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Abstract

Reproductive traits are of the utmost importance for any livestock farming, but are difficult to

measure and to interpret since they are influenced by various factors. The objective of this

study was to detect associations between known polymorphisms in candidate genes related

to sexual precocity in Nellore heifers, which could be used in breeding programs. Records of

1,689 precocious and non-precocious heifers from farms participating in the Conexão Delta

G breeding program were analyzed. A subset of single nucleotide polymorphisms (SNP)

located in the region of the candidate genes at a distance of up to 5 kb from the boundaries

of each gene, were selected from the panel of 777,000 SNPs of the High-Density Bovine

SNP BeadChip. Linear mixed models were used for statistical analysis of early heifer preg-

nancy, relating the trait with isolated SNPs or with haplotype groups. The model included

the contemporary group (year and month of birth) as fixed effect and parent of the animal

(sire effect) as random effect. The fastPHASE® and GenomeStudio® were used for recon-

struction of the haplotypes and for analysis of linkage disequilibrium based on r2 statistics. A

total of 125 candidate genes and 2,024 SNPs forming haplotypes were analyzed. Statistical

analysis after Bonferroni correction showed that nine haplotypes exerted a significant effect

(p<0.05) on sexual precocity. Four of these haplotypes were located in the Pregnancy-asso-

ciated plasma protein-A2 gene (PAPP-A2), two in the Estrogen-related receptor gamma

gene (ESRRG), and one each in the Pregnancy-associated plasma protein-A gene (PAPP-

A), Kell blood group complex subunit-related family (XKR4) and mannose-binding lectin

genes (MBL-1) genes. Although the present results indicate that the PAPP-A2, PAPP-A,

XKR4, MBL-1 and ESRRG genes influence sexual precocity in Nellore heifers, further stud-

ies are needed to evaluate their possible use in breeding programs.
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Introduction

Brazil currently has the largest commercial beef cattle herd in the world, with about 215.2 mil-

lion heads, and is the world’s second-largest producer and the largest exporter of beef [1]. The

analysis of beef cattle production systems shows that reproductive traits are of economic

importance for profitability. In a study on Nellore cattle in Brazil, Brumatti et al., [2] con-

cluded that reproductive traits (sexual precocity and stayability in the herd) are 4 to 13 times

more important than carcass and growth traits. Pravia et al., [3] reported a three times greater

importance of reproductive traits compared to traits related to growth and feed intake in a pro-

duction system of Hereford cattle in Uruguay. The authors therefore recommend reproductive

traits to be a selection objective for producers that wish to increase the profitability of their

herds.

Sexual precocity and longevity of females in the herd show a high and positive genetic cor-

relation [4, 5, 6], indicating that selection for more precocious animals concomitantly selects

for animals that remain cycling in the herd for a longer period. The cost of fixed capital forma-

tion of the dam is thus diluted since the animal remains in the herd for a larger number of pro-

ductive cycles. This is also observed phenotypically since precocious heifers are more likely to

stay in the herd than non-precocious heifers [7].

The use of quantitative and molecular genetics permits the identification and validation of

SNPs that influence phenotypes, as well as their subsequent utilization as markers to select

traits of interest [8]. Using SNPs located close to genetic markers previously associated with

reproductive traits, Cochran et al., [9] found 40 SNPs associated with pregnancy rate (p<0.05),

with the genes being related to the endocrine system, cell signaling, immune system, and inhi-

bition of apoptosis. The knowledge of genes that influence reproductive traits in Nellore cattle,

as well as of the contribution of each gene, is important for understanding the biological mech-

anism that influences the expression of a phenotype and for future genetic evaluation.

Although the hypothalamic-pituitary-gonadal axis and related genes are important for the

onset of puberty, it is unlikely that puberty can be explained by only a small number of genes

associated with a single trait. After all, puberty is a complex phenotype that is influenced by

many other processes, including those involved in energy balance and brain development [10].

