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ABSTRACT
K-Ras mutations are a hallmark of human pancreatic adenocarcinoma (PDAC) and epithelial-mesenchymal-
transition (EMT) is a driver of progression. Oncogenic K-Ras causes the constitutive activation of NF-kB and
the switch-on of an inflammatory program, which further fuels NF-kB and STAT3 activation. In this study we
investigated how inflammatory pathways triggered by oncogenic K-Ras are regulated in human pancreatic
cancer cells with distict epithelial or mesenchymal phenotype. Our results demonstrate that in cells with
epithelial features, K-Ras driven inflammation is under the control of IL-1, while in cells undergoing EMT, is IL-
1 independent. In pancreatic tumor cells with EMT phenotype, treatment with IL-1R antagonist (Anakinra) did
not inhibit inflammatory cytokine production and tumor growth in mice. In these cells IL-6 is actively
transcribed by the EMT transcription factor TWIST. Targeting of mesenchymal pancreatic tumors in vivo with
anti-IL-6RmAb (RoActemra) successfully decreased tumor growth in immunodeficient mice, inhibited the
inflammatory stroma and NF-kB-p65 and STAT3 phosphorylation in cancer cells. The results confirm that IL-1
is an important driver of inflammation in epithelial pancreatic tumors; however, tumor cells undergoing EMT
will likely escape IL-1R inhibition, as IL-6 is continuously transcribed by TWIST. These findings have
implications for the rational targeting of inflammatory pathways in human pancreatic cancer.
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Introduction

Chronic inflammation is a driver of tumor progression and is
considered a promising target for therapeutic interventions.1–5

In cancer, inflammatory pathways are activated either by
inflammatory cells present in the tumor micro-environment
(extrinsic pathway) or by genetic lesions causing cancer, such
as oncogenes or loss of tumor suppressor genes (intrinsic path-
way).6 Oncogene-mediated activation of a cell-autonomous
inflammatory programme is believed to have an important
impact on tumor cell fate, their relationship with the micro-
environment and response to therapy.

In pancreatic ductal adenocarcinoma (PDAC), a leading
cause of cancer related mortality,7 mutations in the K-Ras gene
are the key and earliest genetic event playing a central role in
the initiation and maintenance of this disease.8 K-Ras affects
several different cellular functions and intersects many signal-
ing pathways, for instance: the RAF-MAPK, phosphoinositide
3-kinase and Ral-GDS pathways, which are involved in the
establishment of a malignant phenotype through mechanisms
of proliferation, survival, angiogenesis, invasion and chemo-
resistance.9 Oncogenic components of the RAS-RAF signaling
pathway also trigger an intrinsic inflammatory programme by

activating the transcription factor NF-kB which in turn stimu-
lates the production of inflammatory chemokines and
cytokines.10,11

Cytokines of the IL-1 family are key inflammatory media-
tors.12 The presence of IL-1 at sites of tumor development acti-
vates NF-kB and enhances the expression of adhesion
molecules on endothelial and malignant cells and promotes
early tumor invasiveness, angiogenesis and metastasis.13 It has
been established that a feed-forward loop occurs where inflam-
matory mediators, and particularly IL-1, activate and prolong
both NF-kB and K-Ras activity, ultimately leading to promo-
tion of PDAC progression.14–16 The K-Ras oncogene is also
involved in switching on the transcription factors associated
with the Epithelial-Mesenchymal Transition (EMT), linked
with aggressiveness of PDAC.17,18

EMT is importantly involved in cancer invasion and metas-
tasis. It is marked by loss of epithelial markers and up-regula-
tion of mesenchymal markers primarily at the invasive front of
the tumor, eventually resulting in migrating cells causing
metastasis.19,20 Pancreatic cancer cells have been demonstrated
to undergo EMT and acquire invasiveness at early time point
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during neoplastic transformation.21,22 A link exists between the
EMT program and K-Ras-driven inflammation.23–26 Several
inflammatory factors, mainly produced by infiltrating macro-
phages or activated fibroblasts, such as TNF-a, IL-6 and other
have been reported to induce EMT in cancer cells.27,28 How-
ever, how inflammation is regulated intrinsically in PDAC cells
displaying an epithelial or mesenchymal phenotype is unclear.
In this study, we have characterized the inflammatory pathways
in recently K-Ras transduced pancreatic cells according to their
distinct epithelial or mesenchymal features. We performed a
single cell cloning of the immortalized human pancreatic epi-
thelial cells (HPDE-E6E7) immediately after transduction with
the mutant form of K-Ras (G12 V). Characterization of epithe-
lial or EMT traits of cloned lines was performed in vitro and
in vivo with phenotypic and functional assays. Our results dem-
onstrate that K-Ras-driven cytokine-mediated inflammation is
differentially regulated in epithelial and mesenchymal K-Ras-
transformed pancreatic cells, with implications for pathogenesis
and therapeutic targeting.

