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Introduction
Congenital anomalies of the kidney and urinary tract (CAKUT) 
represent a spectrum of developmental malformations that include 
renal agenesis or hypodysplasia (RHD), multicystic dysplastic kid-
ney (MCDK), ureteropelvic junction obstruction (UPJO), duplica-
tion of the pelvis, ureter, and/or kidney (DCS), congenital mega-
ureter, ureterovesical junction obstruction (UVJO), vesicoureteral 
reflux (VUR), and posterior urethral valves (PUVs) (1–4).

CAKUT phenotypes originate from perturbations in kidney 
and urinary tract development, which is characterized by tempo-
rally and spatially coordinated interactions between the meta-
nephric mesenchyme (MM, originating from the nephrogenic 
cord) and the ureteric bud (UB, originating from the Wolffian or 
nephric duct). For a detailed description of the molecular path-
ways of kidney development we refer to work by others (5–9). 
At embryonic day 10.5 in mice and at the end of the fifth gesta-
tional week in humans, the MM and UB send mutually induc-
tive signals resulting in UB outgrowth and branching from the 
nephric duct into the rapidly differentiating MM (10, 11). The 
requirement for reciprocal induction (6, 7, 10–13) implies that 
signaling defects in either compartment can have pleiotropic 
effects across the entire urinary tract.

As such, malformations can affect single or multiple struc-
tures in a symmetric or asymmetric fashion, with significant 
variability between individuals carrying the same mutation (2, 3, 
14–19). CAKUT may also occur in conjunction with other organ 
defects, indicative of known genetic syndromes. With this degree 
of variability, anatomical classification is often uninformative 
with regard to the primary molecular etiology. The advent of new 
genomic technologies now allows comprehensive examination of 
germline sequence variation across the genome and determina-

tion of molecular etiology and genetic architecture of disease (20). 
In this review we focus on insights from human genetic studies.

Epidemiology of kidney and urinary tract 
malformations
CAKUT is identified in more than 1% of overall live births, 
accounting for up to 23% of overall birth defects (21–24) and 40% 
to 50% of pediatric end-stage renal disease (ESRD) worldwide 
(25). Studies have shown that different structural defects have 
distinct impacts on long-term renal survival and overall mortality, 
with RHD conferring the greatest risk of adverse events (26–30). 
A number of extrinsic factors including maternal diabetes, medi-
cations, and folate and iron deficiency also increase the risk of 
CAKUT, highlighting environmental factors that modify expres-
sion of disease (31, 32). When ESRD is present at birth, mortal-
ity rates reach a striking 93% within the first year of life (33), and 
children who survive infancy have a 30-fold higher mortality com-
pared with same-age children without ESRD (34). These popu-
lation data underline the enormous impact of CAKUT on child 
health. Substantial improvement in early clinical care, such as 
prenatal detection of CAKUT by fetal ultrasonography and devel-
opment of surgical and pharmacological approaches, has dramati-
cally improved survival for infants and children with renal failure 
(35, 36). This, in turn, is resulting in an increased number of adult 
patients with CAKUT. Thus, the reported 2% to 7% prevalence of 
CAKUT among adults with ESRD may underestimate the growing 
impact of these traits among adult populations (25, 26).

Potential genetic models
Because the absence of kidney function is incompatible with post-
natal survival without dialysis or transplantation, standard genetic 
theory predicts that dominantly acting mutations that completely 
impair kidney development would be strongly subjected to purify-
ing selection and would therefore not reach a high frequency in 
the general population (37, 38). One can therefore hypothesize 
that the most severe malformations occurring in offspring of 
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netic defects (45–47). Copy number variations (CNVs), generally 
defined as any gain or loss of germline DNA ranging from 1 kb to 
several Mb in size, account for the largest amount of sequence 
variation in the human genome (48–51). CNVs below 1 to 2 Mb are 
usually not detectable by conventional cytogenetic techniques but 
are readily detected by chromosomal microarray, which is now 
the preferred technique for detection of genomic imbalances for 
human malformations (52–55). CNVs can be generated via non-
allelic homologous recombination, driven by highly repetitive 
elements flanking the CNVs (such as segmental duplications or 
low-copy repeats), resulting in recurrent breakpoints in affected 
individuals. Nonrecurrent CNVs have variable breakpoints in dif-
ferent individuals and are driven by other mechanisms such as 
nonhomologous end joining or fork stalling and template switch-
ing (56–58). Studies using chromosomal microarrays have now 
delineated over 200 recurrent pathogenic gene-disrupting CNVs, 
usually encompassing more than one gene, which confer risk for 
diverse human disorders such as neurodevelopmental syndromes, 
cardiac defects, craniofacial malformations, and congenital dia-
phragmatic hernia (59–68). Detection of these CNVs provides a 
precise molecular diagnosis that can stratify patients, explaining 
clinical variability between patients with the same clinical diag-
nosis but also demonstrating shared pathogenesis between some 
traditionally distinct clinical categories.