Therefore, the general objective of this study was to detect polymorphisms associated with sex-

ual precocity in Nellore heifers using a method that combines the pre-selection of candidate

genes (genes related to folliculogenesis and gonads, follicular maturation, hypothalamus, pitui-

tary, pregnancy, and puberty) and the reconstruction of haplotypes.

Material and methods

Animals and sample collection

This study was approved by the Ethics Committee on Animal Experimentation (CEUA) of the

School of Agricultural and Veterinarian Sciences (FCAV/UNESP) Jaboticabal—São Paulo Bra-

zil (protocol nº17958/15).

Data from 1,689 precocious and non-precocious Nellore heifers were available for breeding

with sires at about 16 months of age in herds participating in the Conexão Delta G breeding

program were used. All heifers of these herds are mated for the first time at an age close to 16

months, irrespective of weight and body conditions, and continue in the breeding season for

about 3 months. During this period, heifers are subjected to multiple-sire natural mating, with

a sire-cow ratio of 1:50. Approximately 60 days after the end of the breeding season pregnancy

of the heifers is confirmed by rectal palpation. In the herds studied, 25.82% of the heifers

became pregnant in this first breeding season.
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The biological material was collected in previous performed studies by Costa et al. [11] and

Irano et al. [12]. Hair follicles were collected from the brush of the tails (about 100 follicles/ani-

mal) during the breeding season of the heifers, and were stored in envelopes identified with

the number of the animal, year of birth and breeding season. The follicles were carefully stored

at 4˚C until the time of DNA extraction.

DNA extraction and quantification

About 40 hair follicles/animal were used. The follicles were cut with clean flame-sterilized scis-

sors so that only the bulbs remained in the 1.5-ml microcentrifuge tubes. DNA was extracted

from these hair follicles using the NucleoSpin Tissue Kit (Macherey-Nagel1) according to

manufacturer instructions. A Nanodrop 1000 spectrophotometer (ThermoScientific, USA,

2008) was used to verify the quantity and quality of the extracted DNA. The DNA extracted

from the hair follicles was of great quality, its concentration was higher than 100 ng/μL in 97%

of, and the samples the 260:280 ratio ranged from 1.8 to 2.0, allowing use of a good material

for the genotyping.

Candidate genes

The candidate genes included 125 genes encoding proteins that are somehow related to age at

first calving. All genes were chosen based on studies indicating their participation in folliculo-

genesis and gonad development (ACVR, STAR, HSD17B3), oocyte maturation (BMP15, GDF9)

[9], hypothalamus and Central nervous system (GnRH, GPR 54, KISS-1, XKR4), pituitary

(ACTH, PRL, LHR, FSHR) or pregnancy (IFN-τ, MBL-1, PAPPA-A, PAPPA2), or are genes that

have been associated with puberty in previous studies (PPARG, ESRRG, PROP1) [10]. The

complete list of the candidate genes is shown in “S1 Table”.

SNP panel and genotyping

For the study of candidate genes, SNPs of the panel of 777,000 SNPs of the Illumina High-Den-

sity Bovine BeadChip located within or close to these genes were analyzed. The SNPs were

chosen based on the position of the gene in the genome (GenBank) and the position of the

SNP in the Illumina panel. All SNPs located up to 5 kilobases (kb) from the proposed genes

were selected. This chip offers uniform coverage across the genome of taurine breeds, with an

average spacing between markers of 5 kb, in addition to a minor allele frequency (MAF) of

0.25 (Illumina1 SNP Genotyping).

Genotyping was performed following to the Infinium 1 II Assay Multi-Sample protocol in

a HiScan™ SQ System (Illumina). A total of 1.689 precocious and non-precocious heifers were

genotyped. The GenomeStudio1 program was applied to ensure the quality of the samples

and remove samples with a call rate less than 90%. Based on this criterion 20 samples were

excluded. SNPs that exhibited significant deviation from Hardy-Weinberg equilibrium

(p<0.00001), which indicates genotyping errors, were removed. SNPs with an MAF < 0.01

and a call frequency < 0.9 were also eliminated. To generate the files with the information of

each SNP for each animal, the same program was used according to the Illumina "TOP / BOT"

designation.