Results

Acquisition of the EMT phenotype is a frequent event in
early K-Ras -transduced pancreatic cells

Malignant transformation caused by oncogenes, like the acti-
vated K-Ras, results in an intrinsic heterogeneity of the trans-
formed cells, which encompasses EMT. To dissect this
heterogeneity, we performed single cell cloning of the immor-
talized human pancreatic epithelial cells (HPDE-E6E7) imme-
diately after transduction with the mutant form of K-Ras (G12
V). Sixty-three HPDE-K-Ras G12V clones were selected for fur-
ther characterization in a first experiment and 25 clones in a
second identical experiment. HPDE-K-Ras G12V sub-lines were
initially screened for the mRNA expression of E-Cadherin and
Vimentin and categorized as “Epithelial” (high E-Cadherin and
low Vimentin) or “Mesenchymal” (high Vimentin and low E-
Cadherin) compared to Mock-transduced HPDE cells. In both
experiments more than 50% of clones (51% and 52%) exhibited
a mesenchymal phenotype, whereas 25% and 28% of the clones
had an epithelial one, and the remaining sub-lines had a mixed
phenotype (Fig. 1A).

Of note, we also cloned the Mock-transduced cell line, to
rule out intrinsic heterogeneity, but found that none of the 50
clones studied had increased levels of Vimentin or decreased
expression of E-Cadherin (not shown), excluding the possibility
that the heterogeneity seen after K-Ras-expression was pre-
existing in these cells.

We selected 4 epithelial and 4 mesenchymal cloned sub-lines
for further characterization. Mesenchymal lines (M-07, M-19,
M-36 and M-48) showed significantly higher expression of
EMT-associated transcription factors (ZEB2, TWIST, SNAIL
and SLUG) when compared to Mock-cells and to epithelial
lines (E-21, E-30, E-38 & E-50) (Fig. 1B & Fig. S1) and low or
no immuno-staining for E-Cadherin, while epithelial lines were
E-cadherin positive (Fig. 1C). We next measured the active K-
Ras (bound to GTP) by performing the Ras pull-down assay
from individual cell lines followed by Western blot analysis.
The results demonstrated that mesenchymal lines had

significantly increased K-Ras activity compared to epithelial
lines (Fig. 1D). Overall these findings provide evidence that
shift to an EMT program is an early and frequent event upon
transduction of oncogenic K-Ras in epithelial cells and appears
to be related to the amount of active K-Ras.

Mesenchymal HPDE-K-Ras G12V cell lines show enhanced
invasive/metastatic ability both in vitro and in vivo

We next explored whether mesenchymal lines had functional
features distinct from the epithelial ones. The proliferative
activity in vitro was identical in both types of cells (not shown).
The migrating and invasive ability in the Matrigel invasion
assay showed higher invasive features of mesenchymal lines as
compared to epithelial ones (Fig. 2A & B). In vivo growth in
immuno-compromised animals was first tested using nude
mice, but none of the sub-lines formed tumors up to 2 million
cells. When injected into NOD/SCID/IL-2rg-/- (NSG) mice, all
the cell lines were tumorigenic, with up to 90% tumor incidence
with as low as 50,000 cells injected s.c. or i.m. (Fig S2), while the
Mock-transduced cells were unable to form tumors. We also
observed the trend that tumors derived from mesenchymal
lines were smaller than epithelial ones (Fig 2C) indicating, as
already reported, that the EMT phenomenon switches cancer
cells from a proliferative mode to an invasive one.8,29,30

As there were no spontaneous metastases after i.m trans-
plantation, we assessed, the ability to metastasize in vivo by
injecting cells into the spleen of NSG mice and after 55–
60 days they were sacrificed to check for liver metastasis. Gross
examination and histological analysis of livers after 55–60 days
demonstrated metastatic lesions in all the four mesenchymal
lines tested, whereas epithelial lines were unable to form metas-
tasis, with the exception of one metastatic deposit in 1/5 mice,
for the E-50 cells (Fig. 2D and E).

Collectively, these results characterize, in vitro and in vivo,
different cloned K-Ras-expressing pancreatic tumor cell lines
with clear-cut distinguishable features typical of the epithelial
or EMT phenotype. Of note, the original phenotype was
checked throughout the study and was remarkably stable, with
the accuracy to propagate cells in culture for no more than one
month.

Distinct K-Ras-induced inflammatory programs in
epithelial and mesenchymal pancreatic cells

We next addressed which autonomous inflammatory pro-
gramme was switched on by K-Ras and whether any difference
could be noted in pancreatic cells with distinct phenotypes.
Several cytokines and chemokines contribute to the cancer-
associated inflammation and are important to regulate growth,
trafficking and invasion ability of tumor cells.6,31,32 The consti-
tutive production of several inflammatory cytokines was mea-
sured in cell supernatant by ELISA. All cloned cell lines,
irrespective of their phenotype, were able to produce at least 1
or more of the following cytokines: IL-1a, IL-1b, IL-6, CXCL8;
however, EMT lines had a tendency to produce higher concen-
trations and also produced pentraxin-3 (PTX3, a fluid phase
pattern recognition molecule). Among eight cell lines screened,
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only one epithelial (E-21) and one EMT (M-48) showed a low
inflammatory profile (Fig. 3A).

