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Abstract

The hepatitis C virus (HCV) envelope glycoproteins E1 and E2 form a non-covalently linked

heterodimer on the viral surface that mediates viral entry. E1, E2 and the heterodimer com-

plex E1E2 are candidate vaccine antigens, but are technically challenging to study because

of difficulties in producing natively folded proteins by standard protein expression and purifi-

cation methods. To better comprehend the antigenicity of these proteins, a library of alanine

scanning mutants comprising the entirety of E1E2 (555 residues) was created for evaluating

the role of each residue in the glycoproteins. The mutant library was probed, by a high-

throughput flow cytometry-based assay, for binding with the co-receptor CD81, and a panel

of 13 human and mouse monoclonal antibodies (mAbs) that target continuous and discon-

tinuous epitopes of E1, E2, and the E1E2 complex. Together with the recently determined

crystal structure of E2 core domain (E2c), we found that several residues in the E2 back

layer region indirectly impact binding of CD81 and mAbs that target the conserved neutraliz-

ing face of E2. These findings highlight an unexpected role for the E2 back layer in interact-

ing with the E2 front layer for its biological function. We also identified regions of E1 and E2

that likely located at or near the interface of the E1E2 complex, and determined that the E2

back layer also plays an important role in E1E2 complex formation. The conformation-

dependent reactivity of CD81 and the antibody panel to the E1E2 mutant library provides a

global view of the influence of each amino acid (aa) on E1E2 expression and folding. This

information is valuable for guiding protein engineering efforts to enhance the antigenic prop-

erties and stability of E1E2 for vaccine antigen development and structural studies.
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Author summary

The function and structure of the hepatitis C virus envelope glycoprotein complex E1E2 is

poorly understood because of difficulties in producing pure and correctly folded proteins

for biochemical and structural analysis. Here, we use monoclonal antibodies to non-over-

lapping epitopes on E1E2, as well as the CD81 co-receptor, to probe a complete alanine-

scanning library of the E1E2 protein. This comprehensive binding study delineates the

antigenic regions of E1E2. This information is valuable for understanding the folding of

E1E2 and for vaccine antigen design efforts.

Introduction

Hepatitis C virus (HCV) is a major global health concern with over 170 million people cur-

rently infected and an additional 3 million being infected each year (reviewed in [1, 2]). While

approximately 30% of infected individuals are capable of spontaneously clearing the virus, usu-

ally within the first 12 months of infection, the remainder generally develops life-long infec-

tion. Of those who progress to chronic infection, about 20% develop liver cirrhosis and 1–3%

hepatocellular carcinoma, one of the leading causes of cancer mortality [2, 3]. As a member of

the Hepacivirus genus in the Flaviviridae family, HCV contains a positive-sense, single-

stranded RNA genome coding for three structural proteins and seven non-structural proteins

[4] (Fig 1A). The RNA-dependent RNA polymerase, NS5B, which lacks proofreading activity,

gives rise to the heterogeneous viral quasispecies and the diverse viral genotypes in circulation.

The high rate of infection in endemic countries and the morbidity caused by subsequent liver

damage[5], as well as underdiagnosis, costly treatments and high rate of reinfection [6, 7],

highlight the need for an effective HCV vaccine to limit virus infection and spread.

E1 and E2 are heavily glycosylated envelope proteins and form a heterodimer complex on

the viral surface that facilitates viral attachment and entry into host cells (reviewed in [4]). E1

encompasses residues 192–383 of the HCV polyprotein (prototypic strain H77), while E2 is

the larger of the two envelope proteins and spans amino acids 384–746 (Fig 1B). In association

with apolipoproteins, HCV forms lipoviroparticles that attach and infect hepatocytes using a

number of host entry factors including CD81, scavenger receptor class B member 1 (SR-B1),

claudin-1, occludin, low-density lipoprotein receptor (LDLR), and others whose roles are still

under investigation (reviewed in [4, 8]). CD81 was the first entry receptor identified and is the

best-characterized entry factor to date. Many studies have demonstrated that CD81 is capable

of binding to soluble E2, and antibodies targeting the large extracellular loop of CD81

(CD81-LEL) prevent HCV infection both in vitro and in vivo (reviewed in [9]). While E2 is

known to interact with CD81 and SR-B1 (reviewed in [10]), it appears that E1 may help modu-

late these interactions and could play a role in membrane fusion [11–13].

Our understanding of the E2 protein has been enhanced by the recent crystallization of the

E2 core domain (E2c), providing evidence that refutes the previous hypothesis of E2 as a class

II fusion protein [14–16]. Canonical class II fusion proteins consist of three protein domains

with an elongated structure in which domain 2 harbors the fusion peptide that is embedded

within the dimer interfaces (reviewed in [17]). In contrast, E2 is globular in shape with the E2c

adopting a compact architecture surrounded by disordered variable loops. E2c consists of a

central Ig-like β-sandwich scaffold flanked by front and back layers of protein consisting of

loops, short helices, and β-sheets [15, 16]. Cross-neutralizing antibodies that recognize E2c pri-

marily map to the front layer, which is also a component of the CD81 binding site (CD81bs)

[15]. Recent findings suggest that the CD81bs is exceptionally flexible in the soluble protein
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form and could present many non-optimal conformations during immunization [18]. Struc-

tural information for E1 is more limited, consisting of NMR studies of putative membrane

proximal regions and a recent crystal structure of the N-terminal region, which displays an

unusual disulfide-linked multimeric (nE1) organization [19].

Since E1 and E2 are the targets of neutralizing antibody (NAb) responses, understanding

how they interact with antibodies can offer valuable insights into the antigenic surface and

folding of the vaccine immunogens. To date, a number of antibodies targeting E1, E2, or the

E1E2 complex have been isolated, some exhibiting cross-neutralizing behavior when tested

against multiple viral genotypes (reviewed in [20–22]). The recent X-ray structures of E2c, E1

and E2 peptides complexed with several broadly neutralizing antibodies (bNAbs) have pro-

vided partial yet critical information on the architecture and functions of the glycoproteins

[15, 16, 23–25]. To gain a greater understanding of the HCV envelope glycoprotein antigens,

we exploited an alanine scanning mutant library spanning the entirety of E1 and E2, which

had been recently created using a high-throughput shotgun mutagenesis method [26]. The

comprehensive alanine scanning mutagenesis, in combination with antibodies recognizing a

wide range of discontinuous epitopes, can provide a snapshot of how the different regions in

E1 and E2 may be brought together to form the epitopes. We tested binding by a panel of 13

monoclonal antibodies (mAbs) and CD81-LEL fused to the immunoglobulin Fc fragment to

probe the diverse epitopes encompassing distinct continuous and discontinuous antigenic

