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Abstract

Predicting novel microRNA (miRNA)-disease associations is clinically significant due to

miRNAs’ potential roles of diagnostic biomarkers and therapeutic targets for various human

diseases. Previous studies have demonstrated the viability of utilizing different types of bio-

logical data to computationally infer new disease-related miRNAs. Yet researchers face the

challenge of how to effectively integrate diverse datasets and make reliable predictions. In

this study, we presented a computational model named Laplacian Regularized Sparse Sub-

space Learning for MiRNA-Disease Association prediction (LRSSLMDA), which projected

miRNAs/diseases’ statistical feature profile and graph theoretical feature profile to a com-

mon subspace. It used Laplacian regularization to preserve the local structures of the train-

ing data and a L1-norm constraint to select important miRNA/disease features for prediction.

The strength of dimensionality reduction enabled the model to be easily extended to much

higher dimensional datasets than those exploited in this study. Experimental results showed

that LRSSLMDA outperformed ten previous models: the AUC of 0.9178 in global leave-one-

out cross validation (LOOCV) and the AUC of 0.8418 in local LOOCV indicated the model’s

superior prediction accuracy; and the average AUC of 0.9181+/-0.0004 in 5-fold cross vali-

dation justified its accuracy and stability. In addition, three types of case studies further dem-

onstrated its predictive power. Potential miRNAs related to Colon Neoplasms, Lymphoma,

Kidney Neoplasms, Esophageal Neoplasms and Breast Neoplasms were predicted by

LRSSLMDA. Respectively, 98%, 88%, 96%, 98% and 98% out of the top 50 predictions

were validated by experimental evidences. Therefore, we conclude that LRSSLMDA would

be a valuable computational tool for miRNA-disease association prediction.

Author summary

Discovering miRNA-disease associations promotes the understanding towards the molec-

ular mechanisms of various human diseases at the miRNA level, and contributes to the

development of diagnostic biomarkers and treatment tools for diseases. Computational

models can make the discovery more efficient and experiments more productive.
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LRSSLMDA was proposed to computationally infer potential miRNA-disease associations

via adopting sparse subspace learning with Laplacian regularization on the known

miRNA-disease association network and the informative feature profiles extracted from

the integrated miRNA/disease similarity networks. Experimental results in global and

local leave-one-out cross validation and 5-fold cross validation showed a superior predic-

tion performance of LRSSLMDA over previous models. Moreover, three types of case

studies on five important human diseases were carried out to further demonstrate the

model’s predictive power: respectively, 98%, 88%, 96%, 98% and 98% out of the top 50

predicted miRNAs were confirmed by experimental literatures. So, we believe that

LRSSLMDA could make reliable predictions and might guide future experimental studies

on miRNA-disease associations.

This is a PLOS Computational Biology Methods paper.

Introduction

MicroRNAs (miRNAs) are small (about 22 nucleotides) non-coding RNAs that regulate gene

expression [1]. They normally cleave or translationally repress their target messenger RNAs

(mRNAs) via base-pairing to the 3’ untranslated region (UTR) sites of the mRNAs [2–5],

thereby influencing various biological processes including cell proliferation, development, dif-

ferentiation, death, apoptosis, metabolism, aging, signal transduction and viral infection [3,6–

11]. In addition, increasing studies have indicated a correlation between miRNAs and human

diseases [12–19]. For example, the expression level of miR-195 is lowered in Alzheimer’s

disease (AD) patients and the AD amyloid-β production could be downregulated by over-

expressing this miRNA [20]. Another miRNA mir-26a contributes to the migration of Lung

Neoplasms (LN) cells through modulating the expression of metastasis-related genes and sup-

pressing phosphatase and tensin homolog (PTEN) to activate the Protein Kinase B (AKT)

pathway [21]. In contrast, miR-145 is under-expressed in LN patients and its restoration inhib-

its the LN cell proliferation by targeting the EGFR and NUDT1 genes [22]. A further example

of miRNA-disease association is miR-501 in Hepatitis B viruses (HBV). Knockdown of this

miRNA in the HBV-producing cell line HepG2.2.15 could significantly reduce HBV replica-

tion [23]. These miRNAs and many other disease-associated ones may serve as biomarkers for

disease diagnosis, progression, prognosis and treatment response [24–27]. Thus, identifying

miRNA-disease associations promotes the understanding of complex human diseases and

benefits disease treatment. Experimental methods such as microarray profiling and qRTPCR

have been used to discover miRNA-disease associations [28]. But they suffer from false-posi-

tive microarray results [25,28–30] and are time-consuming and expensive, especially due to

the high probe design cost [28]. Fortunately, the large amount of biological data enables

researches to develop computational models for predicting disease-related miRNAs. The

potential miRNAs are prioritized in terms of prediction scores and the most promising ones

are selected for biological verification. This approach complements experimental methods,

improving the accuracy of association identification and reducing time and cost.

Remarkable progresses have been achieved in developing prediction models for potential

disease-miRNA associations in the past. Most models were based on the assumption that miR-

NAs with similar functions tend to be associated with phenotypically similar diseases [31–33].

Many previous models were based on network analysis algorithms. An early model for predict-

ing disease-related miRNAs was devised by Jiang et al. [34] and it integrated the miRNA
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functional similarity network, the disease phenotype similarity network and the known dis-

ease-miRNA association network. The potential miRNA-disease associations were scored

according to a discrete hypergeometric probability distribution. However, the model only con-

sidered each miRNA’s neighbor information rather than global similarity measures. Then,

Chen et al. [35] proposed RWRMDA where novel miRNA-disease associations were predicted

by implementing random walking with restart on the miRNA functional similarity network.

Although the model achieved an improved prediction accuracy compared with previous mod-

els, it was unable to prioritize miRNAs for diseases without any known related miRNAs. Later,

Xuan et al. [28] developed HDMP, a model that integrated the known miRNA-disease associa-

tions and the miRNA functional similarity calculated by incorporating the information con-

tent of disease terms and phenotype similarity between diseases. When scoring miRNA-

disease pairs, the model included the information of each miRNA’s k most similar neighbors

and assigned higher weights to miRNAs within the same cluster or family. However, HDMP

faced the same problem of failing to predict potential miRNAs related to new diseases without

any known associated miRNAs. Subsequently, Shi et al. [36] devised another random walk

model with a focus on the functional link between miRNA targets and disease genes in a pro-

tein-protein interaction (PPI) network. In addition, miRNA-disease co-regulated modules

were identified via a hierarchical clustering analysis of a bipartite miRNA-disease network.

Nonetheless, involving known disease-gene associations and miRNA-target interactions in the

computation impaired the model’s prediction accuracy, since 60% of human diseases have

unknown molecular bases [37] and the miRNA-target interactions contain a high rate of false-

positive and high false-negative results [35]. Mork et al. [38] used a protein-driven approach

named miRPD to infer miRNA-protein-disease associations. The model provided not only the

potential associations between miRNAs and diseases but also the protein links between them.

To make the inference, known and predicted protein-miRNA interactions were coupled with

protein-disease associations text-mined from experimental literatures. Then the inferred

miRNA-protein-disease associations were ranked by confidence under two scoring schemes;

and the ranking results were divided into a high-confidence subset holding the most probable

associations and a medium-confidence subset including the less likely associations. Xuan et al.
[39] further introduced a random walk model named MIDP that exploited the prior informa-

tion of nodes and various ranges of topologies in a miRNA-disease bilayer network derived

from the miRNA functional similarity network, the disease semantic similarity network, and

the edges between the two networks. With an extended walk on the network, the model over-

came the limitations of previous models and could make association predictions for diseases

that has no known related miRNAs. Furthermore, the negative effect of noisy data was miti-

gated via adjusting the restart rate of the random walk. To improve the prediction accuracy,

Chen et al. [40] released WBSMDA that calculated and combined the within and between

scores from the views of miRNAs and diseases in a composite network, built from the known

miRNA-disease associations, the miRNA functional similarity, the disease semantic similarity

and the Gaussian interaction profile kernel similarity networks for diseases and miRNAs. Gu

et al. [41] developed a non-parametric universal network-based model named NCPMDA. In

this model, a miRNA similarity network was constructed by combining the miRNA functional

similarity, the Jaccard miRNA similarity of the known miRNA-disease associations and the

miRNA family information; and a disease similarity network was built by integrating the dis-

ease semantic similarity and the Jaccard disease similarity of the known associations. Then,

network consistency projection was carried out on the miRNA similarity network to the adja-

cency matrix of miRNA-disease associations, and on the disease similarity network to the adja-

cency matrix, respectively. Lastly, the miRNA space projection scores and the disease space

projection scores were combined and normalized to give the final prediction scores. Chen
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et al. [42] further presented HGIMDA in which a heterogeneous graph network was con-

structed using the same model inputs as WBSMDA. Then, an iterative process was carried out

in the network until a stable association probability matrix was obtained. Following HGIMDA,

MCMDA was published by Li et al. [43] utilizing a matrix completion algorithm on the low-

rank miRNA-disease association matrix. The candidate miRNA-disease pairs in the matrix

were iteratively updated with predictive association scores, yielding highly reliable outcomes.