Interleukin-1 (IL-1) is a central mediator of inflammation/
innate immunity and plays a crucial role in cancer progres-
sion.9,33 To understand its role in K-Ras-expressing cells with
different phenotypes, we first analyzed by flow cytometry the
IL-1 receptor expression and found that all line types had
similar levels of IL-1 R1 (Fig S3A). We then inhibited IL-1R
signalling by treating cells in vitro with the IL-1 receptor
antagonist (Anakinra) for 48 hrs. Treatment with Anakinra
inhibited the constitutive production of inflammatory media-
tors, but interestingly, with distinct results: in epithelial lines,
Anakinra significantly reduced the production of IL-6, PTX3
and CXCL8 with a mean inhibition of 73%, while in three

different EMT lines, Anakinra had a much lower effect with
a mean inhibition of 34%; (Fig. 3B). This was especially evi-
dent for IL-6 production that was not significantly affected in
2/3 mesenchymal lines. This result was confirmed by using
an shRNA approach to silence IL-1R (Fig S3B). Of note, cell
viability and in vitro growth was unaffected in treated cells
(Fig S3C). Thus, in K-Ras-expressing pancreatic cells with
epithelial features, secretion of inflammatory mediators
(especially IL-6), is under the control of IL-1 signalling, while
in cells with mesenchymal features it is IL-1-independent.

We next tested the effect of Anakinra on tumor growth in
vivo. Three EMT and three epithelial lines were i.m. injected
in NSG mice and 10 days post inoculation, 2mg of Anakinra
was administered three times a week into the peri-tumoral

Figure 1. Characterization of epithelial and EMT phenotype of individual cloned sublines derived from K-Ras -pancreatic cells. (A) Distribution of epithelial or mesenchy-
mal phenotype of cloned sub-lines of HPDE-K-RasG12V from two independent experiments (nD 63 and nD 25). Each subline was evaluated for the expression of epithelial
(high E-Cadherin, low vimentin) and mesenchymal markers (low E-Cadherin, high Vimentin) compared to Mock-transduced cells. (B) mRNA expression levels of TWIST,
ZEB-2, SNAIL and SLUG analyzed by real time qPCR. (C) Expression of E-Cadherin protein by immunofluorescence using anti-human E-Cadherin antibody; nuclei are
stained with DAPI. Scale barD 50 mm. (D) Quantification of active K-Ras (bound to GTP) in epithelial and mesenchymal lines by the K-Ras-GTP pull down assay. Bars refer
to band intensity.
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region. Saline was used in control mice. After six weeks of
treatment, tumors derived from epithelial lines showed a
significantly reduced tumor volume and weight, while tumor
growth from mesenchymal lines was not inhibited
(Fig. 3C & S4). We also observed that epithelial tumors
responding to Anakinra showed significantly less vessels
(stained with CD31), and macrophages (F4/80), as compared
to saline-treated tumors, whereas mesenchymal tumors did
not show any significant modification of the stromal environ-
ment (Fig. 3D & E). Only in one EMT line (M-19), a decrease
in angiogenesis was observed, but to a much lesser extent.
These results in vivo demonstrate the crucial role of IL-1 in
the construction of the inflammatory microenvironment, and
confirmed the above in vitro finding that cells with mesen-
chymal phenotype are unresponsive to IL-1R signaling block.

We next investigated the activation levels of NF-kB, a critical
mediator of cancer-related inflammation, by performing
immunohistochemistry of NF-kB p65 in epithelial and mesen-
chymal tumors treated in vivo with Anakinra. We found signifi-
cantly lower expression of NF-kB p65 protein in epithelial
treated tumors whereas mesenchymal tumors showed no dif-
ference compared to their respective control (Fig. 4A). Further-
more, only in epithelial tumors, activation of STAT3 (phospho-
STAT3-Tyr 705) was significantly decreased upon Anakinra
treatment (Fig. 4B).

To have a broader overview of the inflammatory micro-
environment, we quantified the mRNA levels of several
inflammatory and pro-tumorigenic mediators such as IL-6,
CXCL8, TNF-a, and VEGF-a, in tumor tissues of mice
treated or not with Anakinra (Fig. 4C.). The expression