Haplotype reconstruction

After selection of the SNPs within the region of the candidate genes, the fastPHASE1 pro-

gram [13] was used for reconstruction of the haplotypes. The results were entered into the

Haploview v4.1 program [14] to estimate the linkage disequilibrium between SNP pairs based
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on r2 statistics [15] and to obtain the allele patterns formed by each haplotype. SNPs that were

not part of any haplotype were considered isolated markers.

Statistical analysis

The trait evaluated was early heifer pregnancy. This is considered a binary trait in which value

1 is attributed to heifers with a positive diagnosis of pregnancy at 16 months and value 0 to

those with a negative diagnosis. Although the trait has a binary distribution, linear models

were used for this analysis because of their easier execution and interpretation of the results.

Thus, the association with the trait of interest was verified using a linear mixed model, for each

isolated or haplotype SNP.

It was used for all markers, the model included the contemporary group as fixed effect and

the parent of the animal (sire effect) as random effect. The contemporary group was defined

by concatenation of farm, year and month of birth of the animal. An identification code of the

father (ghost sires) was generated for each animal with unknown sire to allow analysis with the

software chosen.

To define the blocks of SNPs that form the haplotypes, was using the algorithm of Gabriel

et al. [16], which considers the confidence interval D ’, statistical implemented in Haploview

software. Regarding the analysis of isolated SNPs, the copy number of the most frequent allele

present in the genotype of the animal was included as a covariate. Where it was possible to

detect the presence of haplotypes in the segments, the analyses were performed considering

the block of haplotype-forming SNPs. In addition, in the latter case variables containing the

copy number of each allele detected in the population, except for the least occurrence, were

included as covariates. The model used can be written as:

yijk ¼ CGi þ sj þ
Xn� 1

l¼1

blxijkl þ eijk

where yijk is the observed value of the trait studied for animal k of sire j in contemporary group

i; CGi is the fixed effect of contemporary group i; sj is the random effect of sire j; bl is the regres-

sion coefficient of the copy number of allele l on the trait studied; xijkl is the copy number of

allele l in the animal; eijk is the random error, and n is the number of alleles for the marker

analyzed.

The Mixed Procedure of the SAS1 statistical package was used in all analyzes. The Bonfer-

roni method correction for multiple comparisons was applied to ensure maintenance of the

error rate of the statistical tests. For each polymorphism, the allele and genotype frequencies

were calculated according to [17].

Results

It ranged from 0 to 199 the number of SNPs of the High DensityBovine SNP BeadChip found

within each region of the candidate genes (“S1 Table”). No SNPs were detected for 11 of the

candidate genes, which could therefore not be analyzed. Thus, the remaining 114 candidate

genes and haplotype blocks were assembled and evaluated regarding their effects on early preg-

nancy. The haplotype blocks were formed by 2 to 20 SNPs.

S2 Table. The S2 Table shows the location of significant haplotypes and the position of the

SNPs in the PAPP-A2, PAPP-A, MBL-1, ESRRG and XKR4 genes.

For analysis 2024 SNPs were used. Statistical analysis of the 114 genes revealed a significant

effect (p<0.05) of the nine haplotype blocks located in the PAPP-A2, PAPP-A, MBL-1, ESRRG
and XKR4 genes on early heifer pregnancy. In the PAPPA-A2 gene, four haplotypes formed by
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20, 18, 5 and 5 SNPs exerted significant effects (p<0.05) (Table 1). One haplotype with 2 SNPs

was found in the PAPPA-A gene (Table 2), one haplotype with 4 SNPs in the XKR4 gene

(Table 3), one haplotype with 2 SNPs in the MBL-1 gene (Table 4), and two haplotypes with 8

and 3 SNPs in the ESRRG gene (Table 5).