Yu et al. [44] proposed a combinatorial prioritization algorithm named MaxFlow. The model’s

input included the miRNA functional similarity network, the disease semantic and phenotypic

similarity network, and the heterogeneous miRNA-disease association network that integrated

miRNA-disease associations, the miRNA family information and the miRNA cluster informa-

tion. Subsequently, these three networks were further combined to form a directed miR-

NAome-phenome network graph, where the weight of each link was regarded as the flow

capacity. For an investigated disease, a source node and a sink node were introduced to this

graph; and the maximum information flow from the source over all links to the sink were cal-

culated using the push-relabel maximum flow algorithm. The flow quantity leaving a miRNA

node was used as the association score between the miRNA and the investigated disease. More

recently, You et al. [45] devised path-based model named PBMDA, where a heterogeneous

graph were built from the same input datasets as those in WBSMDA. In the graph, all paths

between a miRNA-disease pair were traversed via the adoption of the depth-first search algo-

rithm; and each path’s score was computed by multiplying all the edges’ weights along the

path. For a longer path, the score would be penalized by a distance-decay function. The sum of

scores for all the paths were used as the association score for the miRNA-disease pair.

In addition, other previous models were based on machine learning algorithms. Xu et al.
[46] used a support vector machine classifier to separate positive and negative miRNA-disease

associations in a heterogeneous miRNA-target dysregulated network (MTDN). Negative sam-

ples were required to train the model. However, finding negative miRNA-disease associations

is a difficult or even impossible task [42], meaning that the prediction accuracy might be

reduced because the model is learned from inappropriate training samples. To address this

problem, Chen et al. [47] applied semi-supervised learning (RLSMDA) to the inference of

miRNA-disease associations and only using positive samples would suffice the model-training.

The ensuing model was RBMMMDA authored by Chen et al. [48]. Restricted Boltzmann

machine was implemented to predict four different types of miRNA-disease associations from

a two-layered (with visible and hidden units) undirected miRNA-disease graph. RBMMMDA

was the first model not only prioritizing potential associations but also providing the corre-

sponding association types. A more recent model developed by Chen et al. [49] was ranking-

based k-nearest neighbors for miRNA-disease association prediction (RKNNMDA). It was a

three-staged approach: initially running the k-nearest neighbors algorithm for miRNAs and

diseases, then carrying out SVM Ranking to rank the neighbors and lastly weighted-voting

for both miRNAs and diseases to reduce the prediction bias. Later, Pasquier et al. [50] intro-

duced a vector space model named MiRAI that formed a large network via concatenating five

association networks, namely, the miRNA-disease association network, the miRNA-neighbor

association network with edges weighted by the genomic distance between two miRNA nodes,

the miRNA-target association network, the miRNA-word association network with edges

weighted by the term frequency–inverse document frequency (TF-IDF) information retrieval

scheme on investigated miRNAs’ associated documents, and the miRNA-family association

network. Then, the large combined network was decomposed by Singular Value Decomposi-

tion (SVD) into the form of USVT, where the columns of U were the left-singular vectors, S

was the matrix of nonnegative real numbers on the diagonal, and the columns of V were the

right-singular vectors. The association score for a miRNA-disease pair was calculated by the
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cosine similarity between the vector of the miRNA in the miRNA space (U) and the vector of

the disease in the disease space (a part of V).

The above mentioned models had their own strengths and uniqueness, while several of

them suffered from obvious weaknesses. More importantly, although most models exhibited

a sound prediction accuracy, there still exist areas for a continued improvement. When infor-

mative feature profiles were extracted from the training data, the challenge would be how to

achieve a single classifier that reasonably combine multiple profile spaces. Hence in this study

we presented a model of Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease

Association prediction (LRSSLMDA) to meet the challenge. The Gaussian interaction profile

kernel similarity for miRNA and diseases was computed and integrated with the miRNA func-

tional similarity and the disease semantic similarity. Although the Gaussian interaction profile

kernel similarity had been successfully used by Chen et al. [51] in the LRLSLDA model for

lncRNA-disease association prediction, their data preparation process was different from that

in our study. For LRLSLDA, data preparation involved the lncRNA expression similarity and

the lncRNA-disease associations; and the disease semantic similarity was not used. The Gauss-

ian interaction profile kernel similarity for diseases and lncRNAs were computed from the

lncRNA-disease associations. Then, the disease similarity was calculated by performing logistic

function transformation on the Gaussian interaction profile kernel similarity for diseases; and

the integrated similarity for lncRNAs was built by combining the Gaussian interaction profile

kernel similarity for lncRNAs and the lncRNA expression similarity. Moreover, a weight coef-

ficient was used in the integrated similarity for lncRNAs. From this, it is apparent that our

model and LRLSLDA had different data preparation processes. In addition, constructing the

integrated similarity for diseases and miRNAs was only the first step of our model’s data prepa-

ration. As the ensuing and important step, feature extraction was performed on the integrated

similarity to form the statistical profile and the graph theoretical profile, and these two infor-

mative feature profiles were a key to the success of LRSSLMDA. Subsequently, the model used

sparse subspace learning to map high dimensional miRNA/disease spaces into a lower dimen-

sional subspace; and it used Laplacian regularization to smooth the subspace and maintain the

local structures of the high dimensional spaces. The combination of these two techniques has

been successfully applied to web image categorization by Shi et al.’s [52] and drug-target inter-

action prediction by Liang et al. [53]. But different from Liang et al.’s model, our model made

effective predictions with fewer input datasets, exploited informative disease-related feature

profiles, and could be applied to diseases without known associations. LRSSLMDA achieved

effective dimensionality reduction and could simultaneously analyze a large amount of unla-

beled data and a small amount of labeled data. The model was evaluated in three cross valida-

tion schemes and three types of case studies on five diseases. In local leave-one-out cross

validation (LOOCV), global LOOCV and 5-fold cross validation, LRSSLMDA outperformed

ten previous models; and for each disease in case studies, our model predicted the top 50

potentially associated miRNAs and most of the predictions were confirmed by experimental

literatures.

Materials and methods

Human miRNA-disease associations

HMDD v2.0 is a human miRNA-disease association database that records 5430 experimentally

supported associations between 495 miRNAs and 383 diseases (See S2 Table). We used nm to

denote the number of miRNAs, nd for the number of diseases and MDA for the nm × nd adja-

cency matrix made up of the nm miRNAs and the nd diseases. If miRNA m(i) had a known

association to disease d(j), the entity MDA(m(i), d(j)) would equal to 1, and otherwise 0.
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MiRNA functional similarity

MiRNA functional similarity scores used in our study were retrieved from http://www.cuilab.

cn/files/images/cuilab/misim.zip and computed based on the hypothesis that miRNAs with a

functional similarity are more likely to correlate with diseases with a phenotypical similarity

[54]. A nm × nm miRNA functional similarity network FS was constructed with weighted

edges. An entity FS(m(i), m(j)) denoted the functional similarity score between miRNA m(i)
and m(j).

Disease semantic similarity

As illustrated in the literature [28], the semantic information of disease d(i) was explained by a

Directed Acyclic Graph (DAG) where d(i) and its ancestor diseases were used as nodes. The

DAGs were retrieved from the U.S. National Library of Medicine (MeSH) at https://www.nlm.

nih.gov/mesh/. The relationship between a parent node and a child node was represented by a

directed edge pointing from the former to the latter. For disease t in DAG(d(i)), its contribu-

tion to the semantic value of d(i) was computed by

DdðiÞðtÞ ¼ � log
the number of DAGs including t

the number of diseases

� �

ð1Þ

The rationale behind (1) was that a greater contribution should be made by a more specific

disease t to the semantic value of d(i). Summing up all the contributions from d(i)’s ancestor

diseases and itself gave its semantic value

DVðdðiÞÞ ¼
X

t2DðdðiÞÞ

DdðiÞðtÞ ð2Þ

where D(d(i)) denoted the node set in DAG(d(i)). Subsequently, the semantic similarity

between disease d(i) and d(j) was defined by:

SS dðiÞ; dðjÞð Þ ¼

P
t2DðdðiÞÞ\DðdðjÞÞ ðDdðiÞðtÞ þ DdðjÞðtÞÞ

DVðdðiÞÞ þ DVðdðjÞÞ
ð3Þ

This equation implied that two diseases with a greater overlap of their DAGs would exhibit

a higher semantic similarity score between them.

Gaussian interaction profile kernel similarity for miRNAs

According to [55], the Gaussian kernel similarity between miRNA m(i) and miRNA m(j) was

calculated as follows. Respectively, binary interaction profile vectors IP(m(i)) and IP(m(j))
were used to represent the ith column and the jth column of MDA and were then fed into the

Gaussian interaction profile kernel similarity matrix for miRNAs, KM

KMðmðiÞ; mðjÞÞ ¼ expð� gm kIPðmðiÞÞ � IPðmðjÞÞk2Þ ð4Þ

where γm was the bandwidth parameter for the function. It was defined by another parameter

γ0m and the average number of associated diseases for all miRNAs

gm ¼
g0m

1

nm
Xnm

i¼ 1
kIPðmðiÞÞk2

ð5Þ
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Same to previous literatures [51,55], both the values of γm and γ0m were set to 1 for the sim-

plicity of calculations.