Figure 2. Characterization of epithelial and EMT functional features of individual cloned sublines derived from K-Ras -pancreatic cells. (A) Matrigel invasion assay of epi-
thelial and EMT cell lines; shown are migrated cells (triplicates C/-SD) Student’s t test �P<0.05. (B) Representative pictures of migrated cells in the lower membrane. (C)
Tumor weight of different cell lines (5 £ 105) cells, grown in NSG mice, two-way ANOVA ��P< 0.01. (D) Incidence of liver metastasis after tumor cell injection (2 £ 106) in
the spleen. (E) Representative (8 clones; 4 epithelial and 4 mesenchymal) images of liver metastasis (indicated by arrows) and histological sections of liver (H&E staining)
to show metastatic nodules in the liver. Scale bar D 100 mm.
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Figure 3. IL-1R antagonist reduces inflammation and tumor growth only in K-Ras-pancreatic cells with epithelial phenotype. (A) Constitutive secretion of inflammatory
mediators (IL-6, CXCL8 and PTX3) in different epithelial and mesenchymal cell lines measured by ELISA. (B) Inhibition of inflammatory mediators in cell lines upon block-
ing IL-1 signaling with Anakinra (100 ng/ml). Mean C/-SD, 3 independent experiments, �P< 0.05. (C) Tumor growth (volume) in NSG mice of epithelial cell lines (E-21, E-
30, E-38) and mesenchymal cell lines (M-7, M-19, M-36), treated (solid circle) or not (empty circles) with Anakinra (2 mg/mouse, three times/week), 5–7 mice for each
group, two-way ANOVA ��P<0.01 (D) Representative immunohistochemistry image of CD31C vessel network in tumor sections from untreated or Anakinra-treated mice
and relative quantification. (E) Representative Immunohistochemistry pictures (F4/80, macrophages) in the same tumors sections. Scale bar D 100 mm. Images were cap-
tured with V20Dot Slide microscope and analyzed with image pro analysis software in D and E, bar graphs indicate the quantification of the specific immunoreactive area
(Mean C/-SD of 5 sections/tumor, 3–5 tumors per group). Student’s t test �P<0.05 ��P<0.01 ���P<0.001. ns: non-significant.
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levels demonstrated that the responding epithelial tumors
had significantly reduced pro-inflammatory and pro-tumori-
genic mediators, while tumor growth from mesenchymal
lines was not inhibited. Overall, the results confirmed in
vivo that IL-1 is an important driver of inflammation in K-
Ras-expressing pancreatic tumors with epithelial, but not
with mesenchymal phenotype.

Link between IL-6 and EMT transcription factors

Our results that inflammatory cytokines (especially IL-6) were
not controlled by IL-1 in EMT lines prompted us to investigate

whether EMT transcription factors can regulate IL-6 expres-
sion. Upon silencing the transcription factors ZEB and TWIST
in three mesenchymal lines using gene specific shRNA, we
determined the expression levels of IL-6 and CXCL8. A signifi-
cant reduction in the secretion of IL-6 and CXCL8 was found
in TWIST-silenced cells, compared to scramble shRNA, while
silencing of ZEB did not produce any effect (Fig. 5A & B). To
confirm these findings we tested whether TWIST directly indu-
ces the expression of IL-6. We performed a ChIP assay with
chromatin extracted from two EMT lines using anti–TWIST
and anti-H3K9Ac antibodies, and observed an enrichment of
TWIST on the proximal E-box of the IL-6 promoter in both

Figure 4. IL-1R antagonist reduces NF-kB p65 and STAT3 phosphorylation in only K-Raspancreatic tumors with epithelial phenotype. Representative immunohistochemis-
try image of tumors from epithelial cell lines (E-21, E-30, E-38) and mesenchymal cell lines (M-7, M-19, M-36) treated or not with Anakinra as detailed in the legend of
Fig. 3. (A) NF-kB p65 phosphorylation, and (B) STAT3 phosphorylation (Tyr 705). Scale barD 100 mm. Graphs at right side indicate quantification of stained area. Bars indi-
cate mean C/-SD of 5 sections/tumor, 3–5 tumors per group). Student’s t test �P<0.05, ��P<0.01, ���P<0.001. (C) mRNA expression level of inflammatory mediators in
the tumor microenvironment by real-time qPCR. Bars, mean C/-SD. �P<0.05, ��P<0.01 for difference between control and Anakinra treated group.
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lines. Accordingly, IL-6 promoter acetylation (recruitment of
anti-H3K9 Ac antibody) was observed, suggesting that binding
of TWIST to the IL-6 promoter correlates with active gene
transcription (Fig. 5C). These results indicate that in mesenchy-
mal cells IL-6, and to a lesser extent CXCL8 production, is asso-
ciated with the activity of the EMT transcription factor TWIST,
explaining why these cytokines were still produced even when
IL-1 signaling was abrogated by Anakinra.

We next performed an in vivo experiment with the EMT line
M-7 and treated mice with the clinically approved mAb anti-
human IL-6 receptor (RoActerma, Roche), as well as with
Anakinra. In mice treated with anti- IL-6R, tumor growth was
significantly reduced, while Anakinra had no effect, confirming
the previous experiments (Fig. 6A & 6B). Of note, exposure of
cells in vitro in the presence of anti-IL-6R did not affect cell pro-
liferation (Fig S5). Furthermore, the vessel network and the den-
sity of macrophages in tumors were decreased in mice receiving
anti-IL-6 R (Fig. 6C & 6D). Phosphorylation of NFkB p65
and STAT3 was also decreased (Fig. 6E & 6F). Overall these

results demonstrate the dominant role of IL-6, and not
IL-1, in pancreatic tumor cells with EMT phenotype.

Discussion

By using a cellular model of pancreatic epithelial cells (HPDE/
E6E7) freshly transduced with the oncogenic K-RasG12V we
have characterized the inflammatory programme switched on
by K-Ras in distinct transformed sub-lines with specific epithe-
lial or EMT phenotypes. This model allowed us to analyse the
cell autonomous intrinsic inflammatory programme, without
the influence of the extrinsic inflammation provided by host
cells of the tumor microenvironment.