With the introduction of chromosomal microarrays, a number 
of studies have also uncovered an unexpectedly high contribution 
of genomic disorders to CAKUT (69–75). Remarkably, these stud-
ies did not reveal a discrete number of CAKUT-specific CNVs, 
but identified many known or novel genomic lesions, indicating 
significant genetic heterogeneity. These CNVs were diagnostic 
of many well-known human malformation syndromes that were 
unrecognized based on the clinical workup. For example, a study 
of 522 children with RHD (with or without syndromic features), 
recruited from multiple renal and urology clinics in Europe and 
the USA identified 34 different genomic disorders in 55 individu-
als (10.5% of cases) (69). The most frequently identified genomic 
disorder was Chr.17q12 deletion, diagnostic of the renal cyst and 

apparently healthy parents are attributable to de novo, dominantly 
acting mutations in developmentally important genes, or reces-
sive mutations in genes that tolerate haploinsufficiency but not 
biallelic inactivation. In familial forms of CAKUT, which represent 
about 10% to 20% of cases, the disease frequently segregates as 
an autosomal dominant trait with incomplete penetrance (39, 40). 
In this setting, one can posit incomplete penetrance due to genetic 
or environmental modifiers, dominant inheritance of hypomorph-
ic mutations impairing but not abrogating nephrogenesis, or dis-
ruption of genes/pathways that do not impair the initial steps of 
nephrogenesis but are important for urinary tract development 
and function at later stages of life. Other structural disorders such 
as VUR or DCS are more prevalent (41–44), presumably because 
they do not greatly impact overall survival; they may remain com-
pletely asymptomatic (DCS) or entirely resolve with age (VUR). 
Such prevalent disorders may also have polygenic determination, 
produced by the additive burden of common variants with modest 
effects that are thus less subject to purifying selection.

Recent insights from human genetic studies
With the advent of chromosomal microarrays and next-generation 
sequencing, over 40 genomic disorders and 50 genes have been 
implicated in syndromic or nonsyndromic forms of CAKUT (Sup-
plemental Table 1; supplemental material available online with this 
article; https://doi.org/10.1172/JCI95300DS1). Many implicated 
genes belong to known developmental pathways, while the mecha-
nism of disease for others has yet to be elucidated. Taken together, 
these studies implicate virtually every known mutational mecha-
nism in disease pathogenesis and highlight genetic heterogeneity as 
a prominent biological feature of CAKUT. There is also remarkable 
diversity in the molecular pathways that have been recently discov-
ered, suggesting that continued genetic analysis of CAKUT patients 
will uncover novel fundamental pathways in urinary tract develop-
ment. Below, we will summarize recent examples of genetic discov-
eries enabled by the advent of newer genomic technologies.

Genomic disorders in sporadic forms of CAKUT. Prior stud-
ies demonstrated the association of CAKUT with large cytoge-

Figure 1. Proportion of patients with known 
genomic disorders in different human develop-
mental phenotypes and healthy controls. There 
is a striking enrichment of known genomic 
disorders in human developmental disease 
compared with controls (59–62, 64–67, 69–71). 
The prevalence in controls is based on 21,498 
controls generated from previously published 
studies (70, 71). *The proportion of known 
genomic disorders in autism spectrum disorder 
is displayed as the weighted average of two 
independent studies (64, 65). CAKUT, congenital 
anomalies of the kidney and urinary tract.
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subsequent study, 13 of 80 (14%) children with a solitary func-
tioning kidney harbored a known or likely pathogenic CNV (71). 
In another follow-up study of a large prospective observational 
cohort of children with all-cause CKD (79), 4% of patients har-
bored genomic imbalances (70), compared with less than 0.5% of 
21,575 controls. Among different clinical categories, children with 
RHD were especially enriched for diagnostic CNVs (odds ratio 

diabetes syndrome (RCAD) (76), followed by Chr.22q11.2 dele-
tion, diagnostic of the DiGeorge/velocardiofacial syndrome (77), 
and Chr.1q21 deletion (78). The remaining known genetic syn-
dromes were present in few or single individuals, highlighting the 
extreme genetic heterogeneity of disease. Another 6% of cases 
harbored rare gene-disrupting CNVs that were likely pathogenic 
based on gene content, size, and low frequency in controls. In a 