Fig 1. Overview of E1 and E2 glycoprotein structures. (A) The approximately 3000 amino-acid HCV polyprotein generates 10 proteins following

cleavage, of which E1 and E2 are two of the three structural proteins. (B) Spanning amino acids 192–383, the structure of E1 is poorly understood although

crystallization of the first half of the protein (aa192-271) revealed secondary structures that could be present in native E1 [19] including an α-helix flanked by

several β-sheets. In contrast, E2 (aa 384–746) has several well-defined regions containing β-sheets, α-helices, and η (310) helices. Sequences for regions in

which secondary structure is known (e.g. nE1, E2 front layer, β-sandwich core, back layer, etc.) are included (prototypic H77 sequence). Green-branched

forks depict relative locations of N-linked glycans. (C) Crystal structure of E2c [15] illustrated that E2 is characterized by a globular structure with a central Ig-

like core flanked by front and back layers. The front layer, β-sandwich core, CD81 binding loop, and back layer are colored as depicted in panel (B).

https://doi.org/10.1371/journal.ppat.1006735.g001
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sites on E1 and E2, thereby providing a global perspective of E1 and E2 antigenicity (Table 1,

and Materials and Methods). Using high-throughput flow cytometry (FC), the effect of each

point mutation on the binding of the antibodies and CD81-LEL was determined. The results

were compared with data in the literature to uncover new information about the HCV epi-

topes. Selected mutations were analyzed further in complementary experiments to evaluate the

mutagenesis results.

Our study revealed that several E2 back layer residues play a critical role in E1E2 folding

and indirectly affect binding to CD81 and antigenic region (AR) 3 mAbs. The data also predict

residues that are likely located at or near the interface for E1 and E2 complex formation.

Results

Residues essential for expression and folding of recombinant E1E2

High-throughput flow cytometry is a well-established system that has been used in the study

of many viral antigens, and therefore was applied to probe the E1E2 mutant library with a panel

of mAbs and CD81-LEL [26]. The results combined with data generated by other methods

(ELISA, immunoblots) in the literature are summarized in S1 Table. The E1E2 mutant library

used here is comprised of 545 individual alanine mutations spanning nearly the entire E1E2 pro-

tein sequence of a genotype 1a isolate (H77, GenBank accession NC_004102). The remaining

ten E1E2 mutations R237A, C272A, Q336A, D346A, T396A, C452A, K562A, Y613A, Y624A,

and W712A were introduced into an equivalent E1E2 expression vector (plasmid H77c, [27]).

The expression of the mutants was monitored by comparing mAb binding to wild-type E1E2

via the C-terminal V5 epitope fusion tag or mAbs to E1 and E2 continuous epitopes (A4, HCV1

and AP33). Only mutant T329A resulted in markedly reduced V5 expression compared to the

other mutants in the library (Fig 2A); however, since a number of mAbs showed high levels of

binding to the T329A mutant clone (S1 Table), it is possible that the V5 tag is partially occluded

in this clone. The expression of the remaining 10 mutant constructs lacking the V5 tag was

assessed by flow cytometry or ELISA based on their reactivity to the control mAbs (Fig 2B).

Two mutations, Y613A and Y624A, resulted in reduced binding to control mAbs.

To identify mutations that influence global protein folding, we sought residues that, when

mutated, resulted in less than 50% binding to mAbs targeting conformational epitopes on

AR1-5 described in Table 1.

Table 1. Properties of the monoclonal antibody panel.

Glycoprotein mAb Antigenic site Binding Region Features

E1 A4 [28] Continuous 197–207 Murine mAb; non-neutralizing

IGH526

[23, 29]

Discontinuous 313–327 Weakly neutralizing, cross-reactive (1a, 1b, 4a, 5a, 6a)

E2 HCV1 [24, 30] Continuous 412–423 L413, N415, G418, and W420 required for binding; potent, cross-reactive

AP33

[25, 31, 32]

Continuous 412–423 Murine mAb; L413, N415, G418, and W420 required for binding; potent,

cross-reactive

AR1A/B [33] Discontinuous Non-neutralizing face of

E2c

Strain specific; no neutralizing activity; AR1A can block CD81 binding to

soluble E2

AR2A

[15, 18, 33]

Discontinuous Back layer of E2c Isolate-specific neutralization

(1a, 2b, 4, 5)

AR3A/B/C/D

[15, 33]

Discontinuous Neutralizing face of E2c Potent, broadly neutralizing; overlaps the CD81 binding site

E1E2 AR4A [34] Discontinuous Not well defined Neutralizes 6 genotypes in HCVpp and HCVcc systems

AR5A [35] Discontinuous Not well defined Neutralizes several strains

(1a, 1b, 4, 5)

https://doi.org/10.1371/journal.ppat.1006735.t001
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About 7% of residues (40 of 555) are important for global folding using these criteria (Fig

2C). All of these residues are present in E2, between amino acids (aa) 490–650, which form the

central Ig scaffold and the back layer of E2c [15]. Mutations that resulted in greatly reduced

E1E2 expression or improper global folding could not accurately be used for determining anti-

body epitopes and were excluded from subsequent analysis.

Validation of high-throughput analysis using HCV1 and AP33

To help validate findings from flow cytometry-based evaluation of the E1E2 mutant library,

we compared the flow cytometry results to previously published data that utilized site-directed

mutagenesis and ELISA for the bNAbs HCV1 and AP33, both of which recognize the E2 anti-

genic site 412–423 (AS412) and have been extensively characterized [24, 25, 30–32, 36]. Resi-

dues critical for mAb binding were defined as those that retained >75% reactivity to one or

more control mAbs, but also resulted in<25% binding to the mAb of interest upon mutation.