Discussion

The present results showed that the pre-selection of candidate genes and association analysis

of SNPs that occur within these genes are efficient in identifying markers for sexual precocity

in Nellore heifers.

The ESRRG (Estrogen-Related Receptor Gamma) gene was associated with sexual precocity

in Nellore heifers. Members of the ESRR family (ESRRα, ESRRβ and ESRRγ) are orphan

nuclear receptors and were identified based on their homology with estrogen receptors.

Despite this similarity, ESRRs are not activated by estrogen [18]. ESRRG targets a variety of

Table 1. Frequency, average effect, and respective standard error of haplotypes alleles located in the PAPP-A2 gene.

Alleles
Haplotypes 16jc6

Bases of the SNPs Frequency Average effect Standard error

Allele 1 AGACCGCGTAAATGGTTTCA 0.527762 -18.0658 27.5808

Allele 2 AAACAAAGTAGGCGTTCTCC 0.109384 -119.58 45.1731

Allele 3 GAACAAAGTAGGCGTTCTCC 0.110772 55.0690 44.3902

Allele 4 AGACCGCAGGAACAGTTTCC 0.078845 -95.5179 51.3268

Allele 5 AGACCGCGTGGACGGTTTCC 0.063021 -78.7045 56.9129

Allele 6 AGACCGCAGGAACAGTTTCA 0.057746 49.6128 61.1468

Allele 7 AGGTCGCAGGAACGGCTCTC 0.052471 207.18 59.5146

Haplotype 16kc3

Allele 1 CGAAT 0.582454 -19.2422 15.1954

Allele 2 AAGGC 0.222654 -27.9854 18.0778

Allele 3 CGGAT 0.143254 -56.2382 20.7453

Allele 4 AAGAC 0.051638 103.47 29.6901

Haplotype 16lc3

Allele 1 GCCGG 0.616602 -16.5193 15.4988

Allele 2 GCTAG 0.228207 -14.7703 18.5367

Allele 3 GTTAA 0.092171 -64.6040 24.6625

Allele 4 ACATG 0.063021 95.8936 28.8740

Haplotype 16vc4

Allele 1 TTGGTTCATAGGGGTTTC 0.495835647 16.5989 20.4811

Allele 2 TCGGTTCATAGGGGTTTC 0.242365353 31.8859 23.7671

Allele 3 CCAGTTCATAGGGGTTGC 0.165463631 35.6756 26.4293

Allele 4 CCAACCAGCCAAAAGGGT 0.068017768 42.6865 39.5794

Allele 5 CCAGTTCGTAGGGGTTTC 0.028317601 -126.85 42.6491

https://doi.org/10.1371/journal.pone.0190197.t001

Table 2. Frequency, average effect, and respective standard error of haplotype alleles located in the PAPP-A gene.

Alleles Bases of the SNPs Frequency Average effect Standard error
Haplotype8ra2

Allele 1 TC 0.529983 22.2923 9.3300

Allele 2 CC 0.316491 28.2590 10.2994

Allele 3 CT 0.153526 -50.5513 12.8593

https://doi.org/10.1371/journal.pone.0190197.t002
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receptors such as follicle-stimulating hormone receptor (FSHR), GABA receptor (GABRA1)

and glutamate receptor (NMDAR2B) etc. Through the ESRRG the FSHR may influence the

feedback of estrogen on FSH release. The fact that ESRRG regulates GABRA1 and NMDAR2B

indicates a link between estrogen pathways and GABA and glutamate signaling, which might

influence puberty by activating the pulsatile secretion of GnRH [10]. Our findings corroborate

the results of Fortes et al. [19] who performed genome-wide association studies (GWAS) to

investigate the association between different genes and puberty in beef heifers. Puberty was

defined as the age of occurrence of the first corpus luteum (AGECL). The authors observed a

pleiotropic effect of the ESRRG gene in analyses of the gene network that considers AGECL as

the main trait. Other studies conducted by the same group also associated the ESRRG gene

with puberty in beef heifers [10] and [19].