Gaussian interaction profile kernel similarity for diseases

Similar to miRNAs, the diseases’ Gaussian interaction profile kernel similarity matrix KD was

calculated by

KDðdðiÞ; dðjÞÞ ¼ expð� gdkIPðdðiÞÞ � IPðdðjÞÞk2Þ ð6Þ

where binary interaction profile vectors IP(d(i)) and IP(d(j)) denoted the ith row and the jth
row of MDA; and γd was the bandwidth parameter defined by another parameter γ0d and the

average number of associated miRNAs for all diseases

gd ¼
g0d

1

nd
Xnd

i¼ 1
kIPðdðiÞÞ2k

ð7Þ

Again, as with the literatures [51,55], in our study we set the values of γd and γ0d to 1 to

make the calculations simple.

Integrated miRNA similarity and diseases

The miRNA functional similarity matrix FS and the Gaussian interaction profile kernel simi-

larity matrix KM were integrated to form a more comprehensive similarity measure, which

was the integrated similarity matrix for miRNAs SM

SMðmðiÞ; mðjÞÞ ¼
FSðmðiÞ;mðjÞÞ; if mðiÞ and mðjÞ have functional similarity

KMðmðiÞ;mðjÞÞ; otherwise

(

ð8Þ

This means that if miRNA m(i) and m(j) had a functional similarity, we chose their corre-

sponding score in FS to be their integrated similarity score; otherwise, we chose instead their

Gaussian kernel similarity score obtained from (4).

Similarly, the disease integrated similarity matrix SD was obtained from the disease seman-

tic similarity matrix SS and the Gaussian interaction profile kernel similarity matrix KD

SDðdðiÞ; dðjÞÞ ¼
SSðdðiÞ; dðjÞÞ; if dðiÞ and dðjÞ have semantic similarity

KDðdðiÞ; dðjÞÞ; otherwise

(

ð9Þ

LRSSLMDA

In this study, we developed LRSSLMDA to uncover potential miRNA-disease associations.

The model inputs included the miRNA-disease association matrix MDA, the miRNA func-

tional similarity matrix FS and the disease semantic similarity matrix SS. The procedure of

implementing LRSSLMDA involved data preparation, model formulation and optimization,

as depicted in Fig 1. In data preparation, the integrated similarity matrices SM/SD were con-

structed according to (8) and (9), respectively, before being used to form two types of feature

profiles for miRNAs/diseases. The idea of performing feature extraction on similarity networks

to obtain feature profiles originated from the literature [56]. In our study, the first type of pro-

file summarized SM/SD from a statistical perspective, so it was known as the statistical profile.

For miRNA m(i)/disease d(j), we calculated

MiRNA-Disease Association prediction
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• n.obs, the number of observed associations in the corresponding ith row/jth column of

MDA, namely, the sum of the ith row/jth column of MDA for miRNA m(i)/disease d(j).
The rationale for using this metric was as follows. When making predictions for a specific

miRNA m(i)/disease d(j), our method would analyze not only m(i)/d(j)’s known associated

diseases/miRNAs but also these diseases/miRNAs’ similar diseases/miRNAs. The more

known associated diseases/miRNAs m(i)/d(j) had, the more data would be analyzed to sup-

port the predictions for m(i)/d(j). Therefore, a higher value of n.obs for a miRNA/disease

indicated that more reliable predictions would likely be made for the miRNA/disease.

• ave.sim, the average of similarity scores for miRNA m(i)/disease d(j), namely, the average of

the ith/jth row of SM/SD

• s.d.sim, the standard deviation of similarity scores for miRNA m(i)/disease d(j)

Fig 1. Flowchart of potential miRNA-disease association prediction based on the computational model of LRSSLMDA. 1) data preparation,

where statistical and graph theoretical features for miRNAs/diseases were extracted and graph Laplacian matrices were formed; 2) model formation,

where a common subspace for the miRNA/disease profiles, a L1-norm constraint and Laplacian regularization terms were joint to construct the

LRSSLMDA model; 3) optimization, where the projection matrices were iteratively updated, the controlling parameter was renewed and they were

combined to yield the prediction outcomes from the miRNA/disease perspective. The final predictions were made according to whether the

investigated miRNA/disease had known associated diseases/miRNAs or not.

https://doi.org/10.1371/journal.pcbi.1005912.g001
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• min.sim, the minimum of similarity scores for miRNA m(i)/disease d(j)

• first.q.sim, the first quantile value of similarity scores for miRNA m(i) /disease d(j)

• median.sim, the median of similarity scores for miRNA m(i) /disease d(j)

• third.q.sim, the third quantile value of similarity scores for miRNA m(i) /disease d(j)

• max.sim, the maximum of similarity scores for miRNA m(i) /disease d(j)

• hist.sim, the histogram feature; the range of similarity scores [0, 1] was segmented into n bins

(n equaled 10 in this study) and we counted the proportion of similarity scores for m(i)/d(j)
that fell into each bin

The second type of profile described SM/SD using graph theories, hence was named graph

theoretical profiles. We converted SM/SD into an unweighted graph version: miRNA m(i)/dis-

ease d(j) now became a node in the graph; and an edge would form between two nodes if their

similarity score surpassed the mean value of all entities. For each node in the unweighted

graph version of SM/SD, we calculated

• num.nb, the number of neighbors of the node

• k.sim, the similarity values of the k-nearest neighbors of the node (k equaled 10 in this study,

so this was a vector of 10 elements)

• k.ave.feat, the average of statistical features (defined in the statistical profile) for the k-nearest

neighbors of the node

• k.w.ave.feat, the average of statistical features for the k-nearest neighbors of the node

weighted by the neighbors’ similarity scores

• bt,cl,ev, the betweenness, closeness, eigenvector centralities of the node

• pr, the Page-Rank score of the node

Inspired by Liang et al.’s LRSSL model for drug-disease association prediction [53], we used

the feature profiles for miRNAs and diseases separately to form and optimize two respective

LRSSLMDA objective functions. Our model was an innovation to Liang et al.’s model in the

following aspects. First, LRSSLMDA could make effective predictions with fewer input datasets

than Liang et al.’s model. As aforementioned, the input to our model contained only three

datasets, namely, the miRNA functional similarity, the disease semantic similarity and the

known miRNA-disease associations. On the other hand, their model predicted associations

between drugs and diseases by integrating five datasets: the drugs’ chemical substructure pro-

file, the drugs’ target protein domain profile, the drugs’ gene ontology term profile, the disease

semantic similarity and the known drug-diseases associations. Second, Liang et al.’s model was

developed mainly based on the ready-made drug-related profiles and so was only able to work

from the drug perspective. Liang et al.’s literature stated that a limitation of the method was

not being able to exploit disease-related profiles. Without the involvement of disease-related

profiles, the model could not achieve the best possible performance. To deal with this limita-

tion, we made the most of the available disease information by constructing the integrated dis-

ease similarity, extracting the statistical profile and the graph theoretical profile for diseases

from the integrated similarity, and building the objective function from the disease perspec-

tive. In this manner, our model could accurately infer miRNA-disease associations. Third, by

intensively involving disease feature profiles, our model could be applied to diseases without

known associated miRNAs, whereas Liang et al.’s model was not effective in uncovering drugs

associated with a disease that had no known associated drugs.
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Because the two objective functions from the miRNA and disease perspectives were con-

structed and optimized in a similar manner, the rest of this section elaborates the remaining

data preparation step, the model formation step and the optimization step from the view of

miRNAs, while briefly presenting these steps from the view of diseases.

For miRNAs, the two feature profiles were represented by Xp where p equaled 1, 2 to denote

the first and second profiles; the dimension of Xp was dp × nm where dp was the number of fea-

tures for the pth profile. For each profile, we further built a network graph Sp, whose elements

were defined by

Spði; jÞ ¼
1; if XpðjÞwas the k � nearest neighbor of XpðiÞ

0; otherwise

(

ð10Þ

where Xp(i) and Xp(j) were respectively the ith and jth vectors of the pth feature profile. Their

closeness was measured by the cosine similarity between them. Furthermore, for miRNAs

with known related diseases, we constructed another network graph SMDA, whose elements

were computed by

SMDAði; jÞ ¼
1; if MDAðmðjÞÞwas the k � nearest neighbor of MDAðmðiÞÞ

0; otherwise

(

ð11Þ

where MDA(m(i)) and MDA(m(j)) were respectively the ith and jth row of MDA. Their close-

ness equaled the maximum integrated similarity score between m(i) and m(j)’s associated

disease groups. The last part of the data preparation step was to construct graph Laplacian

matrices Lp and LA

Lp ¼ Dp � Sp ð12Þ

where Dp was the diagonal matrix of Sp in the form of

Dpði; iÞ ¼
Xn

j

Spði; jÞ ð13Þ

Similarly,

LMDA ¼ DMDA � SMDA ð14Þ

where DMDA was the diagonal matrix of SMDA and defined by

DMDAði; iÞ ¼
Xn

j

SMDAði; jÞ ð15Þ

Lp and LMDA were used to form a Laplacian regularization term in our model and to smooth

a subspace to which the miRNA profiles were projected. Lp reflected the trend that miRNAs

with similar features should be related to similar diseases, while LMDA helped to maintain the

similarity between different miRNAs’ related disease groups.