The original mapping of mAb HCV1 resulted in the identification of a stretch of amino

acids 412–423 following hypervariable region 1 (HVR1) of E2 as the epitope with L413 and

W420 being critical for HCV1 binding [30]. The mapping approach used in this study cor-

rectly identified the critical residues L413, N415, G418, and W420 for both HCV1 and AP33,

in overall agreement with previous mapping studies (Fig 3A and 3B [24, 25, 30, 31, 36]). Subse-

quent structural analysis revealed that N415 sidechain and G418 backbone amine form a

Fig 2. Identification of mutations that impair global folding. (A) The V5 tag present at the C-terminus of 545 mutants was used as a marker of overall

E1E2 expression. The expression of the V5 tag for each mutant was normalized to V5 expression on wild-type E1E2 (left). Only one mutation T329A (red

dot) resulted in markedly decreased V5 expression. (B) The expression of the ten remaining mutants not present in the library was assessed using

antibodies targeting continuous epitopes as controls. A4 targets E1, and HCV1 and AP33 are specific for distinct but overlapping epitopes from E2 aa 412–

423. (C) Numerous mutations resulted in less than 50% binding (relative to wild-type) to the panel of conformation-dependent antibodies (AR1-5) when

analyzed by flow cytometry. These mutants were predominantly located in the central Ig-like β sandwich or the back layer of E2. Binding of HCV1 and A4,

which recognize linear epitopes of E2 and E1, respectively, were included along with V5 tag expression. Coloring corresponds to the reactivity to each

E1E2 mutant with <25% red, 25–50% orange, 51–75% green, and >75% white.

https://doi.org/10.1371/journal.ppat.1006735.g002
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hydrogen bond, stabilizing the β hairpin turn, required for both HCV1 and AP33 recognition

[24, 25] (Fig 3C). These results show that the flow cytometry approach successfully identified

critical residues for the well-characterized mAbs that target HCV linear epitopes.

Epitope mapping of antibodies to E2 antigenic regions (ARs) 1 to 3

Previous studies used a small panel of alanine mutants and ELISA to define epitopes for seven

mAbs, AR1A-B, AR2A, and AR3A-D, targeting three distinct antigenic regions on E2 [33].

Recently, co-crystallization of E2c with the Fab portion of the AR3C antibody offered a struc-

tural explanation for some of the mapping data [15].

AR1A and AR1B have previously been described as binding genotype-specific E2 but lack

significant neutralizing capabilities, suggesting that their epitopes are exposed on isolated

E1E2 but not on the viral surface [33]. As expected, in our screening, mAbs AR1A and AR1B

required many of the same residues for binding, confirming that these two antibodies recog-

nize distinct but overlapping epitopes. Eight residues were found to be important for binding

of mAb AR1A to E2 (Fig 4A) while five of these residues were also required for AR1B binding

(Fig 4B). When visualized on the E2c structure (Fig 4C), residues recognized by both AR1A

and AR1B are localized to a pocket near the top of E2c that is formed from the outer layer of

the β sandwich in the previously described non-neutralizing face of E2c [15]. The remaining

residues that are important for AR1A binding—G495, T519, and Y632—are located on the

periphery of the pocket and may play an indirect role in binding. While both mAbs target the

same antigenic region, only AR1A is capable of blocking CD81 binding to E2 [33]. Indeed, our

results confirm that mutations of the epitope residues shared between mAbs AR1A and AR1B

did not alter binding of CD81-LEL, while mutations of the three residues specific for AR1A

resulted in decreased CD81 binding (S1 Table). The complete library scanning analysis also

helped reassign the roles of several critical residues identified in previous mapping experi-

ments (S2A Table). For example, two residues, V538 and N540, were originally thought to play

Fig 3. Flow cytometry confirms that residues 413–420 within the HCV1 and AP33 epitope are critical for binding to E2. The reactivity (as % of wild-

type) of HCV1 (A) and AP33 (B) to E1E2 mutants suggested to encompass the HCV1 and AP33 epitope is shown. Previously published results are

included, all of which utilized ELISA to measure reactivity. Coloring corresponds to the reactivity to each E1E2 mutant with <25% red, 25–50% orange, 51–

75% green, and >75% white. For HCV1, our flow cytometry findings for L413 and W420 agree with previous reports. (C) The side chains of the amino acids

in the E2 412–423 peptide are shown with the critical residues highlighted in red. *Values are approximated based on results originally published as a bar

graph [30, 31].

https://doi.org/10.1371/journal.ppat.1006735.g003
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a role in AR1A and AR1B binding [33]. However, flow cytometry results indicate that muta-

tion of these two residues to alanine disturbed the global folding of E1E2, thereby resulting in

loss of binding of these mAbs.

For AR2A, ELISA screening against a panel of back layer mutants showed that T625A and

K628A reduced AR2A binding to less than 15% of wild-type reactivity, but with>75% binding

for mAbs AR1A, AR1B, AR4A and AR5A (Fig 5A, S2B Table and [18]). Flow cytometry analy-

sis showed that only K628A exhibited less than 25% AR2A binding and greater than 75% bind-

ing for AR4A control mAb (Fig 5B). We note that the T625A mutant was not identified as

important by flow cytometry likely due to differences in antigen presentation between the

assays (see discussion section). AR3 mAbs were excluded as controls because of the effect of

back layer mutations on AR3 mAb binding (see below). Negative-stain EM reconstructions

from Kong et al. [15] and the ELISA and flow cytometry mapping data that we report here

strongly suggests that the back layer of E2 is involved in AR2A recognition (Fig 5C).

Similar to the AR1 antibodies, we confirmed that mAbs AR3A, AR3B, AR3C, and AR3D

target overlapping but distinct epitopes on E2 (Figs 6 and S2). The four mAbs share 13 com-

mon critical amino acids with approximately half of these residues localized on the front layer

of E2 (amino acids 421–452). The remaining critical residues are mostly spread throughout

the Ig β sandwich and CD81 binding loop. Structurally, most of the surface-exposed residues

Fig 4. Epitopes for AR1 monoclonal antibodies target the non-neutralizing face of E2c. Single residue mutations which resulted in�25% of mAb

binding (relative to wild-type E2) but >75% for at least one control antibody are shown for mAbs AR1A (A) and AR1B (B). Binding assays were performed

twice with the range indicated. Black arrows indicate negative values. (C) The critical residues for AR1A and AR1B were visualized on the E2c structure

[15]. Residues in purple are required by both AR1A and AR1B. Residues specific for AR1A alone are in red. Dashed lines represent regions of E2c that are

disordered or missing.

https://doi.org/10.1371/journal.ppat.1006735.g004
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localize towards the front of E2c on the neutralizing face of the protein (Fig 6B), in agreement

with the known binding site based on the E2c-AR3C Fab crystal structure [15]. With the

exception of P525, the critical residues that were identified in the original mAb characteriza-

tion were also observed by flow cytometry (S2C Table). Hydrogen-bond calculations on the

E2c-AR3C structure indicated that front layer residues C429, S432, and Y443 have hydrogen-

bonding partners on the heavy chain of the AR3C Fab (Fig 6C). When these three residues

were mutated, AR3C reactivity dropped to 1%, 55%, and 15% for these three residues, respec-

tively, confirming their importance in the AR3C epitope. Bailey and colleagues reported that

polymorphisms at four E2 amino acids (L433I, L438I, F442I, and K446E) resulted in resistance

to mAb AR3C [34]. Yet in our study, we observed decreased AR3C reactivity for L438A and

F442A, and enhanced AR3C binding for L433A and K446A mutants compared to wild-type

(S1 Table). While side chain loss by mutation to alanine can eliminate interactions energeti-

cally important for antibody binding, in this case the differences in side chains likely also mod-

ify the conformation of E2 front layer main chain for antibody recognition.