Figure 2. Overview of identified genomic disorders in isolated CAKUT presented on a human chromosomal map. The overlap of known CAKUT genomic 
disorder loci (kidney symbol) (69–71) with developmental delay (brain symbol) and congenital heart defects (heart symbol) are indicated based on a review 
of the literature. Red = deletion; green = duplication.
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Other manifestations include defects of the female internal geni-
talia and hypoparathyroidism; heart and ocular anomalies have 
occasionally been described (76, 92–95). The Chr.17q12 deletion 
is also associated with a nearly 14-fold increase in risk of devel-
oping autism or schizophrenia later in life (96). This complication 
may be attributable to disruption of other genes within the interval 
because neurocognition appears to be preserved in RCAD patients 
due to intragenic mutations in HNF1B (97). Individuals carrying 
the reciprocal duplication on Chr.17q12 typically present with vari-
ous degrees of neurodevelopmental delay and behavioral prob-
lems, esophageal atresia, cardiac defects, and CAKUT (in particu-
lar RHD, cysts, and obstructive uropathy phenotypes) (76, 92).

For other genomic disorders, in-depth bioinformatics analy-
sis can help prioritize genetic drivers for novel CNV phenotypes 
(71). Recently, we used a more extensive approach to dissect the 
Chr.22q11.2 locus, which manifests with renal phenotypes in 
about 20% to 30% of patients (77, 98). Although T-box 1 (TBX1) 
has been implicated in the pathogenesis of some hallmark clini-
cal features of the syndrome (especially the conotruncal cardiac 
defects), the genetic drivers of the CAKUT phenotype were largely 
unknown. Using a multidisciplinary approach based on large-scale 
CNV analysis, whole-exome sequencing (WES), and targeted 
next-generation sequencing, followed by functional modeling in 
zebrafish and mouse, we prioritized three genes as likely involved 
in the pathogenesis of kidney defects in patients with DiGeorge 
syndrome caused by Chr.22q11.2 microdeletions. These genes, 
snap29, aifm3, and crkl, recapitulated the renal phenotype in 
zebrafish. Knockdown or CRISPR/Cas9–mediated inactivation of 
crkl was sufficient to induce pronephric convolution defects. How-
ever, snap29 and aifm3 appeared to operate in an epistatic fashion, 
suggesting that deletions at Chr.22q11.2 result in complex genetic 
determination of CAKUT. We subsequently found protein-alter-
ing mutations in CRKL in about 1% of CAKUT patients from a 
large replication cohort. Finally, targeted deletion of Crkl exon 2 
in mice led to various CAKUT phenotypes (99), a finding that was 
recently reproduced by other investigators (100). Overall, these 
data intimate a model where CRKL haploinsufficiency is the main 
determinant of CAKUT in patients with the Chr.22q11.2 microde-
letions (99). The incomplete penetrance and variable phenotypic 
expression of both microdeletions and CRKL point mutations in 
humans and Crkl inactivation in mouse suggest a complex model 
with both local (e.g., SNAP29, AIFM3) and distantly acting genetic 
effects, with involvement of environmental and stochastic factors.

Another recent example of genetic driver discovery is PBX1, 
encoding a transcription factor known to regulate ureteric branch-
ing in the murine urinary tract (101), which is responsible for the 
CAKUT phenotype in the 1q23.3-q24.1 deletion syndrome. Using 
a targeted sequencing approach of candidate genes for CAKUT, 
Heidet et al. identified de novo loss-of-function mutations (three 
point mutations and two heterozygous deletions validated by 
microarray) in PBX1 in five of 204 RHD cases (2.5%; combined P 
value for de novo occurrence < 0.001) (102). Extrarenal manifes-
tations identified in PBX1 mutation carriers were deafness, scolio-
sis, as well as developmental delay.

However, contrary to the above-mentioned scenarios in 
which dosage imbalances of a single driver may be sufficient to 
cause CAKUT, we have incomplete understanding of more com-

[OR] 30.1; P = 4.9 × 10–16 vs. controls), while other CAKUT sub-
categories, such as VUR and UPJO, had a lower overall prevalence 
(OR 4.5; P = 0.03 vs. controls).