Tumor heterogeneity is a hallmark of K-Ras -induced
carcinogenesis.34 Of 88 different cloned lines analyzed from
K-Ras transduced pancreatic cells, the original epithelial phe-
notype was preserved only in 25%, while in 50% of the cases
the cells acquired an EMT phenotype and functional features:
loss of E-Cadherin, upregulation of Vimentin and of typical

Figure 5. IL-6 is transcriptionally activated by TWIST in K-Ras-pancreatic cells with mesenchymal phenotype. mRNA expression levels of TWIST (A) or Zeb2 (B) upon
shRNA silencing of each specific transcription factor in four mesenchymal pancreatic cell lines. Graphs in the middle and right panels show ELISA quantification of IL-6
and CXCL8 in silenced cells. Bars, C/-SD. �P<0.05, ��P< 0.01, ���P<0.005 (Student’s t test). (C) ChIP assay to evaluate the recruitment of TWIST to the IL-6 promoter.
H3K9Ac antibody was used as a marker of active chromatin, while rabbit IgG was used as negative control. Input and immunoprecipitated DNA were analyzed by qPCR
using primers that span the proximal E-box of the IL-6 promoter. Results are mean C/-SD of one of two independent experiments with similar results, ���P<0.005 (Stu-
dent’s t test).
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transcription factors (TWIST, ZEB, SLUG, SNAIL). Unlike epi-
thelial cells, EMT sub-lines had strong Matrigel-invasive ability
and metastatic activity in vivo. These results indicate that a
mesenchymal transition is an early and frequent event upon
oncogenic K-Ras activation in pancreatic cells. A similar obser-
vation was previously made in a genetic mouse model of pan-
creatic cancer, where tagged cells with EMT phenotype were
caught in the process of entering the circulation before histo-
logical signs of tumor formation were evident.21

In our pancreatic sub-lines, the EMT phenotype was associ-
ated with higher K-Ras -GTP levels, suggesting a causal relation-
ship. Higher Ras activity may act as an essential factor for the
transformation of cellular phenotype leading to loss of E-Cad-
herin and gain of EMT markers, as suggested in earlier findings
that the Ras-GTP level dictates the early metastasis in mouse
models.35,36 However, also epithelial lines had appreciable levels
of active K-Ras. The significance of this finding and the need for
a specific threshold of activity remains to be determined.

Figure 6. Anti-IL-6R mAb reduces inflammation and tumor growth in K-Ras -pancreatic cells with mesenchymal phenotype. Tumor growth (A) Tumor growth (volume) in
NSG mice of mesenchymal cell lines (M-07), not treated (empty circle) or treated with Anakinra (solid circles) or with RoActemra (empty square), 2 mg/mouse, three
times/week, 5–7 mice for each group, two-way ANOVA ��P<0.01. (B) Tumor weight (C) Representative Immunohistochemistry image of tumor sections with CD31 vessel
network; (D) F4/80, macrophages; (E) NF-kB p65 phosphorylation; (F) STAT3 Tyr 705-phosphorylation. Image quantification was performed as detailed in Fig. 3 and is
shown in the right panels. �P<0.05, ��P< 0.01, ���P<0.005 (Student’s t test).
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In spite of the phenotypic and functional heterogeneity of
our cloned cell lines, the inflammatory programme switched on
by K-Ras did not segregate with a particular phenotype. Both
epithelial and EMT cell lines were able to produce several
inflammatory mediators, including IL-1a/b, IL-6, CXCL8 and
VEGF, which are known to be expressed by this tumor.37–39

However, a distinct regulation of IL-6 and CXCL8 production
was found in pancreatic cells with specific phenotypes.

IL-1 is a key driver of inflammation in Ras-expressing can-
cers.40 A number of studies demonstrated that IL-1-mediated
constitutive activation of NF-kB occurs in pancreatic tumors,
and is a requirement for tumor development.16,41–43 When we
blocked IL-1R signaling with Anakinra (IL-1R antagonist), we
found strong inhibition of IL-6 and CXCL8 production only in
cells with epithelial phenotype. In vivo, Anakinra-treated mice
had significant inhibition of tumor growth and lower infiltra-
tion of macrophages and vessels. Tumor sections showed
reduced levels of NF-kB p65 and STAT3 phosphorylation,
overall confirming that the inflammatory program in pancre-
atic cells with epithelial phenotype is orchestrated by IL-1.