The subsequent step was model formation, where a common subspace for the miRNA

profiles, a L1-norm constraint and Laplacian regularization terms were joint to construct the

LRSSLMDA model. This formation was consistent with that presented in the literature [53]

and conveyed as the objective function below. This function effectively projected the miRNA

profiles to a common subspace and maintained both the local and global structure of the input
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data.

min
F;Gp
kF � MDAk2

F þTrðFTLFÞ þ m

Xm

p¼1

kXT
p Gp � F k2

F

þl

Xm

p¼1

Xnd

j¼1

kGpð:; jÞk2
1

ð16Þ

s:t: Gp � 0

In (16), F was the predicted miRNA-disease association matrix. The first term kF � MDAk2
F

was to keep F aligned with MDA, and ||�||F was the Frobenius norm.

Tr(FTLF) was the Laplacian regularization term, where L ¼
Pm

p¼ 1
ag

pLþ a
g
MDALMDA.

Here, α controlled the contribution of different graph Laplacian matrices to the predictions

and γ> 1 guaranteed that all graph Laplacian matrices made a contribution. m was the num-

ber of miRNA feature profiles and equaled 2 in this study.

m
Pm

p¼ 1
kXT

p Gp � Fk2
F was the subspace regression term, where XT

p Gp was a common sub-

space in the form of a linear transformation of Xp, and Gp was the projection matrix of the pth

miRNA feature profile. The subspace was learnt by minimizing the regression errors and μ
was the balancing parameter for the subspace learning.

l
Pm

p¼ 1

Pnd
j¼ 1
kGpð:; jÞk2

1
was the L1-norm constraint, used to impose sparsity on Gp and

assign weights to miRNA features. Here, λ was the regularization parameter and Gp(:, j) was

the jth column of Gp.

Finally, (16) was optimized in an iterative process where α1, α2 and αMDA were initialized to

1/3 and G1 and G2 began with random non-negative values from uniform distribution on the

[0, 1] interval. According to [53], γ was set to 2; and since the algorithm was not that sensitive

to the values of μ and λ, we have set both of them to 1 for the simplicity in calculation. All

parameters could be optimized by further cross validation. Gp was interactively updated based

on the auxiliary function approach [57]

Gp i; jð Þ  Gp i; jð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�p Gpði; jÞ þ ðBþp Þði; jÞ
Aþp Gpði; jÞ þ ðB�p Þði; j

s

ð17Þ

where

Ap ¼ XpðmI � m2PTÞXT
p þ leT

1�dp
e1�dp ð18Þ

Bp ¼ mXpPY þ m2
Xm

q6¼p

XpP
TXT

q Gq ð19Þ

P ¼ ðLþ ð1þmmÞIÞ� 1 ð20Þ

and e1�dp
was a 1×dp vector with all elements equal to 1. By fixing F and Gp, αp was renewed by
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the equation introduced in [52].

ap ¼

1

TrðFTLFÞ

� � 1
g� 1

Pm
p¼ 1

1

TrðFTLpFÞ

 ! 1
g� 1

þ
1

TrðFTLAFÞ

� � 1
g� 1

ð21Þ

The derivation and convergence proof of the optimization algorithm were presented in

[53]. The final Gp was multiplied by Xp and then was normalized by row sums, before further

timed by the final αp. In this way, the predicted association scores for all miRNA-disease pairs

from the view of miRNAs were obtained

MDA� from the miRNA perspective

¼
Xm

p¼1

apðX
T
p Gp normalized by row sumsÞ

ð22Þ

Similarly, for diseases in Data Preparation, the two feature profiles were denoted by Xp

where p equaled 1, 2 to denote the first and second profiles; the dimension of Xp was nm × dp

where dp was the number of features for the pth profile. The resulting network graphs for dis-

ease profiles were obtained in the same way as (10). For diseases with known related miRNAs,

the network graph SMDA was given by

SMDAði; jÞ ¼
1; if MDAðdðjÞÞwas the k � nearest neighbor of MDAðdðiÞÞ

0; otherwise

(

ð23Þ

Then graph Laplacian matrices Lp and LA were calculated according to (12) and (14).

Again, we constructed the objective function based on (16) in Model Formation, and the Opti-

mization step gave the predicted association scores for all miRNA-disease pairs from the view

of diseases

MDA�from the disease perspective

¼
Xm

p¼1

apðX
T
p Gp normalized by row sumsÞ

" #T
ð24Þ

The final prediction scores for all miRNA-disease pairs were computed according to three

scenarios. First, when predicting potential diseases associated with a miRNA that had no asso-

ciated diseases, the final prediction scores were calculated according to (22) only, which was

MDA� from the miRNA perspective. Second, when predicting potential miRNAs associated

with a disease that had no associated miRNAs, the final prediction scores were calculated

based on (24) only, which was MDA� from the disease perspective. Third, when making pre-

dictions for a miRNA/disease with some associated diseases/miRNAs, the final prediction

scores were obtained by taking the average of (22) and (24). These three scenarios were
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depicted as in (25)

final MDA� ¼

MDA� from the miRNA perspective;
investigated miRNA

without associated diseases

MDA� from the disease perspective;
investigated disease

without associated miRNAs
MDA� from the miRNA perspective

þMDA� from the disease perspective
2

; else

8
>>>>>>>>>><

>>>>>>>>>>:

ð25Þ

Results

Performance evaluation

In this study, we implemented both global and local LOOCV validation methods based on

5430 known miRNA-disease associations between 383 diseases and 495 miRNAs from HMDD

v2.0 to evaluate the prediction accuracy of LRSSLMDA. Global LOOCV focused on all poten-

tial miRNA-disease associations. Each known miRNA-disease association was left out in turn

as the test sample (hence 5430 validation rounds in total), while all the other known associa-

tions were considered as the training samples. The remaining miRNA-disease pairs were

regarded as candidates. A candidate means a miRNA-disease pair whose association was

unconfirmed according to HMDD v2.0 and needed to be predicted by LRSSLMDA. In con-

trast, local LOOCV only considered miRNAs for a specific disease. Each known miRNA

related to disease d(i) was left out in turn as the test sample. This time, we defined all other

known disease-related miRNAs (including those related to diseases other than disease d(i)) to

be the seeds, and the miRNAs under the unconfirmed association status with disease d(i) to be

the candidates. For both global and local LOOCV, the test sample was ranked by LRSSLMDA

against the candidates; a rank exceeding a predefined threshold would indicate a successful

prediction made by the model and vice versa. Then we plotted a Receiver Operating Charac-

teristics curve with the true positive rate (TPR, sensitivity) versus the false positive rate (FPR,

1-specificity) at various thresholds. Sensitivity meant the percentage of test samples ranked

above the threshold and specificity represented the percentage of candidates ranked below the

threshold. ROC was subsequently used to generate Area under the ROC curve (AUC), a statis-

tic widely used for describing the prediction accuracy of computational model. An AUC of 1

indicates a perfect performance whereas an AUC of 0.5 implies a random performance.

As shown in Fig 2, in global LOOCV, LRSSLMDA achieved an AUC of 0.9178 and was

superior to PBMDA (0.9169), MCMDA (0.8749), MaxFlow (0.8624), NCPMDA (0.9073),

HGIMDA (0.8781), WBSMDA (0.8030), HDMP (0.8366) and RLSMDA (0.8426). RWRMDA

was not compared in global LOOCV because the model was based on a local ranking approach

and thus unable to simultaneously uncover potential miRNAs for all diseases. MiRAI was not

implemented in global LOOCV, either. By analyzing association scores calculated by this

model, we found that the scores were highly positively correlated with the seed count (i.e., the

number of known associated miRNAs) of the investigated disease. We calculated the correla-

tion coefficient between the mean/median score for a disease and the seed count of the disease:

correlationðmean association score; seed countÞ ¼ 0:4567

correlationðmedian association score; seed countÞ ¼ 0:3979
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From this, we can see that the more associated miRNAs a disease had, the higher the associ-

ation scores for its candidate miRNAs would be; and vice versa. Thus, the association scores

calculated by MiRAI for different diseases were not globally comparable and the model was a

local method, not applicable to global LOOCV.