Figure 1 summarizes findings from three large studies totaling 
824 CAKUT patients (69–71). Overall, there is a striking 15-fold 
enrichment for rare genomic disorders as compared with con-
trols, significantly driven by patients with RHD. The frequency 
of diagnostic CNVs is comparable between CAKUT and several 
other human developmental disorders, such as developmental 
delay, neurocognitive disorders, and congenital heart disease, 
for which microarray analysis is now routinely recommended as 
first-line diagnostics (59–67). All 38 identified known genom-
ic disorders in CAKUT have been previously associated with 
developmental delay and/or cardiac malformations (Figure 2). 
Remarkably, four of these loci account for 44% of the CAKUT 
cases with a known genomic disorder (Chr.1q21.1, Chr.16p11.2, 
Chr.17q12, and Chr.22q11.2 deletions/duplications, accounting for 
3.5% of total cases vs. 0.1% of total controls, OR 25.3; P = 6.5 × 
10–26; Table 1). Comparison of the frequencies of these CNV dis-
orders in CAKUT, developmental delay, and tetralogy of Fallot 
(59, 80) indicates noteworthy similarities and differences (Figure 
3 and Table 1). Deletions are the predominant type of diagnostic 
CNVs for CAKUT and developmental delay phenotypes, with 
the Chr.17q12 (RCAD) locus as the most frequently involved site. 
Patients with cardiac malformations are exquisitely enriched for 
CNVs at Chr.22q11.2 and carry mostly duplications at Chr.1q21, 
Chr.16p11.2, and Chr.17q12 loci (Figure 3, A–D). In CAKUT cases 
where inheritance could be tested, only half of the pathogenic 
CNVs occurred as de novo events, and the remainders were inher-
ited from apparently healthy or mildly affected parents (69). The 
reasons for variable phenotypic expression of pathogenic CNVs 
are incompletely understood, but may in part be attributable to the 
genetic load imparted and background genetic effects, discussed 
below under missing heritability.

The next step in understanding the architecture of CAKUT is 
to identify the genetic drivers that account for the renal malfor-
mation phenotypes of these genomic disorders. Although proven 
challenging (81, 82), knowledge of these drivers increases our 
understanding of the biological pathways of kidney development 
and, consequently, can lead to development of precision medicine 
approaches in these patients.

We highlight the Chr.17q12 deletion (RCAD) syndrome, owing 
to its relatively high prevalence in CAKUT patients and its asso-
ciation with extrarenal complications (76). The syndrome is also 
known as maturity-onset diabetes of the young type 5 (MODY5) 
or hypoplastic glomerulocystic disease. Most of the manifesta-
tions of this syndrome are attributable to the disruption of HNF1B 
(83–86), encoding a transcription factor that orchestrates pancre-
atic, parathyroid, kidney, and urogenital development (87–89). 
The urinary tract phenotype is highly variable and can present 
as sparse prenatal renal cysts, small echogenic kidneys, MCDK, 
and even phenocopy polycystic kidney disease (PKD). Additional 
tubular manifestations such as hypomagnesemia, hyperuricemia, 
salt-wasting, and urinary concentrating defects are often pres-
ent (90). Although most of the renal manifestations are detected 
in early childhood, this disorder may go unrecognized because 
diabetes occurs at a mean age of approximately 25 years (86, 91). 
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plex scenarios involving many drivers that jointly influence the 
prevalence and severity of disease (81). These scenarios will be an 
important subject of future research to define further the genetic 
architecture of CAKUT.

Autosomal dominant single-gene defects. Initial evidence for 
an important role of rare point mutations in the pathogenesis of 
CAKUT is mainly derived from analysis of recognizable syndromic 
disorders that are attributable to dominant mutations in PAX2, 
HNF1B, SALL1, WT1, SIX1, EYA1, and others (4, 20, 103–105). 
These diseases were recognized as specific syndromes based on 
cooccurrence of specific extrarenal manifestations, such as ocular 

coloboma, preauricular tags or fistulas, and anorectal malforma-
tions, but subsequent to identification of causal genes in syndromic 
patients, studies demonstrated that mutations in these same genes 
are also responsible for isolated (nonsyndromic) CAKUT (18). 
Mutations in HNF1B and PAX2 are relatively frequent (up to 15% 
of patients with RHD), although the overall fraction of disease that 
is attributable to these two genes generally does not exceed 10% 
of patients (18, 85, 90, 106–109). For example, in a recent study 
the prevalence of diagnostic mutations in PAX2 and HNF1B was 
much lower than expected (109). The observation that mutations 
in HNF1B are frequently identified in RHD, while they are rare in 