Effect of E2 back layer on E1E2 folding, CD81 receptor binding, and AR3

mAb reactivity

The flow cytometry data indicated that 21 individual mutations in the back layer region led to

<50% binding of all nine AR1-5 antibodies (Fig 2C, S1 Table), revealing a critical role for this

Fig 5. mAb AR2A binds the back layer of E2. (A) Data shown are the mean reactivities determined by flow

cytometry (FC) and ELISA of mAb AR2A, conformational mAbs AR1A and AR4A, and linear mAbs HCV1,

AP33, and A4 to mutants T625A and K628A. The C-terminal V5 tag expression is also shown for the flow

cytometry constructs. Each binding assay was performed twice with the range shown. (B) The mean binding

value (percent relative to wild-type reactivity) of mAb AR2A to each mutant E1E2 library clone was plotted as

a function of binding to conformational-dependent mAb AR4A (black circles). Clones with AR2A binding

�25%, but at least 75% AR4A binding (red boxes), are considered to indicate crucial residues for AR2A. As

shown, only K628A (red circle) fell within this threshold. (C) Back-layer residues T625 and K628 are

highlighted in red on the E2c structure [15]. The back layer is shown in green.

https://doi.org/10.1371/journal.ppat.1006735.g005
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region in E1E2 folding. Hydrogen bond calculations suggest potential interactions between

several residues in the back layer region with the central Ig scaffold and front layer, underscor-

ing the role of E2 back layer in maintaining overall E1E2 folding (S3 Table). However, in

ELISA analysis, only two mutations caused impaired global folding based on the same criteria

as above (S4 Table). This observation highlights the subtle difference in antigen presentation

in the different binding assays (see discussion section).

Recent structural data revealed that the cell surface receptor CD81 binds to the front layer

and the CD81 binding loop of E2c (residues 519–535) [15]. These data confirmed results from

prior mapping experiments, which proposed that several residues between 420 and 535 are

important for CD81 binding [27, 37, 38]. However, prior to the crystallization of E2c, alanine

scanning mutagenesis indicated that several E2 back layer residues between 613–620 might

also be involved in CD81 binding [38, 39]. To evaluate these results, we screened a recombi-

nant CD81-LEL Fc-fusion protein against the E1E2 mutant library. As expected, screening of

CD81-LEL against the E1E2 mutant library confirmed that many residues within the front

layer and the CD81 binding loop are required for CD81 recognition (S1 Table, Fig 7A). We

also noted several residues in the central Ig β sandwich scaffold that may play an indirect role

possibly through stabilization of the front layer and CD81 binding loop structures. As noted

above, many back layer mutants perturbed E1E2 global folding, thus preventing us from deter-

mining whether these residues bind CD81 directly. However, we found that six back layer

mutants reduced CD81 reactivity to�25% of wild-type reactivity without disrupting global

folding: P601A, T604A, Y613A, W616A, C620A, and V633A (S1 Table). The back layer

appears to affect front layer architecture indirectly with specific interactions between back

layer α2 helix residues Y613 and W616 and front layer α1 helix residues W437 and L441 (Fig

7B). Y613 and W616 are within close proximity to the front layer α helix and our analysis con-

firms that mutation of either residue abolished CD81-LEL binding.

Conversely, I622A was found to enhance CD81-LEL binding by 56% and 49%, determined

by ELISA and flow cytometry, respectively (S1 Table), while F627A did not affect binding

(flow cytometry) or mildly enhanced binding by 13% (ELISA). These findings were confirmed

by testing the ability of soluble E2c harboring I622A, F627A, or double mutations to bind

CD81-Fc and a mutant that reduces CD81 dimerization, i.e. CD81-Fc (K124T) (Fig 7C).

Given that the E2 antigenic site 3 (AR3) is known to overlap with the CD81 binding site

[15, 33], we expected the same back layer mutants that inhibited CD81 binding to also abolish

AR3 antibody binding. Indeed, of the six back layer residues that are critical for CD81 binding

but not overall E1E2 folding (P601, T604, Y613, W616, C620, and V633), individual mutations

of four of them (P601A, T604A, Y613A, and W616A) also resulted in�50% reactivity to all

four AR3 mAbs. Of the remaining two residues, C620A showed reduced reactivity to two AR3

mAbs (<50%), and V633A reduced binding of AR3C to<50%. Furthermore, as with CD81,

I622A enhanced binding of mAbs AR3A, AR3C, and AR3D.

Fig 6. AR3 mAbs target overlapping but distinct epitopes on the neutralizing face of E2c. (A) Data shown are

the mutated residues for which binding for mAb AR3A was�25%, but >75% for at least one control mAb. Any

mutations that resulted in global misfolding (see Fig 2B) were excluded. Mutations leading to�25% binding for all

four AR3 mAbs are highlighted in red. S2 Fig summarizes data for AR3B-3D mAbs. The percent reactivity is the

mean of two experiments. (B) Seven out of thirteen critical residues for the four AR3 mAbs (highlighted in red in A)

are shown in red on the E2c structure [15]. The remaining 6 residues are hidden in this orientation. Critical residues

that are variable between AR3 mAbs are indicated in blue in the right panel. The exact location of C459 could not be

visualized as aa 453–459 are disordered in the E2c structure. (C) The E2c-AR3C Fab crystal structure and

hydrogen bonding analysis confirmed that several amino acids in the region identified by flow cytometry are likely

involved in hydrogen bonding with the heavy chain CDR H3 and H1 of AR3C Fab as indicated. m.c -main chain; s.c

—side chain.

https://doi.org/10.1371/journal.ppat.1006735.g006
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To characterize the back layer region further, HCV pseudoparticles (HCVpp) with individ-

ual alanine substitutions in the back layer (residues 600–645) were generated. The mutant

viruses were found to be mostly poorly or non- infectious (0–27% wild-type infectivity) (S5

Table), confirming the crucial role of the back layer region. The incorporation of E1E2 onto

HCVpp of 4 selected back layer mutants (W616A, I622A, V629A and R639A) was also exam-

ined (S4 Fig). While the expression of glycoproteins in transfected cell lysates was similar for

wild-type and mutants (S4A Fig), E2 associated with purified HCVpp was reduced for 3 of the

4 back layer mutants (I622A, V629A and R639A) (S4B Fig), possibly caused by improper pro-

tein folding. In addition, HCVpp produced in this study were found to contain covalently

linked, oligomeric forms of E2 and noncovalent E1 (S4C Fig). In a previous study of HCVpp

by immunoprecipitation of transfected cell supernatant using anti-E2 mAbs, noncovalent

E1E2 heterodimers, presumably E1E2 secreted from the transfected cells, were also detected

[40]. In cell culture HCV (HCVcc), the majority of E1 and E2 appeared to form covalent oligo-

mers [41].