Among reproductive tissues, studies have shown that the human placenta expresses large

amounts of ESRRG [20, 18]. ESRRG participates in the formation of the syncytium and its

expression increases during trophoblast differentiation. Since trophoblastic cells are essential

for implantation of the embryo and development of the placenta during pregnancy in humans,

mitochondrial biogenesis and the expression of some target genes of placental energy metabo-

lism were found to be reduced when the expression of ESRRG was compromised [18]. The

effect of the ESRRG gene on early heifer pregnancy identified in the present study may be due

to its important role in metabolism and placental formation at the beginning of pregnancy.

Another pathway whereby ESRRG might interfere with early heifer pregnancy is through its

action on lipid homeostasis and oxidative energy metabolism [21]. Functional genome studies

have shown that ESRRs play an important role in the regulation of genes that encode compo-

nents involved in pathways of fatty acid and glucose metabolism [22, 23, 18]. The relationship

of a gene involved in lipid metabolism with a reproductive trait is the result of the fact that

cycling females need to reach a certain body condition score, which is given in the final stage

by the accumulation of fat, i.e., females are not reproductively active if they do not accumulate

energy. A minimum body condition (i.e., total body fat) is therefore necessary for successful

puberty. This is achieved when heifers reach 65% of the body weight of an adult cow to con-

ceive at the beginning of the breeding season [24]. According to Semmelmann et al. [25], Nel-

lore heifers that conceived after sexual maturation at 16 to 18 months of age were heavier and

had a better body condition.

Two other genes that also exerted a significant effect (p<0.05) on sexual precocity in Nel-

lore heifers were PAPP-A (pregnancy-associated plasma protein A) and PAPP-A2 (pregnancy-

Table 3. Frequency, average effect, and respective standard error of haplotype alleles located in the XKR4 gene.

Allele Bases de SNPs Frequency Average effect Standard error
Haplotype14u2

Allele 1 GGCG 0.71266 -21.8432 11.2046

Allele 2 GGCA 0.217379 -44.5622 13.5822

Allele 3 ATAA 0.069961 66.4054 18.4249

https://doi.org/10.1371/journal.pone.0190197.t003

Table 4. Frequency, average effect, and respective standard error of the haplotype alleles located in theMBL-1 gene.

Alleles Bases of the SNPs Frequency Average effect Standard error
Haplotype28c2

Allele 1 AG 0.537757 27.9164 9.3271

Allele 2 GA 0.25819 13.0536 10.7418

Allele 3 GG 0.204053 -40.9700 11.7133

https://doi.org/10.1371/journal.pone.0190197.t004
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associated plasma protein A2), which are metalloproteinases. These genes are located on chro-

mosomes 8 and 16 and regulate the local bioavailability of insulin-like growth factor (IGF) in

different systems including the placenta, ovarian follicles and bones and in pathological condi-

tions such as skin wounds and atherosclerotic plaques [26]. PAPP-A2 is a PAPP-A homolog

that shares 46% sequence identity with the latter. This protein is a protease that specifically

cleaves IGF-binding protein 5 (IGFBP-5) independent of IGF-1 [27] resulting in increased bio-

availability of IGF, with significant consequences for the development of the fetus and the

health of the mother [28].

In Holstein cows, a QTL influencing calving ease was detected on BTA16 in a region encom-

passing the PAPP-A2 gene [29]. SNPs in these genes have also been associated with fertility

traits, milk production and reproductive health in Holstein cattle [30]. Luna-Nevarez et al. [31]

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172330 - pone.0172330.

ref002] associated SNPs in the PAPP-A2 gene with reproductive traits in beef heifers and indi-

cated this gene as a potential candidate for fertility in cattle, a fact that would explain the influ-

ence of the gene on sexual precocity in Nellore heifers.