Instead, in cells with EMT features, IL-1 inhibition had no
effect on inflammation or on tumor growth in vivo, due to the
persistence of inflammatory mediators, especially IL-6 and
CXCL8. Immunohistochemistry of tumor sections still showed
high phosphorylation of NF-kB p65 and STAT3 proteins. We
further demonstrated that in EMT sublines the transcriptional
activity of TWIST activates the production of IL-6 and CXCL8.
The ChIP assay confirmed TWIST interaction with the IL-6
gene promoter. Overall, our results indicate that TWIST
actively participates to the maintenance of an inflammatory
environment in pancreatic cells with EMT phenotype.44 In the
adipose tissue, a similar result was previously reported, where
silencing of TWIST reduced the levels of IL-6 and other inflam-
matory cytokines.45 Furthermore a feed forward loop exists
between IL-6 and TWIST, because IL-6-mediated STAT3 acti-
vation up-regulates TWIST.46

Several studies underlined the well-known tumor promoting
effect of STAT3 and IL-6 in pancreatic cancer.47,48 The pro-
tumorigenic role of IL-6 was confirmed also in our in vivo
experiment in mice bearing tumors derived from an EMT cell
line. While these tumors were unaffected by Anakinra, treat-
ment with the anti-IL-6 receptor (RoActemra) significantly
reduced tumor growth, the construction of a vessel network
and the recruitment of macrophages in tumor tissues.

Thus, the cell autonomous intrinsic inflammatory pro-
gramme triggered by oncogenic K-Ras in pancreatic cells with
EMT features is no more under the control of IL-1, and pro-
duction of IL-6 is dependent on the transcription factor
TWIST. These results bear relevance in therapeutic settings.
Cancer-promoting inflammation is now object of consideration
of therapeutic interventions in oncology.49–54 A recent report
showed activity of IL-1R antagonist in pancreatic cancer pre-
clinical models.55 Early phase clinical trials are under way in
un-resectable pancreatic tumor patients with inhibitors of IL-
1R (Trial NCT02550327) and IL-6R (Trial NCT02767557) in
combination with chemotherapy. It will be important to try to
correlate activity with EMT phenotype.

In conclusion, our results confirm that IL-1 is an important
driver of inflammation in epithelial pancreatic tumors and a

potential therapeutic target. However, tumor cells which have
already undergone EMT and express high TWIST will likely
escape IL-1 inhibition, as IL-6 can be continuously transcribed
by TWIST. Inhibition of IL-6, or simultaneous inhibition of IL-
1 and IL-6 in holds promise for the rational targeting of inflam-
matory pathways in pancreatic cancer.

Materials and methods

Cell culture, lentiviral transduction and single cell cloning

HPDE cells were cultured in RPMI 1640 medium supple-
mented with 10% FBS, 2 mM Ultraglutamine and 100 U/ml
penicillin/streptomycin (Lonza, BioWhittaker). Transduction
was performed using lentiviral system. To generate lentiviral
vector, K-Ras G12V was cloned into pRRLsinPPTGFPpre lenti-
viral vector. Viral particles were produced by transfecting
packaging cell line 293T with the packaging plasmid (pCMV-
DR8.74), the envelope plasmid (VSV-G gene) and with 10mg
DNA of interest. Cells were transduced with filtered (0.45 mm)
viral supernatant collected 24 hours and 48 hours after trans-
fection, in 6 well plate and incubated in 5% CO2 incubator at
37�C. Positive transduced cells were sorted by Facs Aria based
on GFP fluorescence. Single cell cloning was performed in 96
well flat well plates by limiting dilution method and expanded
upon propagation. Lentiviral vector with shRNA for IL-1R
(Thermo Scientific, RHS4531-NM_000877) and control
shRNA (Thermo Scientific, RHS4346) was purchased from
Thermo Scientific as bacterial stocks. shRNA for ZEB-2 (Sigma
NM_014795.2), TWIST (Sigma, NM_000474) and Scramble
shRNA (Addgene, 1864) was purchased as bacterial stocks.
Culture was propagated in LB medium with ampicillin antibi-
otic and DNA was extracted following instructions from Prom-
ega Midi preparation DNA isolation kit.

Antibodies and Reagents

The following antibodies were used: Mouse CD31/PECAM-1
Antibody (R&D Systems AF3628), Rat Anti Mouse F4/80
(AbD Serotec MCA497GA), E-Cadherin (Transduction Labo-
ratories C20820), Alexa Donkey anti-mouse 647, Alexa goat
anti-rabbit 647 (Invitrogen), NF-kB p65 (Cell Signaling,
C22B4), pSTAT3 (Tyr 705) (Cell Signaling, D3A7), Cells were
transfected with lipofectamine (Invitrogen).

Flow cytometry

HPDE cells were removed from flasks non-enzymatically,
washed, re-suspended in ice cold washing buffer (phosphate-
buffered saline (PBS) containing 2% FCS) and incubated with
10 mg/ml APC-conjugated mouse anti-human IL-1R1 antibody
(R&D Systems, Minneapolis, MN) for 30 minutes at 4�C. Cells
were then washed and fixed with 2% PFA in PBS, acquired on
FACS Canto and analyzed using Flowjo.