In local LOOCV, our model yielded an AUC of 0.8418 and outperformed PBMDA

(0.8341), MaxFlow (0.7774), MCMDA (0.7718), HGIMDA (0.8077), MiRAI (0.6299),

WBSMDA (0.8031), HDMP (0.7702), RLSMDA (0.6953) and RWRMDA (0.7891). Although

our model underperformed NCPMDA (0.8584), the former was superior to the latter both in

global LOOCV as mentioned above and in 5-fold cross validation to be subsequently discussed

after local LOOCV. Furthermore, NCPMDA seemed sensitive to the percentage of known

associations in the training data. In Gu et al.’s study [41], the model was evaluated by local

LOOCV using the 1395 known associations between 271 miRNAs and 137 diseases in the

HMDD v1.0 database; and the resulting AUC was 0.9173, much higher than the value of

0.8584 obtained in our study. This was due to a reduction of the ratio of known associations to

all miRNA-disease pairs in the training data: in HMDD v1.0 there were 1395/(271×137) =

3.76% of miRNA-disease pairs known to be associated, whereas in HMDD v2.0 there were

5430/(495×383) = 2.86% of miRNA-disease pairs known to be associated. This reduction

made NCPMDA not as performative as presented in Gu et al.’s study. In addition, it is worth

noting that MiRAI had a low AUC of only 0.6299, worse than the AUC of 0.867 presented in

Pasquier et al.’ literature [50], because the model was based on collaborative filtering that is

known to have the data sparsity problem. The training dataset in our study was sparse, where

the average number of miRNAs associated with a disease was 14, while the dataset in Pasquier

et al.’ study included 83 diseases with at least 20 known associated miRNAs. Evaluated using a

sparser dataset, MiRAI became less performative. We believe that using our dataset to assess

models would be a more realistic evaluation than using Pasquier et al.’s dataset, because the

relatedness between miRNAs and diseases remains mostly unknown—currently the biological

Fig 2. Performance comparison between LRSSLMDA and ten previous disease-miRNA association prediction models (PBMDA, MaxFlow,

MCMDA, NCPMDA, HGIMDA, MiRAI, WBSMDA, HDMP, RLSMDA and RWRMDA) in terms of ROC curves and AUCs based on global and

local LOOCV. As a result, LRSSLMDA outperformed other models by achieving an AUC of 0.9178 in global LOOCV and an AUC of 0.8418 in local

LOOCV.

https://doi.org/10.1371/journal.pcbi.1005912.g002
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datasets available to research have a just small amount of labeled data and a large amount of

unlabeled data. Our method overcame the data sparsity problem and could be applied to this

kind of datasets to make effective predictions.

To evaluate LRSSLMDA’s performance variance, we further carried out 5-fold cross valida-

tion on the same dataset as that in global and local LOOCV. Since 5-fold cross validation was a

global evaluation, MiRAI and RWRMDA were not included in this comparison. The 5430

known miRNA-disease associations were randomly divided into five subsets with an equal

size. Each subset was regarded as the test samples in turn and the rest four were used as the

training samples. Again, the miRNA-disease pairs without known association evidences were

considered as candidates and we recorded the rank of each test sample against them. Finally,

an ROC was produced to calculate the AUC. We repeated this procedure for 100 times to

achieve a sound estimate of the average prediction accuracy of LRSSLMDA and obtained an

AUC of 0.9181+/-0.0004, surpassing that for PBMDA (0.9172+/-0.0007), MCMDA (0.8767

+/-0.0011), MaxFlow (0.8579+/-0.0010), NCPMDA (0.8763+/-0.0008), WBSMDA (0.8185

+/-0.0009), RLSMDA (0.8569+/-0.0020) and HDMP (0.8342+/-0.0010). Moreover, the AUC’s

standard deviation of 0.0004 was one-fifth of that for RLSMDA (0.0020) and about one-third

of that for MCMDA (0.0011), and was also noticeably less than that for the remaining five

models. This means that, in addition to its superior prediction power, LRSSLMDA was also a

stable model with a lower performance variance than others. Another observation was that the

average AUC of 0.8763 for NCPMDA was noticeably lower than its AUC of 0.9073 in global

LOOCV. In contrast, for all other models, the two values were very similar to each other. This

observation again proved the sensitivity of NCPMDA to the percentage of known associations

in the training dataset. In global LOOCV 5429/(495×383) = 2.86% of all miRNA-disease pairs

in the training dataset were associated, while in 5-fold cross validation 4344/(495×383) =

2.29% of all miRNA-disease pairs in the training dataset were associated. Again, this reduction

in percentage impaired NCPMDA’s prediction accuracy.

According to the above comparison, and to our knowledge, LRSSLMDA was by far the

most performative machine learning-based model for miRNA-disease association prediction,

whereas PBMDA and NCPMDA were the most state-of-the-art network analysis-based mod-

els, though there existed a high risk that NCPMDA was sensitive to the percentage of known

miRNA-disease associations and would not perform as well with different datasets. Further-

more, it is worth mentioning that the dimensionality reduction technique used in LRSSLMDA

facilitated its extendibility to high dimensional datasets. Therefore, the model’s superiority

over other models would likely become even more significant in the future with the availability

of more feature profiles for miRNAs/diseases as a result of continuous research.

Finally, to assess the predictability of the statistical feature profile and the graph theoretical

profile in our study, we used each profile separately for prediction in the above-mentioned

three cross validation schemes. Table 1 records the corresponding AUCs and the AUCs for

LRSSLMDA with both profiles used. In global LOOCV, the graph theoretical profile achieved

a slightly higher predictive accuracy (an AUC of 0.9174) than the statistical profile (with an

AUC of 0.9171). This indicated that the former profile was more advantageous in simulta-

neously uncovering novel miRNA-disease associations for all diseases than the latter. But in

local LOOCV, the statistical profile (with an AUC of 0.8405) became superior to the graph the-

oretical profile (with an AUC of 0.8375), implying that the former would outperform the latter

when making predictions for a specific disease. In 5-fold cross validation, like global LOOCV,

the graph theoretical profile (with an average AUC of 0.9177) performed better than the statis-

tical profile (with an average AUC of 0.9174), although both of them had an equally low stan-

dard deviation of 0.0004. Overall, using either of the two profiles alone for prediction would

yield a satisfactory performance; however, only by involving both profiles could our model
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achieve the best possible predictive performance, that is, an AUC of 0.9178 in global LOOCV,

an AUC of 0.8418 in local LOOCV and an average AUC of 0.9181+/-0.0004 in 5-fold cross

validation.

Case studies

Three types of case studies on five important human diseases were carried out to demonstrate

the predictive power of LRSSLMDA. The first type concerned with Colon Neoplasms, Lym-

phoma and Kidney Neoplasms. The known miRNA-disease associations in HMDD v2.0 were

used as the training dataset for the model. For each investigated disease, candidate miRNAs

were ranked in terms of their predicted association scores. Then, the top 50 candidates were

validated by 1) two other prominent miRNA-disease association databases, namely, dbDEMC

[58] and miR2Disease [59], and 2) more recent experimental literatures. As a result of inner

joining the three databases, 232 of the 5430 known miRNA-disease associations in HMDD

v2.0 also existed in miR2Disease, and 546 associations also existed in dbDEMC. Despite this,

there was no overlap between the training samples and the prediction lists. This was because in

case studies only candidate miRNAs for an investigated disease were ranked and confirmed by

experimental evidences. As has been defined, a candidate miRNA was a miRNA unassociated

with the investigated disease according to HMDD v2.0. Therefore, none of the top 50 predic-

tions existed in HMDD v2.0 and validation of the predictions was completely independent of

this training database. To facilitate further experimental validations, we used LRSSLMDA to

produce a complete prediction list for all the 383 diseases in HMDD v2.0 (See S1 Table). In the

second type of case study, we sought to demonstrate the model’s applicability to diseases with

no known associated miRNAs and used Esophageal Neoplasms as an example. All the known

miRNAs related to this cancer were removed from the training samples so that prioritizing

candidate miRNAs would only depend on the information of other diseases’ known associated

miRNAs and the similarity information of diseases and miRNAs. In this case study only, we

built our model solely from the disease perspective, since the investigated disease was made to

have no known associated miRNAs. In the third type of case study, the model was trained by

1395 known miRNA-disease associations between 271 miRNAs and 137 diseases from the old

version of HMDD, that is, HMDD v1.0. Breast Neoplasms was the investigated disease and its

predicted miRNAs were validated against databases including HMDD v2.0, dbDEMC and

miR2Disease as well as more recent studies. We implemented this case study to illustrate the

applicability of LRSSLMDA to different datasets other than that in HMDD v2.0. The results

for the five cancers in the three types of case studies are listed as follows.

Colon Neoplasms (CN) is a cancer arising from the colon or rectum of humans and is more

commonly found in developed countries than developing ones [60]. According to the most

recent statistics [61], 135,430 newly diagnosed CN cases and 50,260 deaths caused by this dis-

ease are expected in the United States in 2017. Both the CN incidence and mortality rates

Table 1. To evaluate the predictability of different feature profiles in our study, the statistical profile and the graph theoretical profile were used

separately for prediction in global LOOCV, local LOOCV and 5-fold cross validation. The corresponding AUCs are shown in the second and third col-

umns, and compared with the AUCs for LRSSLMDA with both profiles in the fourth column.