Fig 7. E2 back layer mutations modulate CD81 binding to the E2 front layer and CD81 binding loop.

(A) Based on flow cytometry and ELISA analysis, and previously published results [15], residues in four

distinct E2c regions were found to be important for CD81 binding: the front layer (cyan), Ig β-sandwich (red),

CD81 loop (blue), and the back layer (green). The locations of mutations resulting in <25% CD81 binding in

each of these regions are highlighted. (B) Hydrogen bond calculations indicate that two back layer residues in

the α2-helix, Y613 and W616 (green), interact with L441 and W437 (cyan) of the front layer α1-helix,

respectively. m.c—main chain; s.c—side chain. These interactions between front and back layer residues

suggest that the back layer indirectly affects CD81 binding through structural interactions with the adjacent

front layer. The residue colors follows those in Fig 1C. (C) Based on flow cytometry and ELISA, I622A, which

was found to enhance CD81 binding, was analyzed further (along with F627A). Soluble E2c mutants

harboring I622A, I622A/F627A and F627A were tested using ELISA for their ability to bind recombinant WT

CD81-Fc (left panel) or a mutant that reduces CD81 dimerization, CD81-Fc (K124T) (middle panel). Binding

signals to mAb HCV1 were used as an expression control for the mutants (right panel).

https://doi.org/10.1371/journal.ppat.1006735.g007
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Residues critical for the formation of the E1E2 complex

The mutant library combined with the antibody panel provided an opportunity to map the

interface between E1 and E2. The panel contained mAbs that recognize discontinuous epi-

topes on E2 (anti-E2, i.e. AR1, AR2 and AR3), and also mAbs that recognize discontinuous

epitopes requiring both E1 and E2 (anti-E1E2, i.e. AR4 and AR5). We used the two mAb types

to identify potential E1E2 interface residues based on the effect of alanine substitution on their

binding: (1) low binding by anti-E2 and anti-E1E2, (2) low binding by anti-E1E2 only, or (3)

low binding by anti-E2 only. Given that antibodies in both groups recognize non-overlapping

discontinuous epitopes, residues that correlate with low binding by anti-E2 and anti-E1E2

(Class 1) are likely to be critical to the global integrity of the E1E2 heterodimer complex. As

expected from the fact that E2 can fold by itself whereas E1 folding requires E2 co-expression,

all 34 Class 1 residues were mapped to E2, to the β-sandwich and back layer (Fig 8A). On aver-

age, Class 1 residues are 91% conserved and 6 are cysteines (S1 Table).

The 34 identified Class 2 residues could be considered as critical residues for binding by

anti-E1E2 mAbs. However, since the two anti-E1E2 antibodies, AR4A and AR5A, recognize

non-overlapping epitopes, mutation of residues that severely impact binding by one mAb

should not affect binding by the other. Surprisingly, the majority (31) of Class 2 residue muta-

tions affected binding of both mAbs in a similar manner regardless of their location on E1 or

E2. This implies that these Class 2 residues, outside the AR4A and AR5A binding epitopes, are

important for formation of the E1E2 complex, either by influencing folding of E1, or by being

part of the complex interface. Class 2 residues are 97% conserved, which highlights their impor-

tance to overall structural integrity, with nine of them being cysteines. Among Class 2 residues,

20 of 34 are located on E2 within the flanking regions of VR2 (2 cysteines), β-sandwich scaffold,

VR3, post-VR3, back layer and stalk regions (Fig 8A). When visualized on the crystal structure

of E2c, the Class 2 residues strikingly cluster on one surface of E2c that is opposite to the CD81

receptor-binding site (Fig 8B). Similar to the CD81 binding site, this region is nearly glycan

free, but contains flexible and disordered loops, which might require interaction with E1 to fold

properly. We also tested binding of anti-E1E2 antibodies to a number of deletion mutants lack-

ing regions harboring the Class 2 residues (S3 Fig). Mutants lacking VR2, VR3, post-VR3 and

stalk did not bind to AR4A and AR5A mAbs, in agreement with the results of the alanine scan-

ning mutagenesis. Of note, E1E2 mutants lacking the stalk region did not bind to AR2A and

AR3A mAbs suggesting that absence of stalk region can have a deleterious effect on overall E2

folding. Class 2 residues on E1 includes 6 of the 8 E1 cysteine residues that mainly map to the

nE1 region that has been crystallized and whose structure has been determined (Fig 8A, [19]).

Residues that fall under Class 3 (low binding by anti-E2 only) are critical for E2 structural

integrity but not for E1E2 complex formation. Eight such residues were mapped to either the

β-sandwich (5 residues) or the back layer of E2c (3 residue). Surprisingly, Class 3 residues are

93% conserved and none of them are cysteines.

Together, the data suggest that specific residues in the E2 near VR2, part of the glycan-free

Ig β-sandwich, VR3, post-VR3, back layer and stalk appear to cluster around a region opposite

to the CD81 binding site, which may interact with specific E1 residues to form the E1E2 inter-

face. Although further investigation is required, these findings provide the basis for a general

model that can describe at least some aspects of the E1E2 interface (Fig 8C).

Discussion

Although the introduction of direct-acting antivirals (DAAs) has tremendously increased cure

rates for individuals infected with HCV, the virus continues to infect between 30,000 and

100,000 people each year in the United States alone because of the lack of a prophylactic
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vaccine [42]. Unfortunately, high genetic variability of the virus has proven to be a major road-

block for designing a vaccine. The viral envelope glycoproteins E1 and E2 are targets of NAbs

and are candidate vaccine antigens. However, the many glycosylation sites, flexible regions,

and correct formation of disulfide bonds on E1E2 have hindered the production of natively

folded proteins for structural studies to guide rational vaccine design.

E2 back layer region plays a central role in E1E2 architecture

To advance our understanding of the structure and antigenicity of E1E2, we selected a panel of

13 mAbs and CD81-LEL and tested them against a complete alanine-scanning mutagenesis

Fig 8. The stalk, VR2, and a glycan-free face of E2 may play a role in the E1E2 interface. (A) Classification of E1E2 residues based on the effects of

mutations on antibody binding. (B) The location of Class 2 residues (mutation affected E1E2 complex formation) are indicated in red on the structure of

E2 with the transmembrane region removed (E2ΔTM) [15]. Regions that are missing or disordered in the structure are represented by black dotted lines.