Figure 3. Differences and similarities in the prevalence of the four most commonly implicated CNV loci in CAKUT patients. Bar graphs compare the 
prevalence of common loci in CAKUT patients (n = 823) to the prevalence of identical loci in patients with developmental delay (n = 15,767), tetralogy of Fallot 
(n = 495), and in-house genotyping data of healthy controls (n = 21,498) (59, 69–71, 80). Genomic imbalances are enriched for all phenotypes compared with 
controls. Duplications are shown in green, deletions are shown in red. (A) Prevalence of duplications and deletions at chromosomal locus 1q21.1. (B) Prevalence 
of duplications and deletions at chromosomal locus 16p11.2. (C) Prevalence of duplications and deletions at chromosomal locus 17q12. As expected, CAKUT 
patients show a significant enrichment for the renal cysts and diabetes (RCAD) syndrome deletion. (D) Prevalence of duplications and deletions at chromo-
somal locus 22q11.2. Patients with tetralogy of Fallot are typically enriched for the 22q11.2 microdeletion syndrome.
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isolated lower urinary tract defects such as PUV, may have contrib-
uted to this finding (90, 106). The discovery of mutations in genes 
associated with specific syndromes impacts clinical care because it 
prompts physicians to reassess patients for undetected extrarenal 
phenotypes and institute surveillance programs for complications 
that may develop much later (e.g., diabetes in RCAD syndrome).

The advent of next-generation sequencing has accelerated the 
pace of gene discovery. We used WES combined with linkage anal-
ysis in a family with dominant inheritance and incomplete pene-
trance of CAKUT phenotypes, predominantly manifested by con-
genital obstructive uropathy, and identified a mutation in DSTYK, 
encoding an uncharacterized dual-specificity serine/threonine 
and tyrosine kinase (110). Resequencing of 311 additional CAKUT 
patients identified five new mutations in seven patients (2.3%), 
including a loss-of-function variant in the first exon of DSTYK. A 
number of mutation carriers also manifested neurologic pheno-
types such as ataxia and epilepsy, suggesting that DSTYK muta-
tion can affect neurologic development (110). It is thus interesting 
that a recent study reported homozygosity for a rare intragenic 
deletion that encompasses the last two exons and the 3′ UTR of 
DSTYK in three unrelated families of Middle-Eastern ancestry 
with autosomal recessive spastic paraparesis (111). The proband 
phenotype in one family also included a horseshoe kidney, sug-
gesting that this particular DSTYK mutation can also affect kidney 
and urinary tract development.

Bekheirnia et al. recently reported WES results in 62 families 
with CAKUT (112). In addition to detecting pathogenic muta-
tions in HNF1B, PAX2, and EYA1 in 5% of affected families, they 
discovered a deleterious de novo variant in FOXP1 in a case with 
RHD, hydrocephalus, and developmental delay. The authors 
subsequently interrogated their in-house database of individuals 
subjected to exome sequencing and additionally identified seven 
cases (out of over 5,000) with de novo mutations in FOXP1. These 
individuals were all characterized by brain anomalies, develop-
mental delay, genital anomalies, and CAKUT. FOXP1 encodes a 
forkhead box transcription factor that was previously implicated 
in mental retardation with language impairment and autistic fea-
tures, but renal complications had not been previously described 
(113). This study thus demonstrates the potential of large-scale 
WES studies for gene discovery and expanding the phenotypic 
manifestation of syndromic disease. Recent WES studies have 
also discovered many other genes as monogenic causes for 
CAKUT, such as TBX18 and NRIP1 (114, 115), respectively impli-
cating defects in ureteric mesenchymal cell development and reti-
noic acid signaling in disease pathogenesis.

Finally, with the availability of large exome control data sets, 
exome-wide association studies are feasible. This approach, com-
bined with functional in vivo modeling in zebrafish, recently led 
to the discovery of loss-of-function mutations in GREB1L as a 
new cause of autosomal dominant RHD (116). GREB1L (growth 
regulation by estrogen in breast cancer 1 like) encodes a protein 
with a poorly understood function, but its role in the pathogenesis 
CAKUT has recently been validated by others (117). These find-
ings further highlight the diversity of signaling defects that can 
lead to CAKUT and associated phenotypes.