In cattle PAPP-A cleaves both IGFBP-4 and IGFBP-5 in the presence of IGF-1. In the female

reproductive system, PAPP-A is involved in the development of the ovarian follicle [32] and in

the implantation of the embryo [33], a reduction in the expression of the PAPP-A gene is asso-

ciated with the development of cysts in the ovary [34].

Furthermore, studies investigating bovine ovarian follicles demonstrated a strong associa-

tion between IGF-1 concentrations and estradiol in follicular fluid and the capacity of these

follicles to reach the preovulatory stage [35, 36]. PAPP-A may play a role in ovarian follicles,

participating especially in oocyte maturation, irrespective of the cleavage of IGFBP-4. FSH was

found to stimulate the expression of the IGFR-1 and PAPP-A genes in granulosa cells, suggest-

ing that the PAPP-A mRNA expression in granulosa cells may contribute to the production of

free IGF-I and increase LH receptors to trigger the preovulatory phase and consequently lead

to ovulation [37, 38]. Finally, it is possible that PAPP-A participates in ovulation through the

cleavage of critical substrates [39, 38]. According to Fortune et al. [40], the FSH-induced

increase in PAPP-A is the earliest change detected in the future dominant follicle. This would

explain the role of PAPP-A in sexual precocity since this gene is involved in ovulation and

puberty. From a hormone point of view, puberty is defined as the first sign of estrous behavior

associated with a potentially fertile ovulation, followed by a corpus luteum of normal duration

[41].

Table 5. Frequency, average effect, and respective standard error of the haplotype alleles located in the ESRRG gene.

Alleles Bases of the SNPs Frequency Average effect Standard error
haplotypes 16K5

Allele 1 GCGCATAA 0.401444 19.1973 0.4522

Allele 2 GCATATGG 0.188229 26.7919 0.3935

Allele 3 TTATGCGG 0.182121 -18.2323 0.5587

Allele 4 GCATATAG 0.114381 82.8654 0.0252

Allele 5 GTATATAG 0.082454 48.2178 0.2651

Allele 6 GCGCATAG 0.031371 -158.84 0.0119

haplotypes 16pa2

Allele 1 CGC 0.445586 48.2371 17.4130

Allele 2 TAC 0.276791 33.0251 18.7878

Allele 3 TGT 0.245419 26.3177 19.3744

Allele 4 TGC 0.032204 -107.58 38.7088

https://doi.org/10.1371/journal.pone.0190197.t005
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Taken together, all of these reports show a strong association of sexual precocity with the

PAPP-A and PAPP-A2 genes via IGF-1. Although no significant effect of the IGF-1 gene was

observed in the present study, this gene plays a key role in the determination of age at puberty.

This is the fact that IGF-1 acts in the follicles promoting an increase in estradiol production,

thus increasing steroidogenesis [42] and IGF-I encourage puberty by acting on the central ner-

vous system (mean eminence), leading to an increase in the release of GnRH, which would

stimulate the increase in the frequency of LH pulses [43, 44].

A significant difference in sexual precocity of heifers was observed for the XKR4 gene (XK,

Kell blood group complex subunit-related family, member 4). This gene is expressed preferen-

tially in the cerebellum [45, 46]. The amino acid sequence of the XKR4 gene has important bio-

logical functions in cell and lipid metabolism [47]. Utsunomiya et al. [48] performed GWAS to

identify chromosome regions that affect birth weight in Nellore cattle. The authors found a sig-

nificant SNP (rs42646720) in intron 2 of the XKR4 gene and reported its association with birth

weight and size in Zebu breeds (Bos primigenius indicus).
Lindholm-Perry et al. [47] identified five SNPs located between the TMEM68 and XKR4

genes that were significant for residual feed intake and average daily gain in crossbred steers.