The area containing HVR1 is highlighted in blue, VR2 is in purple, and the stalk and transmembrane regions are in light and dark green, respectively. The

locations of glycans are indicated by green circles and are numbered beginning with the N-terminus. (C) A general model of the E1E2 interaction indicates

that the stalk region, the base of VR2, and a portion of E2 opposite of the front layer and CD81bs (i.e. VR3, post-VR3 and back layer) possibly interacts

with E1. Dots indicate region of E2 that may interact with E1.

https://doi.org/10.1371/journal.ppat.1006735.g008
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library of E1E2. The library was created by substituting alanine for every residue (and serine

for alanine residues) of the H77 genotype 1a E1 and E2 proteins followed by high-throughput

flow cytometry analysis to measure antibody reactivity to each mutant [26]. A number of

mutations affected E1E2 global folding as determined by substantial reduction in reactivity to

multiple conformation-dependent antibodies. Most of these residues are located in the central

Ig scaffold and the back layer of E2, indicating the importance of these regions for folding of

E1E2. In particular, the large number of back layer residues (42%) that impact E1E2 global

folding, and the indirect effects of this region on the neighboring central Ig scaffold and distal

front layer, indicate the importance of the back layer on E2 structure and function.

The high level of conservation among many back layer residues confirms the critical role of

this region. Indeed, 36 of the 49 back layer residues are 90% conserved with 28 being >99%

conserved (S1 Table). Our flow cytometry analysis suggested that many of the N-terminal back

layer mutants perturb global E1E2 folding (Fig 2C). However, when tested by ELISA, only

Y611A and R614A meet the criteria established for determining residues that impact overall

protein folding (S4 Table). Such differences based on assay method were also observed for

AR2A reactivity to back layer mutants (Fig 5A and 5B). AR2A is known to bind only to geno-

type 1a viruses unless the HVR1 region is deleted [33, 43], which raises the possibility that

masking of epitopes under different conditions could affect reactivity. In ELISA, E1E2 antigens

are often prepared in the form of cell lysates and the solubilized protein complex is captured

by G. nivalis lectin (GNL) onto a solid support for detecting binding antibodies. In flow cytom-

etry, E1E2 is presented as an intracellular membrane-associated antigen (S1 Table, S1 Fig).

Thus, subtle differences in epitope presentation may account for variations in reactivity, pre-

dominantly in the back layer but also at other antigenic sites.

Mutations at putative E1 fusion peptide do not disrupt E1E2 complex

While the structure and function of E1 remains elusive, the N-terminal portion (nE1) from resi-

dues 192–270 was recently crystallized and described as a disulfide-linked intertwined homodimer

[19]. To our knowledge, purified E1E2 has no inter-molecular disulfide bonds [44, 45]. Thus, it re-

mains to be determined if full-length E1 retains the above-described structure in complex with E2.

Several studies have suggested that the viral fusion peptide is located within the E1 glycoprotein

[46–49]. Peptide library experiments on membrane rupture, hemifusion, and fusion suggest that

the putative fusion peptide is located between residue 265–296 [48]. However, there is evidence

for and against this hypothesis. The hydrophobic region spanning residues 265–296 is relatively

conserved among genotypes, especially the two cysteine and two glycine residues within this

region, and displays similarities to other flavivirus fusion peptides [46]. Since viral fusion peptides

and fusion loops are intrinsically metastable, they are usually hidden and protected until fusion is

activated [50, 51]. If this region is indeed the fusion peptide, mutations in this region should affect

E1E2 assembly while maintaining CD81 receptor binding. Previous mutagenesis studies indicate

that mutations within this E1 region did not affect E1E2 association or binding to CD81 receptor

[46, 52]. In contrast, flow cytometry analysis of this region here showed reduced CD81 receptor

binding to several mutants including Y276A (50%), G278A (50%), and D279A (48%), while E1E2

complex formation was mostly unaffected. Since receptor binding occurs in a step preceding

fusion, these residues are likely affecting entry and not fusion. These conflicting results demand

stronger evidence to sustain the hypothesis that the E1 region 265–296 is the fusion peptide.

E2 CD81 binding site, antigenic region 3 and back layer region

Studies by various groups suggested that HVR1, residues 412–447, 528–535, and 612–618 are

involved in CD81 reactivity by either enhancing (in the case of HVR1) or reducing CD81
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binding when deleted or mutated [39, 53, 54]. Other groups have found that W420, Y527,

W529, G530, and D535 were critical for CD81 binding, while H421, I422, S424, G523, T526,

and F550 reduced CD81 binding by at least 50% when mutated [27, 55]. Analysis of the E1E2

library confirms that alanine mutations at the afore-mentioned 11 residues exhibit less than

25% CD81-LEL reactivity (S1 Table). In a structural context, the E2c structure and the nega-

tive-stain EM reconstruction of the E2 ectodomain bound to CD81-LEL validate the roles of

the residues located at the front layer (aa 420–450) and CD81 binding loop (aa 519–535) with

some residues in the β-sandwich scaffold modulating this interaction [15]. The back layer

Y613 and W616 were identified as also being crucial for CD81-LEL reactivity as they exhibited

less than 3% binding activity when mutated to alanine. In the E2c structure, the side chains of

both residues point towards the front layer α1 helix and potentially hydrogen bond with the

main chain of L441 and W437, respectively. These two residues may act as an anchor, stabiliz-

ing front layer folding and architecture of the CD81 binding site. Surprisingly, our study also

found that mutation of back layer I622 enhanced CD81 binding. Recent mutagenesis studies

have also corroborated the affinity enhancing effect of I622A [56].

Similarly, when several back layer residues were individually mutated, we observed reduced

reactivity to AR3 mAbs, which target the front layer. Krey and colleagues suggested involve-

ment of back layer residues 610–619 in binding of mAb HC-84 to the front layer [57]. Thus,

the results presented here support the notion that the back layer can influence binding of

CD81 and antibodies that target the front layer through indirect interactions. Additional inter-

actions between back layer and β-sandwich residues were also observed, suggesting the back

layer is highly involved in stabilizing the globular structure of E2.

Analysis of back layer residues using the HCVpp system shows that alanine substitution in

this region is poorly tolerated, leading to severely reduced infectivity (S5 Table). Further study

of four representative back layer mutants (W616A, I622A, V629A and R639A) shows that the

residues can affect different aspects of E1E2 critical to the infection cycle. Reduced glycopro-

tein incorporation was observed in 3 of the 4 back layer mutants examined (I622A, V629A and

R639A), which may partly explain the reduced viral infectivity. In contrast, W616A mutation

did not affect E1E2 incorporation yet the virus was non-infectious (S4B Fig and S5 Table).

