negative likelihood ratio 
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Table 3. The performance of classification methods based on the best combination of parameters for discriminating tuberculous from malignant pleural effusions included 

age, ADA, polynuclear leukocytes and lymphocyte. 

 

 WSRC SRC SVM 

Area under curve (95% CI) 0.877 (0.826-0.927) 0.867 (0.816-0.919) 0.867 (0.816-0.919) 

Sensitivity (95% CI) 93.38 (87.81-96.93) 90.44 (84.21-94.81) 90.44 (84.21-94.81) 

Specificity (95% CI) 82.00 (73.05-88.97) 83.00 (74.18-89.77) 83.00 (74.18-89.77) 

Positive Likelihood Ratio (95% CI) 5.19 (3.41-7.90) 5.32 (3.44-8.23) 5.32 (3.44-8.23) 

Negative Likelihood Ratio (95% CI) 0.08 (0.04-0.15) 0.12 (0.07-0.19) 0.12 (0.07-0.19) 

Positive Prediction Value (95% CI) 87.59 (81.09-92.47) 87.86 (81.27-92.76) 87.86 (81.27-92.76) 

Negative Prediction Value (95% CI) 90.11 (82.05-95.38) 86.46 (77.96-92.59) 86.46 (77.96-92.59) 

 

SRC, Sparse Representation based Classification  

WSRC, Weighted Sparse Representation based Classification  

SVM, Support Vector Machine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Density estimates of parameters which are used in combination for differentiating tuberculous (continuous line) from malignant (dash line) pleural effusions 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The generated flowchart of decision tree to discriminate the tuberculous from malignant pleural effusions. The total train and test accuracy of generated decision 

tree were 88.8% and 87.2%, respectively. MPE, malignant pleural effusion; TPE, tuberculous pleural effusion 
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DISCUSSION 

Assessing biomarker levels in pleural fluid is an 

alternative noninvasive approach in differentiating 

between the different causes of pleural exudate. In the 

present study, the routine biomarkers of pleural fluid were 

measured in patients with malignant and tuberculous 

pleural effusions. ADA provided the highest diagnostic 

performance in differentiating TPE from MPE. However, 

we found that the discriminant ability improved when 

parameter combinations, including age, ADA, polynuclear 

leukocytes and lymphocytes, were applied. Moreover, 

WSRC had a better performance in classifying pleural 

effusion compared to the SRC and SVM methods. Also, we 

developed a simple and accurate decision model for 

differentiating between tuberculosis and malignant pleural 

effusion. 

Thoracentesis, with pleural fluid examination, is the 

first step in the work-up of every pleural effusion of 

unknown origin. Total and differential cell counts, and 

biochemical studies (including total proteins, LDH, 

glucose, and ADA), are routinely conducted on the pleural 

fluid samples in hospitals (11). Our results showed that, 

although both malignant and tuberculous pleural fluids 

were lymphocytic, a higher proportion of lymphocytes was 

observed in the tuberculosis group compared to the 

malignant group. Also, the percentage of polynuclear 

leukocytes in MPE was significantly higher than in the TPE 

group. In addition, patients with MPE were older and had 

elevated LDH and hemorrhagic fluid levels than those in 

the TPE group. In contrast, ADA in TPE was significantly 

higher than in MPE. Despite similar findings in other 

previous reports (12, 27), these parameters do not permit 

differentiation between MPE and TPE because of 

overlapping values. For instance, an extremely high ADA 

activity is highly suggestive of lymphoma rather than TPE. 

Therefore, lymphomatous pleural effusion may be       

more difficult to differentiate from TPE in patients        

with a negative pleural fluid cytological examination  

result (27-29). 

However, numerous studies have shown that ADA of 

pleural fluid, an enzyme produced by macrophages and 

activated T lymphocytes (28), is a valuable biochemical 

marker, which has a high sensitivity (87 to 100%) and 

specificity (81 to 97%) for the diagnosis of TPE (29-36). In 

agreement with previously mentioned studies, we found 

that ADA discriminated well between TPE and MPE, with 

91.91% sensitivity and 74.0% specificity. Despite the high 

sensitivity of ADA, its diagnostic specificity is influenced 

through the local prevalence of tuberculosis, laboratory 

methodology, population ethnicity and other clinical 

conditions (37, 38). 