Bolormaa et al. [49] found five SNPs in a region of BTA14 encompassing XKR4 that were asso-

ciated with rump fat thickness at position P8 (CHILLP8) in seven cattle breeds. In another

study investigating the XKR4 gene in cattle, three SNPs associated with rump fat thickness

were detected within the gene [50]. The XKR4 gene has been described as a potential candidate

gene associated with residual feed intake, average daily feed intake, average daily gain and fat

accumulation. This would explain its relationship with sexual precocity since the onset of

puberty and sexual maturity in female cattle is influenced, among many factors, by the rate of

weight gain and body condition [51].

The mannose-binding lectin (MBL) gene also influenced sexual precocity in Nellore heifers.

This lectin is found in human serum, is secreted by the liver, and binds carbohydrates in a cal-

cium-dependent manner. MBL is an important element of the innate immune system that is

involved in the activation of the complement system via lectins and functions as an opsonin,

facilitating the phagocytosis of pathogens. Serum MBL deficiency is associated with infectious

and autoimmune diseases, interfering with both the susceptibility to and severity of the disease

[52, 53, 54].

Serum concentrations of MBL increase significantly from the first trimester of gestation

and decrease 6 weeks after delivery. MBL contributes to normal placentation during an ongo-

ing pregnancy. The reasons for increased MBL levels during pregnancy are unknown. It has

been suggested that adaptive immunity decreases during pregnancy, which allows the preg-

nant body to tolerate the fetus as an allograft [55, 56].

Low MBL concentrations have been associated with spontaneous abortions [57], suggesting

that an altered immune response in the fetal environment is responsible for the increased sus-

ceptibility to abortion. This could explain the function of this gene in sexual precocity. Preco-

cious heifers would have a more competent immune system and are consequently more likely

to conceive early and to carry the pregnancy to term since a successful pregnancy depends on

the tolerance of the maternal immune system to a new organism with its own characteristics

that differ from those of the mother. If this immune adaptation does not occur, the embryo is

destroyed and expelled [58, 59].

Cochran et al. [9] studied genes associated with reproductive and other traits and found

seven genes with SNPs associated with pregnancy rate that are involved in immune function.

Hansen et al. [60] emphasized the importance of the immune system for the establishment of

pregnancy in mammals.
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Another function of MBL-1 is related to lipid metabolism in humans. Rakhshandehroo

et al. [61] concluded that the PPARα stimulates plasma levels and gene expression of MBL in

hepatocytes, suggesting a possible role of MBL in lipid metabolism. This finding could explain

the influence of the MBL gene on sexual precocity. In Nellore heifers, Dias et al. [62] observed

that the onset of puberty was influenced by two genes related to lipid metabolism. Some factors

such as age and body fat reserves can affect the onset of the estrous cycle. The increase in body

fat deposition reduces the negative feedback caused by estrogens on GnRH and LH pulsatility,

with adequate energy intake being the main nutritional factor that affects the reproductive per-

formance of cows [63]. Heifers with a positive diagnosis of pregnancy at 13–15 months of age

are heavier and older and have a better body condition than non-pregnant heifers [64].

It should be noted that the ESRRG and XKR4 genes can also influence lipid metabolism as

reported earlier, demonstrating the importance of these genes for sexual precocity in Nellore

heifers since genes that affect fat deposition and, consequently, body condition play an impor-

tant role in Zebu breeding.

Conclusion

The PAPP-A2, PAPP-A, ESRRG, MBL-1 and XKR4 genes, which participate in specific events

in target tissues of cattle reproduction (hypothalamic-pituitary-gonadal axis, adipose tissue

and immune system), were associated with sexual precocity in Nellore heifers and could help

identify the main physiological factors that contribute to expression of the phenotype. In addi-

tion, these genes are candidates for prospecting causal mutations in future studies and are

potential genes to be included in genetic evaluations.
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