Autosomal recessive single-gene defects. Many recessive forms of 
CAKUT have been reported. Although rare, autosomal recessive 

forms of CAKUT usually involve loss of function, thereby provid-
ing immediate insight into pathogenic mechanism (118–120). For 
example, recessive mutations in genes encoding components of 
the renin-angiotensin system (RAS) were detected in individuals 
with a severe form of renal tubular dysgenesis associated with 
oligohydramnios and perinatal mortality secondary to lung hypo-
plasia (120). The kidney developmental anomalies precisely phe-
nocopied the effect of angiotensin-converting enzyme inhibitors 
in fetuses exposed to these drugs, confirming the central role of 
the RAS in normal kidney development. More recently, targeted 
next-generation sequencing of 12 recessive murine candidate 
genes in 590 patients suggested that biallelic missense mutations 
in FRAS1, FREM1, FREM2, and GRIP1 may cause isolated CAKUT 
(121). Interestingly, recessive loss-of-function mutations in these 
genes cause Fraser syndrome, characterized by genital anomalies, 
cryptophthalmos, and CAKUT (122, 123). Based on their findings, 
the authors hypothesized that missense mutations are more likely 
to represent hypomorphic alleles with milder manifestation such 
as isolated CAKUT (119, 121). A study on a large cohort of CAKUT 
and VACTERL (vertebral anomalies, anal atresia, cardiac defects, 
tracheoesophageal fistula and/or esophageal atresia, renal/radial 
anomalies, and limb defects) syndrome identified homozygous 
or compound heterozygous mutations in TRAP1 in about 0.5% of 
patients (124). The exact role of TRAP1 in mammalian kidney and 
urinary tract development is currently unknown.

Missing heritability and gene discovery challenges in CAKUT. 
Known genetic disorders caused by rare CNVs or point mutations 
collectively explain at most 20% to 25% of CAKUT cases (par-
ticularly in RHD), leaving open the possibility that the remaining 
patients will be explained by rare monogenic disorders that each 
explain less than 1% of cases. Nonetheless, a simple single-gene 
model would not explain the incomplete penetrance and variable 
expression frequently encountered among individuals harboring 
the same mutation. It is clear that all mutations are inherited on 
individual genetic backgrounds that can modify phenotypic effects. 
For example, recent work on developmental delay and CAKUT 
shows that about 10% of patients with a known pathogenic structur-
al variant also harbor a second large CNV (69, 125). Consistent with 
this higher mutational burden, the patients with second-site CNVs 
had more severe phenotypes and multiple-organ involvement. In a 
large follow-up study of genomic disorders in patients with devel-
opmental delay, some CNVs almost always occurred as de novo 
events, indicating that they are subjected to negative selection; 
these manifested with well-defined phenotypic features (e.g., the 
Smith–Magenis syndrome, caused by deletions at Chr.17p12) (125). 
On the other hand, some CNVs were more frequently inherited and 
more likely to be accompanied by a second-site CNV, indicating that 
they are more tolerated; these disorders had a more variable phe-
notypic expression, suggesting that their phenotypic expression is 
modified by background genetic effects (e.g., the Chr.16p11.2 dele-
tion/duplication and the Chr.16p13.11 duplication) (59, 125, 126). 
Another example of oligogenic effects involves Bardet-Biedl syn-
drome (BBS, OMIM#209900), a genetically heterogeneous auto-
somal recessive trait characterized by renal cystic malformations, 
obesity, polydactyly, retinal degeneration, and other developmental 
defects (127). Biallelic mutations in 19 distinct genes can cause dif-
ferent BBS subtypes and the phenotypic variability (128, 129) is in 
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kidney-related conditions (152), reports loss-of-function muta-
tions in PAX2 in approximately 1:4,000 individuals, and a DSTYK 
splice site variant in approximately 1:3,000 individuals. Overall, 
about 1:200 individuals in ExAC harbor a rare loss-of-function 
variant (allele frequency < 1:1,000) in dominantly inherited genes 
listed in Supplemental Table 1, suggesting that some patients may 
carry clinically unrecognized kidney traits, or some variants may 
be incompletely penetrant or completely benign. Hence, pheno-
typic characterization of mutation carriers from genetically char-
acterized cohorts can uncover the prevalence of genetic urinary 
tract anomalies and better define the penetrance and clinical rel-
evance of dominantly inherited variants. At the same time, these 
findings highlight the challenges of gene discovery and sequence 
interpretation for CAKUT.

Clinical care implications of genetic testing  
in CAKUT
With the introduction of clinical grade chromosomal microarray 
and next-generation sequencing, clinicians now have the opportu-
nity to incorporate genetics into their diagnostic workup. Genetic 
testing can provide a precise diagnosis that can help individualize 
clinical care by screening for specific complications (e.g., screen 
for diabetes or ocular coloboma in patients with HNF1B and PAX2 
mutations, respectively; ref. 18) and facilitate medical decision 
making (e.g., avoiding immunosuppressive therapy in CAKUT 
clinically misdiagnosed as a glomerular nephropathy because of 
low-grade proteinuria). The availability of genetic diagnosis can 
also put an end to diagnostic odysseys for families and provide 
tailor-made counseling.