Experimental results LRSSLMDA with statistical profile

only

LRSSLMDA with graph theoretical profile

only

LRSSLMDA with both

profiles

AUC in global LOOCV 0.9171 0.9174 0.9178

AUC in local LOOCV 0.8405 0.8375 0.8418

average AUC in 5-fold cross

validation

0.9174+/-0.0004 0.9177+/-0.0004 0.9181+/-0.0004

https://doi.org/10.1371/journal.pcbi.1005912.t001
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experienced a continuous decline over the past several decades, partly because of the introduc-

tion and wide adoption of screening tests [62]. Nowadays, the screening technology could be

improved by the utilization of miRNAs as new biomarkers [63,64]. Studies have shown that

miR-126 and miR-145 suppress the CN cell growth via targeting the phosphatidylinositol

3-kinase signaling and the insulin receptor substrate-1, respectively [65,66]. We used

LRSSLMDA to uncover more CN-related miRNAs and confirmed 43 out of the top 50 poten-

tial miRNAs based on dbDEMC and miR2Disease. Among the remaining seven predictions,

six were validated by more recent studies: miR-92a was determined to directly target the anti-

apoptosis molecule BCL-2-interacting mediator of cell death (BIM) in CN tissues and an anti-

miR-92a antagomir led to the apoptosis of CN cell lines [67]; overexpressed miR-199a-3p (the

3p arm of the pre-miRNA for miR-199a) contributed to the late TNM stage in CN and trans-

fecting miR-199a-3p inhibitor into CN SW480 cells could significantly limit the cell prolifera-

tion [68]; miR-142-3p (the 3p arm of the pre-miRNA for miR-142) functioned as a CN

suppressor through targeting CD133, leucine-rich-repeat-containing G-protein-coupled

receptor 5 (Lgr5) and ATP binding cassette (ABCG2) [69]; miR-146b enhanced the prolifera-

tion of CN by targeting the calcium-sensing receptor (CaSR) and impairing the anti-prolifer-

ative and pro-differentiating actions of calcium [70]; miR-150 was found to be a tumor

suppressor in CN by targeting c-Myb [71]; overexpressed miR-122 and its concomitantly sup-

pressed target gene, cationic amino acid transporter 1 (CAT1), would contribute to the devel-

opment of CN liver metastasis [72]. Overall, combining the above experimental evidences gave

a confirmation of 49 out of the top 50 potential miRNAs (See Table 2).

Lymphoma is the most common cancer in adolescents, accounting for 21% of all the cancer

cases [61]. Across all age groups, 80,500 new lymphoma incidences and 20,140 mortalities due

to the cancer are expected in the United States in 2017 [61]. There are many types of lympho-

mas but broadly they fall into Hodgkin Lymphoma (HL) or non-Hodgkin Lymphoma (NHL).

Experiments have shown that miR-494, miR-1973 and miR-21 could not only be used as diag-

nostic biomarkers but also circulating cell-free treatment response biomarkers in HL [73]. An

example of NHL-miRNA association is that the subtype of NHL, canine B-cell lymphoma, has

been found to experience an upregulated expression of miR-19a in the normal lymph nodes

[74]. We implemented LRSSLMDA to predict more lymphoma-related miRNAs. Out of the

top 50 potential miRNAs, 41 were verified by dbDEMC and miR2Disease; and, among the rest

nine predictions, three were confirmed by more recent literatures. MiR-125b-5p (the 5p arm

of the pre-miRNA for miR-125b) could upregulate the growth of cutaneous T-cell lymphomas

(CTCL) cells, shorten the median survival rate of CTCL patients and promote cellular resis-

tance to proteasome inhibitors by modulating MAD4 proteins [75]. Overexpressed miR-142-

5p (the 5p arm of the pre-miRNA for miR-142) was observed in gastric MALT lymphoma,

playing a pivotal role in pathogenesis of this cancer [76]. Lastly, the overexpression of miR-

146b-5p (the 5p arm of the pre-miRNA for miR-146b) impeded the diffuse large B-cell lym-

phoma (DLBCL) cell proliferation and this miRNA’s low expression level could predict inef-

fective treatment response of DLBCL to cyclophosphamide, doxorubicin, vincristine, and

prednisone (CHOP) [77]. Consequently, 44 out of the top 50 potential lymphoma-associated

miRNAs were proved by experiments (See Table 3).

Kidney Neoplasms (KN) constitutes about 3.8% of all new cancer cases [78] and so is a less

common cancer compared with CN and lymphoma. It has been estimated that in 2017 the

United States will witness 63,990 new KN cases and 14,400 deaths due to KN [61]. Renal cell

carcinoma (RCC) accounts for nearly 80–85% of KN tumors [79] and its diagnosis was made

easier by the application of imaging methods such as ultrasound and abdominal CT with or

without pelvic CT [80,81]. MiRNAs hold the potential of being novel biological diagnostic tar-

gets for KN. For example, a systematic review [82] has reported the down-expression of miR-
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141 and miR-200 and the up-expression of miR-23b, miR-29b and miR-438-3p in RCCs. We

used LRSSLMDA to discover more KN-related miRNAs. Out of the top 50 candidates, 41 were

confirmed by dbDEMC and miR2Disease, while seven other candidates were verified by more

recent studies as follows: a lately study [83] revealed that down-regulated miR-125b could

inhibit the RCC cell migration and invasion, and result in cell apoptosis, though it had no

observed impact on the RCC cell proliferation; miR-221 could promote clear cell RCC

(ccRCC) proliferation, migration and invasion via directly inhibiting the tumor suppressor

TIMP2 [84]; an inverse correlation between the Von Hippel-Lindau (VHL) gene expression

and miR-92a was found in ccRCC patients in the study [85], suggesting this miRNA’s onco-

genic role in the tumorigenesis of ccRCC; let-7b was considerably under-expressed in ccRCC

tissues and its dysregulation was associated with the pathological grade of ccRCC [86]; a low

expression of both miR-133a and miR-1 could up-regulate the oncogenic luciferase assay

revealed transgelin-2 (TAGLN2), contributing to the development of RCC [87]; oncogene

miR-142-3p (the 3p arm of the pre-miRNA for miR-142) was significantly more overexpressed

in RCC tissues than adjacent normal tissues and down-regulated miRNA could induce the

apoptosis in RCC 786-O and ACHN cells [88]; miR-30a-5p (the 5p arm of the pre-miRNA for

miR-30a) experienced considerably downregulation in RCC tissues and cells [89]. As a result,

48 out of the top 50 potential KN-related miRNAs were confirmed by biological evidences

(See Table 4).

Table 2. Prediction of the top 50 potential Colon Neoplasms-related miRNAs based on known associations in HMDD v2.0 database. The first col-

umn records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs. The evidences for the associations were either dbDEMC and

miR2Disease or more recent experimental literatures with the corresponding PMIDs.

miRNA evidence miRNA evidence

hsa-mir-21 dbDEMC;miR2Disease hsa-mir-210 dbDEMC

hsa-mir-155 dbDEMC;miR2Disease hsa-mir-199a 23292866

hsa-mir-146a dbDEMC hsa-mir-181a dbDEMC;miR2Disease

hsa-mir-125b dbDEMC hsa-mir-200a unconfirmed

hsa-mir-34a dbDEMC;miR2Disease hsa-mir-133a dbDEMC;miR2Disease

hsa-mir-20a dbDEMC;miR2Disease hsa-mir-34c miR2Disease

hsa-mir-221 dbDEMC;miR2Disease hsa-mir-9 dbDEMC;miR2Disease

hsa-mir-16 dbDEMC hsa-mir-142 23619912

hsa-mir-92a 21883694 hsa-let-7c dbDEMC

hsa-mir-18a dbDEMC;miR2Disease hsa-mir-146b 26178670

hsa-mir-19b dbDEMC;miR2Disease hsa-mir-106b dbDEMC;miR2Disease

hsa-mir-29a dbDEMC;miR2Disease hsa-mir-181b dbDEMC;miR2Disease

hsa-mir-19a dbDEMC;miR2Disease hsa-mir-182 dbDEMC;miR2Disease

hsa-let-7a dbDEMC;miR2Disease hsa-mir-150 25230975

hsa-mir-143 dbDEMC;miR2Disease hsa-mir-133b dbDEMC;miR2Disease

hsa-mir-1 dbDEMC;miR2Disease hsa-mir-203 dbDEMC;miR2Disease

hsa-mir-15a dbDEMC hsa-let-7d dbDEMC

hsa-mir-29b dbDEMC;miR2Disease hsa-mir-196a dbDEMC;miR2Disease

hsa-mir-223 dbDEMC;miR2Disease hsa-let-7e dbDEMC

hsa-mir-200b dbDEMC hsa-mir-30a miR2Disease

hsa-mir-222 dbDEMC hsa-mir-148a dbDEMC

hsa-mir-31 dbDEMC;miR2Disease hsa-mir-141 dbDEMC;miR2Disease

hsa-mir-200c dbDEMC;miR2Disease hsa-mir-122 23373973

hsa-mir-29c dbDEMC hsa-mir-124 dbDEMC

hsa-let-7b dbDEMC;miR2Disease hsa-mir-214 dbDEMC

https://doi.org/10.1371/journal.pcbi.1005912.t002
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Esophageal Neoplasms (EN) is a cancer developed from the esophagus and ranks sixth

among all cancers in terms of mortality [90]. I the United States, for both sexes the total esti-

mated new EN cases will be 16,940 in 2017, while the total projected death caused by EN will

be 15,690 [61]. Population-based screening for EN was not viable due to the relatively low inci-

dence, the absence of early symptoms and the rarity of a hereditary form of the cancer [90,91].