These differences suggest that changes in the back layer can affect E1E2 functions in different

ways (e.g. protein folding and incorporation onto virions, receptor binding, and other steps

for productive infection). Although further studies are required to understand how the back

layer is involved in these steps, our results underscore that this E2 region is an indispensable

part of the E1E2 complex architecture.

In addition to influencing AR3 antibody binding, the E2 back layer was found to interact

with mAb AR2A. Using a combination of flow cytometry and ELISA, together with previous

negative-stain EM data [15], AR2A was found to recognize an antigenic site that is comprised,

at least partially, of the highly conserved back layer of E2. AR2A neutralizes only some strains

of HCV [33, 58], but all HCV genotypes when HVR1 is deleted, suggesting that its target resi-

dues are conserved but likely shielded by HVR1 [43, 59].

The E2 AR3, also known as the neutralizing face of E2, is devoid of N-linked glycans and

overlaps with the CD81 binding site [15]. It is formed by two E2 regions, the front layer (a.a.

421–452) and the CD81 binding loop (a.a. 519–535). Although the majority of the residues in

the front layer and CD81 binding loop are highly conserved (>90% conservation), natural var-

iations are observed at a number of hot spots (<75% conservation) that include S424 (16%),

E431 (11%), N434 (41%), W437 (46%), L438 (43%), G440 (56%), Q444 (0.2%), H445 (54%),

K446 (65%), R521 (65%), S522 (33%), A524 (47%), S528 (25%), A531 (12%) and D533 (33%)

(S1 Table). Among the conserved residues, alanine substitution at T425, L427, N428, C429,

G436 and L441 in the front layer region, T519, D520, G523, W529, G530 and D535 in the
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CD81 binding loop, greatly reduced the binding of the four AR3-specific mAbs. Obviously,

viruses with natural variations at these conserved positions, provided not defective in replica-

tion, can potentially escape the AR3 mAbs. Nevertheless, the natural variations L442 in the

genotype 5 isolates SA13 and UKN5.15.7, N519 in the genotype 2 isolate UKN2a1.2, and E535

in genotype 3 isolates S52 and UKN3a1.28, have not rendered the viruses more sensitive or

resistant to mAb AR3A [35, 60, 61]. On the other hand, natural variations at the conserved

L433 (94%), and the less conserved L438 (43%), F442 (81%) and K446 (65%), and E431 and a

set of 3 residues outside AR3 (V538, L546 and V563) in some genotype 1 isolates, have been

reported to confer resistance to some AR3 mAbs [34]. Interestingly, alanine substitution at

L433, L438, F442 and K446 had variable effects on the binding of AR3 mAbs (S1 Table). Given

the differences in size, polarity, and charge, it is notable that alanine mutations at L433 and

K466 have the opposite effect on AR3C binding compared to naturally occurring mutations to

isoleucine, histidine, glutamic acid, or asparagine, which have been observed in E1E2

sequences [34].

Our analysis also shows that C429 is critical for binding of all four AR3 mAbs, suggesting

that this amino acid is a crucial contact point for the mAbs. It is likely that the C429-C503

disulfide bond is critical for the integrity of the E2 CD81 binding site, since mutation of either

specifically affects binding by AR3 antibodies and CD81-LEL, but not the other mAbs to dis-

continuous epitopes (S1 Table, [56]).

Overall, these data indicate that AR3 antibodies recognize overlapping but distinct epitopes

targeting the front layer region and the CD81 binding loop of E2c, and that the surrounding

region including the Ig central scaffold may play an indirect role in mAb binding.

Putative E1E2 interface

MAbs AR4A and AR5A recognize the quaternary structure of E1E2 complex and cross-neu-

tralize multiple HCV genotypes [34, 35]. Screening the mAbs against the E1E2 mutant library

revealed that 15 residues in E1 and 21 residues in E2 are required for binding of mAbs AR4A

or AR5A (S1 Table). In fact, among the 34 mutants (Class 2 residues, Fig 8A), flow cytometry

analysis revealed that only 4 exhibited <25% binding for AR4A or AR5A alone (two E1 and

two E2 residues). Previous studies have revealed minimal overlap between the AR4A and

AR5A epitopes suggesting that the remaining 30 residues, that reduce binding by both AR4A

and AR5A, are required for E1E2 complex formation [35]. Among these 30 residues, 18 E2 res-

idues cluster at the junction of the non-neutralizing and occluded faces of E2c, in an area with

few glycosylation sites (Fig 8B).

The three E1 residues (I308, A330, and M345) recently hypothesized by Douam and

coworkers to be involved in functional E1E2 heterodimerization and viral fusion [13] did not

affect AR4A or AR5A binding as determined by flow cytometry. The same group also pro-

posed that the E2 region spanning amino acids 581–650 could be involved in a “crosstalk”

with E1 and plays an important role for E1E2 function [13]. This region encompasses a flexible

area and the back layer of E2c, and contains five residues found to be critical for AR4A and/or

AR5A reactivity. Overall, results from AR4A and AR5A mapping support the hypothesis that

some residues between E2 581–650 are involved in interactions with E1.

The variable regions of E2—HVR1, VR2, and VR3—have been shown to be unnecessary

for folding of soluble, recombinant E2 since conformational mAbs retain their ability to bind

even with one, two, or all three variable regions deleted [15, 62]. Yet, in the context of virion-

incorporated glycoproteins, VR2 and VR3 (also known as IgVR, intergenotypic variable

region) appear to affect E2 folding, assembly of E1E2 complex, receptor binding, HCVpp

entry, and HCVcc infectivity, highlighting differences in requirements for the variable regions
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between recombinant E2 and virion-associated E1E2 [63]. We found that mutations within

the variable regions of E2 were generally well tolerated since binding of CD81-LEL, and mAbs

with continuous and discontinuous epitopes, was maintained for most mutants. However,

mutations in 9 residues, F465A, Q467A, I472A in VR2, G573A, C581A, D584A, C585A in

VR3, F586A and Y594A in post-VR3, reduced binding of E1E2-specific mAbs AR4A and

AR5A by at least 50% compared to wild-type E1E2 without affecting binding of other mAbs.

Thus, the variable regions seem to play a functional role in the formation of E1E2 complex.

Six of the 14 Class 2 E1 residues are cysteines (C207, C226, C229, C238, C304 and C306),

suggesting a role for disulfide bridges in E1 folding/stabilization and/or E1E2 complex forma-

tion. Due to limitation of the antibody reagents and the lack of properly folded E1 antigen, we

cannot distinguish E1 residues important for E1 folding versus E1E2 complex formation.