Based on the available data and national recommendations 
for genetic testing for congenital anomalies (54), chromosomal 
microarrays should be strongly considered as a first-line diagnos-
tic approach for CAKUT cases (55). In particular, data indicate an 
up to 15% diagnostic rate for cases involving parenchymal kidney 
defects (e.g., RHD), or cases involving extrarenal malformations 
(69–71). The identification of genomic disorders enables targeted 
surveillance and intervention for specific complications, exempli-
fied for the Chr.17q12 syndrome above.

The highly significant overlap between pathogenic CNVs in 
CAKUT and neuropsychiatric disorders particularly impacts the 
clinical management of CAKUT patients (Figures 1–3), because a 
significant fraction of individuals with these genomic imbalances 
are at increased risk for intellectual disability and other neuropsy-
chiatric complications such as autism and schizophrenia (59, 69–
71, 125, 154). This genomic overlap suggests that the same genetic 
lesion can simultaneously impair nephrogenesis and neurodevel-
opment, potentially explaining the known association between 
neurocognitive deficits and CKD in children (155). Consistent with 
this hypothesis, analysis of the Chronic Kidney Disease in Children 
(CKiD) study cohort demonstrated that children with pathogenic 
CNVs had significantly lower neurocognitive scores such as IQ, 
depression/anxiety, and executive functioning, confirming that 
genomic diagnosis can provide opportunities for early diagnosis of 
neurocognitive impairment in children with CKD (156). Moreover, 
the severity of neurocognitive impairment is attenuated by factors 
such as higher parental IQ or level of education, indicating modi-
fiability by background hereditary and environmental factors (70, 

part attributable to the presence of modifier alleles at other BBS loci 
(129–132). Another example relevant for CAKUT is the case of PKD, 
in which early-onset, severe phenotypes due to mutations in auto-
somal dominant PKD genes were attributable to additional muta-
tions in other PKD genes or HNF1B (133).

In addition to oligogenic inheritance, GWAS have suggested 
a polygenic model as the basis of many complex developmen-
tal traits, such as cleft palate, bladder exstrophy, and congenital 
heart disease (134–136). Examples relevant to CAKUT include two 
GWAS for hypospadias, which revealed a major signal in DGKK 
and multiple additional loci conferring lower risk (137, 138). The 
top 18 SNPs fell into well-characterized developmental pathways 
(e.g., HOXA4, IRX5, IRX6, and EYA1) and remarkably explained 
up to 9% of the disease variance, indicating a significant additive 
contribution of common variants with modest individual effects 
to the genetic architecture of hypospadias. The polygenic contri-
bution of common variants may be better appreciated with recent 
application of more complex inheritance models that incorporate 
multiple signals and estimates of local linkage disequilibrium, 
explaining a higher proportion of the disease heritability for many 
disorders (139–143). Complex inheritance models that incorporate 
the burden of common and rare variants in several neuropsychiat-
ric disorders have indicated that the genetic burden of mutations 
defines a continuum of risk that can result in a clinical diagnosis at 
the extremes of the distribution (144–148). As recently proposed 
(149), one can therefore hypothesize that a polygenic model, in 
which multiple common causal loci contribute to the variation in 
the prevalence and severity of CAKUT phenotypes, can potential-
ly explain why the same mutation may manifest very early in some 
individuals but remain clinically silent in others.

With the increasing feasibility and cost-effectiveness of 
genome-wide sequencing approaches, a major challenge in stud-
ies on isolated sporadic CAKUT is to distinguish disease-causing 
variants from the large number of variants present within each 
human genome (150). A typical individual’s genome consists of 4.1 
to 5 million potential variant sites (151) with 40,000 to 200,000 
variants at a frequency below 0.5% in the general population. In 
addition, 4% to 8% of healthy population controls contain a large 
rare CNV (>1 Mb), presumably without a known role in human 
development or health (50, 59, 69). Furthermore, human variation 
differs greatly between different populations, with African ances-
try populations showing the greatest variability and European 
populations the lowest. Overall, these data clearly underline the 
significance of population-matched controls for gene discovery 
studies. Publicly available databases such as ISCA, DECIPHER, 
Clinvar, Exome Variant Server, 1000 Genomes Project, and 
ExAC/gNOMAD are extremely valuable for differentiating poten-
tial disease-causing variants from standing variation (55, 151–153). 
The use of reliable assays in cells or organoids, or tractable ani-
mal models such as zebrafish will also be invaluable for functional 
analysis to guide interpretation of these potential variants before 
one commits to engineering the variants in rodents.