Fortunately, monitoring miRNA expression may be useful for detecting EN. Experiments have

indicated that expression profiles of mir-203, mir-205 and mir-21 can determine esophageal

tumor histology and discriminate normal tissues from tumorous ones [92]. We trained

LRSSLMDA to uncover more EN-related miRNAs and illustrate our model’s applicability to

diseases without known associated miRNAs. Out of the top 50 predictions, 49 were confirmed

by dbDEMC and miR2Disease (See Table 5). The remaining candidate, mir-122, was found to

assist Tanshinone IIA in inhibiting EN cell growth [93]. In addition, miRNA response ele-

ments (MREs) of miR-122 and mir-144 employed in EN patients would induce EN cell apo-

ptosis while preserving normal cells [94]. However, whether a direct link exists between miR-

122 and EN deserves further investigation.

Breast Neoplasms (BN) is a common cancer in developed countries. In the United States,

for instance, one in eight of its population has acquired BN [95] and in 2017 there will be

approximately 63,410 newly diagnosed cases [61]. The detection methods for BN mainly

include clinical breast examination for earlier-stage cancers and mammography is

Table 3. Prediction of the top 50 potential Lymphoma-related miRNAs based on known associations in HMDD v2.0 database. The first column rec-

ords top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs. The evidences for the associations were either dbDEMC and miR2Di-

sease or more recent experimental literatures with the corresponding PMIDs.

miRNA evidence miRNA evidence

hsa-mir-125b 23527180 hsa-mir-451a unconfirmed

hsa-mir-34a dbDEMC hsa-mir-103a unconfirmed

hsa-mir-221 dbDEMC hsa-mir-195 dbDEMC

hsa-mir-145 dbDEMC hsa-mir-30a dbDEMC

hsa-mir-29a dbDEMC hsa-let-7i dbDEMC

hsa-mir-29b dbDEMC hsa-mir-378a unconfirmed

hsa-mir-143 dbDEMC hsa-mir-205 dbDEMC

hsa-mir-1 dbDEMC hsa-mir-96 dbDEMC

hsa-let-7a dbDEMC hsa-mir-214 dbDEMC

hsa-mir-222 dbDEMC hsa-mir-196a dbDEMC

hsa-mir-223 dbDEMC hsa-let-7f dbDEMC

hsa-mir-199a dbDEMC hsa-mir-7 dbDEMC

hsa-mir-31 dbDEMC hsa-mir-183 dbDEMC

hsa-let-7b dbDEMC hsa-mir-34b dbDEMC

hsa-mir-142 23209550 hsa-let-7g dbDEMC

hsa-mir-181b dbDEMC hsa-mir-100 dbDEMC

hsa-let-7c dbDEMC hsa-mir-148a dbDEMC

hsa-mir-146b 24931464 hsa-mir-141 dbDEMC

hsa-mir-34c unconfirmed hsa-mir-193a unconfirmed

hsa-mir-133a dbDEMC hsa-mir-15b dbDEMC

hsa-mir-106b dbDEMC hsa-mir-27a dbDEMC

hsa-mir-9 dbDEMC hsa-mir-10b dbDEMC

hsa-let-7e dbDEMC hsa-mir-106a dbDEMC

hsa-let-7d dbDEMC hsa-mir-375 unconfirmed

hsa-mir-182 dbDEMC hsa-mir-93 dbDEMC

https://doi.org/10.1371/journal.pcbi.1005912.t003

MiRNA-Disease Association prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005912 December 18, 2017 19 / 28

https://doi.org/10.1371/journal.pcbi.1005912.t003
https://doi.org/10.1371/journal.pcbi.1005912


recommended for women aged over 40 [96]. Curing BN is highly possible given an early stage

diagnosis, which could be achieved by involving easily accessible and sensitive miRNAs [97].

MiRNA dysregulations exist in BN patients through polymorphisms in the sequence of the

miRNA, its binding sites in target genes, or through epigenetic mechanisms [98]. An example

is the elevated expression level of miR-195 which occurred exclusively in BN patients and

could be used to differentiate BN from other Malignancies [99]. We trained LRSSLMDA by

known miRNA-disease association data from HMDD v1.0. The HMDD v2.0, dbDEMC and

miR2Disease databases confirmed 47 out of the top 50 potential BN-related miRNAs, while

more recent experimental literatures verified two of the rest three ones. MiR-494 could sup-

press the progression of BN in vitro by targeting CXCR4 through the Wnt/β-catenin signaling

pathway [100]; and the expression level of miR-30e was lowered in both plasma and breast

cancer tissues of BN patients and plasma miR-30e expression was statistically related to the

patients age and clinical stage of BN [101]. To conclude, experimental evidences from data-

bases and other publications validated 49 out of the top 50 potential BN-associated miRNAs

(See Table 6).

Discussion

The clinical significance of uncovering disease-associated miRNAs lies in their potential

roles of therapeutic targets and diagnostic biomarkers for diseases. We introduced a novel

Table 4. Prediction of the top 50 potential Kidney Neoplasms-related miRNAs based on known associations in HMDD v2.0 database. The first col-

umn records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs. The evidences for the associations were either dbDEMC and

miR2Disease or more recent experimental literatures with the corresponding PMIDs.

miRNA evidence miRNA evidence

hsa-mir-155 dbDEMC hsa-mir-199a dbDEMC;miR2Disease

hsa-mir-146a dbDEMC hsa-mir-29c dbDEMC;miR2Disease

hsa-mir-17 miR2Disease hsa-mir-181a dbDEMC

hsa-mir-125b 28599452 hsa-mir-200a dbDEMC

hsa-mir-20a dbDEMC;miR2Disease hsa-mir-133a 21745735

hsa-mir-34a dbDEMC hsa-mir-142 28559989

hsa-mir-145 dbDEMC hsa-mir-34c dbDEMC

hsa-mir-221 26191221 hsa-let-7c dbDEMC

hsa-mir-16 dbDEMC hsa-mir-9 dbDEMC

hsa-mir-126 dbDEMC;miR2Disease hsa-mir-150 dbDEMC;miR2Disease

hsa-mir-92a 22043236 hsa-mir-146b dbDEMC

hsa-mir-18a dbDEMC hsa-mir-182 dbDEMC;miR2Disease

hsa-mir-19b dbDEMC;miR2Disease hsa-mir-106b dbDEMC;miR2Disease

hsa-mir-29a dbDEMC;miR2Disease hsa-mir-181b dbDEMC

hsa-let-7a dbDEMC hsa-mir-203 dbDEMC

hsa-mir-1 dbDEMC hsa-mir-133b unconfirmed

hsa-mir-19a dbDEMC hsa-let-7e unconfirmed

hsa-mir-143 dbDEMC hsa-mir-30a 27035333

hsa-mir-29b dbDEMC;miR2Disease hsa-let-7d dbDEMC

hsa-mir-223 dbDEMC hsa-mir-148a dbDEMC

hsa-mir-31 dbDEMC hsa-mir-196a dbDEMC

hsa-mir-200b dbDEMC;miR2Disease hsa-mir-214 dbDEMC;miR2Disease

hsa-mir-222 dbDEMC hsa-mir-7 dbDEMC;miR2Disease

hsa-mir-210 dbDEMC;miR2Disease hsa-mir-34b dbDEMC

hsa-let-7b 25951903 hsa-mir-124 dbDEMC

https://doi.org/10.1371/journal.pcbi.1005912.t004
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computational model for predicting disease-miRNA associations by Laplacian regularized

sparse subspace learning (LRSSLMDA). It would effectively complement to existing experi-

mental methods in a way that the candidate miRNAs would be initially prioritized based on

available biological data, followed by experimental validations on the most promising candi-

dates. LRSSLMDA was developed as follows. The first step was Data Preparation. The Gauss-

ian interaction profile kernel similarity scores for miRNAs and diseases were calculated from

known miRNA-disease associations. Then we constructed the integrated similarity for miR-

NAs and diseases. In addition, statistical features and graph theoretic features for miRNAs and

diseases were extracted from the integrated similarity. The second step was Model Formation.

From the respective miRNA/disease perspective, we built an objective function from the com-

mon miRNA/disease subspace for the miRNA/disease feature spaces, an L1-norm constraint

and Laplacian regularization terms. This step resulted in two objective functions: one from

the view of miRNAs and the other from the view of diseases. The third step was Optimization

where we optimized the objective functions and lastly combined the optimization results to

attain the final prediction outcomes. Albeit inspired by Liang et al.’s method, our model had a

substantial innovation: less input data was needed for prediction without sacrificing the pre-

dictive performance; disease-related feature profiles were efficiently exploited; and the model

could effectively prioritize candidate miRNAs for diseases without known associated miRNAs.