Two previous studies applied a combination of 

parameters for discriminating between different causes of 

exudative pleural effusion (12, 13). Daniil et al (13) 

measured ADA, interferon-γ, C-reactive protein (CRP), 

carcinoembryonic antigen (CEA), interleukin-6, tumor 

necrosis factor-α and vascular endothelial growth factor 

(VEGF) levels in pleural fluid from patients with exudative 

pleural effusion. They used a multinomial logit model and 

found that the combination of ADA and CRP levels might 

be sufficient for establishing a diagnosis of exudative 

pleural effusion, whereas inclusion of interferon-γ could be 

an alternative option. However, their results were 

inconclusive, because the number of cases was relatively 

low in comparison with the number of parameters used for 

discrimination. Valdés et al (12) recently discriminated 

between different causes of exudative pleural effusion with 

a high diagnostic accuracy using a combination of age, 

tumor necrosis factor-α, LDH, ADA, CRP and CEA. They 

developed a polytomous model that could classify a high 

proportion of patients with TPE (85.8% sensitivity and 

94.4% specificity) and MPE (81.6% sensitivity and 87.3% 

specificity). Both these studies used biomarkers that are not 

routinely evaluated in pleural fluid samples in hospitals. In 

the present study, we measured ADA of pleural fluid as 

well as routine biomarkers which assess every pleural 

effusion of unknown origin in the work-up. The SFS 

algorithm was then used to select the best combination of 

parameters for classifying pleural effusion. The WSRC 
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method achieved a good diagnostic performance in 

differentiating TPE from MPE (93.38% sensitivity and 

82.0% specificity) when a parameter combination, 

including age, ADA, polynuclear leukocytes and 

lymphocytes, was applied.  

Advances in mathematical learning methods have led 

to the development of some high-dimensional 

classification algorithms which have been recently used in 

the medical sciences. The improvements in these 

technologies could help enhance disease identification 

accuracy. As a result, various classification models have 

been constructed for differentiating between diseases. 

Among these, supervised machine-learning techniques, in 

which a training procedure is used to create a classification 

model for testing, are the most-widely used (39, 40). SVM 

is a conventional supervised learning method that has a 

favorable performance for classification of high-

dimensional data (41). However, it has a limitation in 

dealing with noisy data and, as with other supervised 

learning methods, is a requirement on many labeled 

training samples (41). On the other hand, to improve 

classification robustness in respect of noises, a sparse 

representation technique has been proposed and has been 

successfully applied to various classification problems (15-

17). The principal addition of SRC is to represent a new 

sample using the least number of training samples (15). 

Since SRC does not contain separate training and testing 

stages, as in the supervised learning method, this method 

has no overfitting problem (17). However, the 

discrimination capability of SRC is lost in datasets that are 

distributed in the same direction (18). In this study, the 

SRC prototype classification method has been modified 

through adding the weights (WSRC) for solving some of 

the dataset problems and improving the classification 

accuracy of the system (19). As expected in theory, our 

experimental results showed that adding weights can 

enhance the performance of the SRC method. According to 

our results, WSRC outperformed the SRC and SVM 

methods in classification of pleural effusions. 

A decision tree is a reliable and effective decision-

making model which provides an accurate and simple 

representation of gathered knowledge. This model can 

easily be validated during the decision-making process by 

an expert. Therefore, decision trees are applicable in 

decision-making processes in medicine. In this study, the 

decision tree was only used for the differential diagnosis of 

TPE and MPE, and diagnosis of other sources of pleural 

effusion are based on clinical evaluations. 

Some limitations of this study should be 

acknowledged. First, we differentiated only TPE and MPE 

patients. Although most problems occur in distinguishing 

between exudative effusion in these two diseases (3, 4), 

future investigations should consider including all causes 

of pleural exudate. Second, the usefulness of WSRC in 

differentiating TPE from MPE was not tested in real time. 

It is not clear how physicians would respond if WSRC 

could distinguish the cause of pleural effusion. Third, the 

present study was carried out at a single medical center. 

These findings must be corroborated on patients from 

multiple locations, using more samples. 

In conclusion, a decision tree and a WSRC are both 

novel, noninvasive, and inexpensive methods, which can 

provide highly effective and reliable structures useful for 

discrimination between TPE and MPE, based on a 

combination of routine pleural fluid biomarkers. The 

present study indicates that these applied mathematical 

methods can provide high diagnostic success rates to assist 

in the diagnoses of exudative pleural effusion in patients 

waiting for laboratory outcomes of pleural tissue, and for 

treatment planning. 
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