One can also begin to estimate the potential for undetected 
genetic forms of CAKUT by examining the frequency of putative 
loss-of-function variants in CAKUT genes in large public WES or 
genome sequence databases. For example, ExAC, a database of 
over 60,000 individuals undergoing exome sequencing for non–
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ClinGen will be invaluable for curation and annotation of sequence 
data, but will likely take many years to complete (165). In the mean-
time, clinicians must balance the need for stringent interpretation 
of data and the desire to provide answers for their patients. In addi-
tion, a large number of ethico-legal and societal issues will need 
to be considered in the return of primary results and incidental 
findings. In particular, the ability to obtain genetic diagnoses in the 
prenatal setting can lead to personalized and preventive treatment 
strategies, but can also influence parental planning, raising thorny 
issues that will require thoughtful consideration.

Conclusions
CAKUT is a frequent human developmental defect that imparts 
significant risk for renal and extrarenal morbidity. Current genetic 
studies indicate a complex genetic basis for this trait requiring 
efforts to devise large-scale human genetic studies accompanied 
by appropriate functional modeling to solve its genetic under-
pinning. Understanding the genetic architecture of CAKUT, its 
subcategories, and its complications will be instrumental for 
developing accurate genetic testing strategies that can guide clini-
cal decision making within a precision medicine framework. A 
genetic diagnosis prompts physicians to reassess their patient’s 
(renal and extrarenal) phenotype, and is critical in the prevention 
of future complications of disease. Despite the fact that challenges 
remain in the interpretation of genetic data, such a precision med-
icine approach will lead to better treatment and a better clinical 
outcome for CAKUT patients and their family members.
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156–158). These data must be evaluated in the light that CAKUT 
is usually detected during routine fetal ultrasound investigation, 
a much earlier time point than neurocognitive defects are diag-
nosed. Given the plasticity of neurocognitive development in the 
postnatal period, an early molecular diagnosis can prompt careful 
clinical evaluation and early detection of subtle neurocognitive 
impairment and may lead to improved outcome through early and 
intensive behavioral interventions (159).

When microarray studies are negative, clinicians have the 
option to follow up with next-generation sequencing tests, such as 
targeted sequencing panels and whole-exome or whole-genome 
analysis. The pros and cons of each modality are discussed else-
where (160–162). In the short term, targeted panels may provide 
a cost-efficient approach for screening for the most common (but 
not all) disorders, and negative results may require additional 
follow-up with another modality. A number of studies have dem-
onstrated that targeted panels will yield a diagnostic rate of 5% to 
10% in patients with isolated CAKUT (109, 163). With the rapidly 
growing list of syndromes and declining cost of sequencing, WES 
or genome sequencing will likely emerge as the preferred diag-
nostic modality. The major benefit of these modalities is their 
genome-wide coverage, which allows analysis of all relevant genes 
simultaneously and also provides the opportunity for reanalysis as 
novel genes are identified. They may also reveal incidental genetic 
findings that are unrelated to the primary indication for testing, 
providing added health information that may be beneficial (e.g., 
predisposition to cancer), although this may unintentionally aug-
ment the medical decision–making burden on families.

Regardless of sequencing modality, clinical annotation of 
genomes and classification of variants will be the most challeng-
ing tasks for clinicians. As previously mentioned, we have guide-
lines for interpretation of genetic sequence data and rich popula-
tion reference data sets and many tools for in-silico prediction of 
deleteriousness of sequence variants (150–153, 164, 165). Still, 
molecular pathologists often face many difficulties in differentiat-
ing rare variants with predicted deleterious potential from true dis-
ease-causing variants. Some clinical databases such ClinVar also 
contain outdated information about variant pathogenicity, neces-
sitating careful review of original evidence before a clinical report 
is issued (150, 152, 166). Furthermore, variant interpretation is also 
complicated for minority populations for which background allele 
frequency data are scarce, raising the potential for misdiagnosis 
and generating many variants of unknown significance in clinical 
reports (167–169). With the availability of sequencing data in larg-
er populations of cases and controls, many variants of unknown 
significance can be better classified in definite categories such as 
pathogenic or benign. Conversely, many variants initially classified 
as pathogenic may be reclassified as benign, posing new dilemmas 
for clinicians and patients who may have acted on the initial report. 
Interpretation of alleles that impart large effects on disease risk but 
are characterized by significant incomplete penetrance will also 
pose challenges in genetic counseling. Systematic efforts such as 
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