Table 5. Prediction of the top 50 potential Esophageal Neoplasms-related miRNAs based on known associations in HMDD v2.0 database. All the

known miRNAs related to this cancer were removed from the training samples, and LRSSLMDA was built solely from the disease perspective. The first column

records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs. The evidences for the associations were dbDEMC, miR2Disease

and HMDD v2.0.

miRNA evidence miRNA evidence

hsa-mir-21 dbDEMC;miR2Disease;HMDD v2.0 hsa-mir-181a dbDEMC

hsa-mir-155 dbDEMC;HMDD v2.0 hsa-mir-133a dbDEMC;HMDD v2.0

hsa-mir-146a dbDEMC;HMDD v2.0 hsa-mir-31 dbDEMC;HMDD v2.0

hsa-mir-17 dbDEMC hsa-mir-29c dbDEMC;HMDD v2.0

hsa-mir-125b dbDEMC hsa-let-7b dbDEMC;HMDD v2.0

hsa-mir-34a dbDEMC;HMDD v2.0 hsa-mir-210 dbDEMC;HMDD v2.0

hsa-mir-20a dbDEMC;HMDD v2.0 hsa-mir-200c dbDEMC;HMDD v2.0

hsa-mir-145 dbDEMC;HMDD v2.0 hsa-mir-150 dbDEMC;HMDD v2.0

hsa-mir-221 dbDEMC hsa-mir-142 dbDEMC

hsa-mir-16 dbDEMC hsa-mir-146b dbDEMC

hsa-mir-29a dbDEMC hsa-let-7c dbDEMC;HMDD v2.0

hsa-mir-92a HMDD v2.0 hsa-mir-182 dbDEMC

hsa-mir-19b dbDEMC hsa-mir-106b dbDEMC

hsa-mir-18a dbDEMC hsa-mir-34c dbDEMC;HMDD v2.0

hsa-mir-126 dbDEMC;HMDD v2.0 hsa-mir-200a dbDEMC;HMDD v2.0

hsa-mir-1 dbDEMC hsa-mir-122 unconfirmed

hsa-mir-29b dbDEMC hsa-mir-9 dbDEMC

hsa-mir-19a dbDEMC;HMDD v2.0 hsa-mir-181b dbDEMC

hsa-let-7a dbDEMC;HMDD v2.0 hsa-mir-133b dbDEMC

hsa-mir-15a dbDEMC;HMDD v2.0 hsa-let-7e dbDEMC

hsa-mir-143 dbDEMC;HMDD v2.0 hsa-mir-195 dbDEMC

hsa-mir-222 dbDEMC hsa-mir-30a dbDEMC

hsa-mir-223 dbDEMC;miR2Disease;HMDD v2.0 hsa-let-7d dbDEMC

hsa-mir-200b dbDEMC hsa-mir-148a dbDEMC;HMDD v2.0

hsa-mir-199a dbDEMC;HMDD v2.0 hsa-mir-196a dbDEMC;miR2Disease;HMDD v2.0

https://doi.org/10.1371/journal.pcbi.1005912.t005
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Cross validations were carried out to assess the prediction performance of LRSSLMDA.

Impressively, it outperformed ten previous models (MCMDA, HGIMDA, WBSMDA, HDMP,

RLSMDA and RWRMDA) under the global and local LOOCV frameworks and its prediction

stability was reflected by a low standard deviation in results of the 5-fold cross validation. To

our knowledge, LRSSLMDA is one of the very few models that achieved an AUC greater than

0.9 in global LOOCV. In addition, three types of case studies on five diseases demonstrated

LRSSLMDA’s prediction accuracy. For each disease, a majority of the top 50 potential related

miRNAs were confirmed by experimental literatures.

The reliable performance of LRSSMDA stemmed from four factors. First, comprehensive

statistical features and graph theoretic features were constructed from the integrated similarity

matrices for miRNAs and diseases. The statistical profile included the mean, the sum, the quan-

tiles and the histogram distributions of the similarity scores, while the graph theoretic profile

recorded the neighbor count, the centrality measures and Page-Rank scores of the network

graphs built from the integrated similarity matrices for miRNAs and diseases. Moreover,

because these two feature profiles made full use of the miRNA similarity and the disease similar-

ity, and because functionally similar miRNAs tend to be related to phenotypically similar dis-

eases [31–33], our model could effectively uncover miRNAs associated with diseases that had

no known associated miRNAs. This was demonstrated in the fourth case study on Esophageal

Neoplasms, where 49 out of the top 50 predictions were confirmed by experimental literatures.

Table 6. Prediction of the top 50 potential Breast Neoplasms-related miRNAs based on known associations in the old version of HMDD, that is,

HMDD v1.0. The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs. The evidences for the associations

were either HMDD v2.0, dbDEMC and miR2Disease or more recent experimental literatures with the corresponding PMIDs.

miRNA evidence miRNA evidence

hsa-mir-659 dbDEMC hsa-mir-191 dbDEMC;miR2Disease;HMDD v2.0

hsa-let-7e dbDEMC;HMDD v2.0 hsa-mir-192 dbDEMC

hsa-let-7c dbDEMC;HMDD v2.0 hsa-mir-129 dbDEMC;HMDD v2.0

hsa-let-7b dbDEMC;HMDD v2.0 hsa-mir-99b dbDEMC

hsa-let-7i dbDEMC;miR2Disease;HMDD v2.0 hsa-mir-199b dbDEMC;HMDD v2.0

hsa-mir-16 dbDEMC;HMDD v2.0 hsa-mir-195 dbDEMC;miR2Disease;HMDD v2.0

hsa-mir-92a HMDD v2.0 hsa-mir-494 25955111

hsa-mir-130b dbDEMC hsa-mir-299 dbDEMC;HMDD v2.0

hsa-mir-27a dbDEMC;miR2Disease;HMDD v2.0 hsa-mir-148a dbDEMC;miR2Disease;HMDD v2.0

hsa-mir-126 dbDEMC;miR2Disease;HMDD v2.0 hsa-mir-26a dbDEMC;miR2Disease;HMDD v2.0

hsa-let-7g dbDEMC;HMDD v2.0 hsa-mir-30e 27012041

hsa-mir-373 dbDEMC;miR2Disease;HMDD v2.0 hsa-mir-101 dbDEMC;miR2Disease;HMDD v2.0

hsa-mir-30a miR2Disease;HMDD v2.0 hsa-mir-135a dbDEMC;HMDD v2.0

hsa-mir-223 dbDEMC;HMDD v2.0 hsa-mir-365 miR2Disease

hsa-mir-372 dbDEMC hsa-mir-107 dbDEMC;HMDD v2.0

hsa-mir-500 unconfirmed hsa-mir-497 dbDEMC;miR2Disease;HMDD v2.0

hsa-mir-423 HMDD v2.0 hsa-mir-181a dbDEMC;miR2Disease;HMDD v2.0

hsa-mir-106a dbDEMC hsa-mir-24 dbDEMC;HMDD v2.0

hsa-mir-381 dbDEMC hsa-mir-18b dbDEMC;HMDD v2.0

hsa-mir-432 dbDEMC hsa-mir-29c dbDEMC;miR2Disease;HMDD v2.0

hsa-mir-130a dbDEMC hsa-mir-452 dbDEMC;HMDD v2.0

hsa-mir-520b dbDEMC;HMDD v2.0 hsa-mir-100 dbDEMC;HMDD v2.0

hsa-mir-32 dbDEMC hsa-mir-182 dbDEMC;miR2Disease;HMDD v2.0

hsa-mir-98 dbDEMC;miR2Disease hsa-mir-411 dbDEMC;HMDD v2.0

hsa-mir-28 dbDEMC hsa-mir-22 dbDEMC;miR2Disease;HMDD v2.0

https://doi.org/10.1371/journal.pcbi.1005912.t006
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Second, dimensionality reduction was implemented via projecting the profiles to a common

subspace, which removed the multi-collinearity in them. LRSSLMDA sought to determine the

most useful features for differently profiles simultaneously. Third, Laplacian regularization was

used to keep the local structure of the feature spaces; it also captured the similarities between

known miRNA-related diseases and between known disease-related miRNAs. This resonated

with the assumption that functionally similar miRNAs tend to be related to semantically similar

diseases. Fourth, the sparse feature selection facilitated by L1-norm assigned higher weights to

the most useful features, further improving the performance of LRSSLMDA.

However, there is noticeable room for improvement in LRSSLMDA. The miRNA and dis-

ease similarity calculations presented in this study might not be the perfect methods and we

expect more biological information to be incorporated into the calculations in the future to

fine-tune the similarity measures. In addition, by far the known miRNA-disease associations

have a large degree of sparsity (with only 2.86% of 189,585 miRNA-disease pairs being

labeled). Accumulating experimental evidences will confirm more associations that would

diminish the prediction bias of LRSSLMDA. As a final point, the increasing understanding

towards miRNAs and diseases would eventually facilitate a miRNA-disease association predic-

tion that not solely depends on miRNAs’ functional similarity and diseases’ semantic similar-

ity, but also other possible miRNA and disease profiles. Adding new profiles into LRSSLMDA

would lead to a more comprehensive analysis and hopefully an improved accuracy of miRNA-

disease association prediction. Therefore, we believe that our model would perform even better

in future research.
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