RT-PCR and quantitative real time qPCR

Total RNA was isolated either from cells or tumors using TRI
reagent (Ambion) and quantified with nanodrop. DNAse
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treatment (Turbo DNA-freeê kit, Ambion) was performed to
avoid genomic DNA contamination. 1mg of total RNA was
reverse-transcribed using the High-Capacity cDNA Archive kit
(Applied Biosystems). cDNA was analyzed by SYBER Green
based Quantitative Real-Time PCR on ABI Prism� 7900HT
Fast Real Time PCR System (Applied Biosystem). 18S/GAPDH
was used as internal control to normalize. All gene specific pri-
mers were domestically designed. The sequences of the primer
pairs are as follows: 18S: (F-CGCCGCTAGAGGTGAAATTC;
R-CTTTCGCTCTGGTCCGTCTT); GAPDH: (F-AGATCAT-
CAGCAATGCCTCCTG; R-ATGGCATGGACTGTGGTCA-
TG); E-Cadherin: (F-GGAACTATGAAAAGTGGGCTTG;
R-AAATTGCCAGGCTCAATGAC); Vimentin: (F-CCTTGA-
ACGCAAAGTGGAATC; R-TGTTCCTGAATCTGAGCC-
TGC); TWIST: (F-AGCAAGATTCAGACCCTCAAGCT;
R-CCTGGTAGAGGAAGTCGATGTACCT); ZEB2: (F-
GCTACACGTTTGCCTACCGC; R-CGATTACCTGCTCCT-
TGGGTT); SNAIL: (F-GCACATCCGAAGCCACAC;
R-GGAGAAGGTCCGAGCACAC); SLUG: (F-GGGGA-
GAAGCCTTTTTCTTG; R-TCCTCATGTTTGTGCAGGAG);
IL-6: (F-GAAAGCAGCAAAGAGGCACT; R-TTTCAC-
CAGGCAAGTCTCCT); CXCL8: (F-CCAGGAAGAAAC-
CACCGGA; R-GAAATCAGGAAGGCTGCCAAG); VEGF-a:
(F-GCTACTGCCATCCAATCGAG; R-GCTTGTCACAT-
CTGCATTCAC); TNF-a: (F-CCG ATG GGT TGT ACC TTG
TC; R-GGG CTG GGT AGA GAA TGG AT)

K-Ras -GTP pull down

Briefly, cells were collected and lysed with 1X ice-cold lysis
buffer (MLB) supplemented with protease inhibitor cocktail.
The cell lysate was diluted to 1mg/ml total cell protein in 1 ml
of volume and pre-cleared with glutathione agarose. Ras-GTP
was pulled down by adding 10mg Raf-1 RBD agarose for 1 ml
of cell lysate at 4�C for 1 hr with gentle agitation. The agarose
beads were washed three times with MLB, re-suspended in 2x
sampling buffer and boiled for 5 minutes to release Ras-GTP.
Supernatant was run on acrylamide gel, active Ras protein was
detected with an Anti-Ras antibody (Millipore, Temecula, CA)
and the band intensity was evaluated using ImageJ software.

Matrigel invasion

The cell invasion assay was performed using 24-well plate in
triplicate by using a Matrigel-coated invasion chamber (BD
Biosciences, Bedford, MA) with an 8.0 mm pore size polyethyl-
ene terephthalate (PET) membrane. The invasion assay was
performed according to manufacturer’s instructions. The
migrated cells to the lower side of the inserts were fixed in
methanol, stained with 1% Crystal Violet and then washed sev-
eral times with PBS to remove the excessive stain. Insert cham-
ber was then allowed to dry and the membrane was then taken
out delicately using the tip of the needle to dissolve the attached
cells in DMSO (dimethyl sulfoxide). Colorimetric analysis was
performed at 570 nm to compare the number of cells that
migrated to the lower side of the membrane. Alternatively the
Transwell membrane was stained with Difco stain and invasive
fixed cells at the bottom of the membrane were placed on glass

slide mounted with coverslip and the images were captured
from microscope.

Immunofluorescence

Cell lines were cultured on coverslips coated with Poly-L-
Lysine, washed in PBS and fixed in 4% PFA for 150. After two
washes in 2% BSA in PBS, cells were incubated with the specific
primary antibody E-Cadherin (Transduction Laboratories
C20820), diluted in 2% BSA, 0.1% TritonX-100, 0.1% glycine,
5% Normal Goat Serum in PBS. After 3 washes in washing
buffer (0.2% BSA, 0.05% Tween 20 in PBS), cells were incu-
bated with secondary antibody Alexa Donkey anti-mouse 647
(Invitrogen) for 1 h at RT. After 4 washes in washing buffer,
DAPI was used to stain nuclei. Coverslip was mounted with
Fluor PreserveTM Reagent (Calbiochem) and the images were
acquired with a laser scanning confocal microscope (FluoView
FV1000; Olympus). For image analysis, Imaris X64 7.0.2 Soft-
ware (Bitplane, AG) was used.

Measurement of cytokines (ELISA)

Equal number of cells (2 £ 106) were seeded in a monolayer
fashion in a six well plate and allowed to incubate in CO2 incu-
bator at 37�C. Supernatant was collected post 24 hour of incu-
bation. ELISA for cytokines (IL-6, CXCL8, IL-1b and PTX3)
was performed using human cytokine ELISA Kit (R&D)
according to manufacturer instructions.

In vitro proliferation

Equal number of HPDE-K-Ras G12V cells were plated into 96
well plates. For each time point, 20 ml of MTT (5 mg/ml in PBS
1X) were added to each well (200 ml medium) and left at 37�C
for 3 hours, in the dark. After aspiration of the medium, 100 ml
of DMSO was added to each well and crystal was dissolved by
pipetting up and down. The absorbance of this solution was
measured at 570 nm.

Animal experiments

Procedures involving animals and their care conformed to
institutional guidelines in compliance with national (4D.L.
N.116, G.U., suppl. 40, 18-2-1992) and international law and
policies (EEC Council Directive 2010/63/EU, OJ L 276/33,
22.09.2010; NIH Guide for the Care and Use of Laboratory
Animals, U.S. National Research Council, 2011).

6–8 weeks old female NSG (NOD/SCID/IL-2rg¡/¡) mice
(Jackson Laboratories) were used. Mice (6–7 mice for each
group) received subcutaneous injection into both the flanks
with 50,000 viable cells for tumor growth studies. For Anakinra
study, mice (6 mice per group for each clone) received intra-
muscular injection of 50,000 cells into quadriceps muscle group
on the anterior of thigh. After 10 days of inoculation, 2 mg of
Anakinra (IL1RA; Peprotech, 200–01RA) per mouse, thrice a
week was injected into the peri-tumoral region in 25 ml of vol-
ume using a 27-gauge needle. Control group received equal vol-
ume of saline. Similar procedure was followed when animals
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were treated with anti-human IL-6 R mAb (RoActerma, Roche,
Milano, Italy).

Tumor volume was measured thrice a week. After 45 days,
mice were sacrificed to harvest the tumors. For spleen-liver
metastasis experiment, mice (6 mice for each group) were anes-
thetized with Avertin (Sigma-Aldrich, T4.840-2), and the
spleen was exteriorized through a left lateral flank incision.
Tumors were established by intrasplenic injection of two mil-
lions (2 £ 106) cell suspension using a 27-gauge needle. The
injection site on the spleen was pressed with a cotton stick in
order to wipe out any split cells and ensure hemostasis. The
peritoneum and skin were closed with surgical thread. After
55–60 days, mice were sacrificed, liver removed and fixed for
H&E staining.

Immunohistochemistry

Formalin-fixed, paraffin-embedded tissues were deparaffinised
and endogenous peroxidase was blocked with 3% hydrogen
peroxide for 20 min at room temperature. For CD31 and F4/80
staining, tumor sections were exposed to an antigen retrieval
procedure with Diva Buffer in Decloacking chamber before
being incubated with specific antibody (Mouse CD31/PECAM-
1 Antibody (R&D Systems AF3628), Rat Anti-Mouse F4/80
(AbD Serotec MCA497 GA) for 1.5 h RT. For NF-kB p65
(C22B4, Cell Signaling), antigen retrieval was performed with
citrate buffer (10 mM). For pSTAT3 (Tyr 705) (Cell Signalling,
D3A7), antigen retrieval was done in 1 mM EDTA buffer.
Reactive sites were identified by exposure to Anti-Rat Polymer
HRP kit or Anti-Goat Polymer HRP kit (Biocare Medical, CA
USA) for 30 min at room temperature. Immunoperoxidase
staining was then performed by using diaminobenzidine as a
chromogen (DABCchromogenX-50, ChemMate, DakoCyto-
mation, Carpinteria, CA, USA). The slides were finally counter-
stained with haematoxylin (Harris Hematoxilyn, DiaPath,
Microstain Division, Martinengo, Bergamo, Italy), and ana-
lyzed with the computer-aided image pro analysis software to
calculate the percentage of immunoreactive area as a fraction of
the total area digitally captured.

Chromatin immunoprecipitation (ChIP)

Cells were seeded at the concentration of 3 £ 105 cells/ml, the
day after ChIP was carried out with 5–10 £ 106 cells according
to a previously described protocol.56 Briefly, cells were cross-
linked with formaldehyde 1% at RT for 10 minutes then, chro-
matin was extracted and was sonicated to obtain fragments of
about 400 bp. Immunoprecipitation was performed by incubat-
ing the chromatin at 4�C overnight with anti-TWIST antibody,
anti-H3K9Ac antibody (Abcam) or normal rabbit IgG (Milli-
pore) as negative control. Then, ChIP DNA fragments and
input DNA were analyzed by qPCR using primers which are
specific for the promoter regions of TWIST gene spanning two
predicted E-boxes.45 The sequences of primers are: h-IL6_pro-
moter_Fw:ACCCTCACCCTCCAACAAAG;hIL6_promoter_-
Rev:GCCTCAGACATCTCCAGTCC. ChIP-enriched DNA
was compared with input DNA, according to the formula 100
£ 2(Input Ct ¡ sample Ct).

Statistical analysis

Prism software (v6.0 a; Graphpad) was used to conduct appro-
priate statistical procedures, as noted in the individual figure
legends. P value <0.05 was considered significant unless noted
otherwise. 2way ANOVA was used to compare the tumor
growth between treated and control group.
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