Of these 6 cysteines in E1, four are located in the N-terminus and implicated in inter- and

intra-molecular disulfide bonds [19]. Seven of the 20 important E2 residues that affect AR4A

and AR5A binding are cysteines (C459, C486, C569, C585, C597, C652 and C677). Mutation

of these cysteines did not affect the binding of other conformation-dependent mAbs, suggest-

ing that they may not affect the overall fold of E2, but may instead play a role in maintaining

the E1E2 complex. Alternatively, these cysteine residues could instead be unpaired and

required for HCV infectivity. Fraser et al. proposed that both HCVpp and HCVcc systems

require free thiol groups for entry and that E1E2 undergoes a shift from a reduced to an oxi-

dized state during receptor attachment [64]. Moreover, McCaffrey and colleagues demon-

strated that E2 can tolerate the presence of several free cysteines [65]. Thus, free cysteines may

indirectly affect the binding of AR4A and AR5A while not impacting overall protein confor-

mation. Altogether, our data suggest that a glycan-free face of E2, distal from the front layer,

interacts with E1 forming the complex interface. It also appears that residues within the post-

VR3 region, back layer and the E2 stalk may play a role in complex formation, either directly

or indirectly (Fig 8C). The importance of variable regions and E2 stalk in E1E2 assembly was

also confirmed independently using mutants that lacked these regions (S3 Fig).

Of note, it is yet to be proven that the Class 2 residues are physically in contact to form the

E1E2 interface. Our attempts to study this by immunoprecipitation have not yielded conclu-

sive results of a complete disruption of E1E2 complex formation. The transmembrane regions

of E1 and E2 are crucial for E1E2 dimerization and specific mutations within either domain

can reduce up to 75% of heterodimer formation [12]. It is possible that the interactions

between E1 and E2 ectodomains are relatively feeble to allow for conformational rearrange-

ment during viral entry and may not be easily detected in the presence of the transmembrane

regions.

Conclusion

Overall, through the use of conventional ELISA and high-throughput flow cytometry analysis,

we screened CD81-LEL and a panel of mAbs targeting five antigenic regions of E1E2 against a

comprehensive alanine mutant library, encompassing the entire E1E2 protein sequence of the

prototypic genotype 1a H77 strain. This approach offers a global perspective of folding and

expression of the complex, and provides insight into E1E2 structure and antigenicity. The

results reported here are in agreement with the previously mapped targets for HCV1, AP33,

and mAbs specific for AR1, AR2, and AR3. Residues in the E2 back layer appear to play a cen-

tral role in maintaining not only E2 structure through interactions with the Ig scaffold and

front layer, but also in overall folding of the E1E2 complex. Importantly, residues located on

the back layer of E2 were also found to modulate AR3 and CD81-LEL binding, likely by stabi-

lizing the structure of the front layer and CD81 binding loop. The E2 back layer region also
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appears to be central to E2 folding and function because individual alanine substitutions in

this region universally reduced viral infectivity. It is evident that protein-engineering efforts

should consider the contribution of several residues in the back layer region and the potential

for global misfolding as a consequence of their mutation. This study also provides preliminary

evidence of the location of the E1E2 interface at a glycan-deficient region opposite of the

CD81 binding site. Several flexible or disordered loops present in this region have the potential

to interact with E1 to form the functional E1E2 complex. Further studies to better define the

E1E2 interface, particularly in the isolation and mapping of mAbs to E1 discontinuous epi-

topes and to study the mutations in the context of authentic virus, will greatly facilitate our

understanding of the E1E2 complex. Intergenotypic incompatibilities between E1 and E2 sug-

gesting coevolution of glycoproteins within a genotype should also be considered while study-

ing complex formation [66].

In the absence of complete E1 and E2 structures, it is difficult to fully understanding how

each alanine substitution influences E1 and E2 folding. The data here are useful for identifying

key residues for antibody binding and distal protein regions required to form the epitopes.

However, the data do not have the power to predict the effect of substituting E1E2 residues

with amino acids of diverse chemical properties as seen in natural viral sequences. Other

approaches, such as selection of antibody escape virus mutations or deep mutational scanning

analysis, will complement alanine scanning in the study of E1E2 complex.

This set of complete alanine scanning mutagenesis data will be valuable to inform design of

new E1E2 constructs with improved biochemical properties (e.g. folding, solubility and stabil-

ity) for structural studies and immunization. We believe that a folded, soluble complex of

E1E2 ectodomain will be highly valuable to the field. Our study has established the importance

of E2 VR2 flanking regions, VR3, post-VR3 and back layer regions in E1E2 formation and

these regions should be taken into account for future protein engineering and vaccine design

efforts. Future research on E1E2 interface could lead to improved immunogen engineering for

vaccine design.

Our discussion of this large dataset has been restricted here to the antigenic regions, CD81

binding, and E1E2 complex formation because of publication length considerations. However,

the entire dataset compiling results from the ELISA and flow cytometry analysis, amino-acid

conservation, and previously published mutagenesis data are available online as an Excel

spreadsheet (S1 Table) and we welcome further interpretation and discussion of the data.

Materials and methods

HCV E1E2 mutant library construction

Comprehensive high-throughput alanine scanning mutagenesis was carried out on an HCV

E1E2 expression construct (genotype 1a, strain H77; reference sequence NC_004102) encod-

ing a C-terminal V5 epitope tag. Individual residues of E1 and E2 were mutated to alanine

while existing alanine residues were mutated to serine to create a library of clones, each with a

single point mutation. Overall, 545 mutants were generated by Integral Molecular, Inc., cover-

ing 98.2% of the E1E2 target residues. The sequence of each clone was confirmed by DNA

sequencing (Macrogen) and the library clones were arrayed in 384-well format with each well

containing one mutation [26]. Remaining constructs were found to have additional mutations

and to complete the library, these 10 alanine mutations (R237A, C272A, Q336A, D346A,

T396A, C452A, K562A, Y613A, Y624A, and W712A) were introduced into the H77C E1E2

sequence [67] using the QuikChange Lightening Site-Directed Mutagenesis kit (Stratagene)

and PCR primers for each mutation (Integrated DNA Technologies). The sequence of these

clones was confirmed by DNA sequencing (Retrogen).
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Anti-HCV antibody panel

Mouse mAb A4 and human mAb IGH526 target the N-terminal (residues 197–207) and C-ter-

minal portion (residues 313–327, linear component of IGH526) of E1, respectively [23, 28, 29,

40]. mAbs HCV1 and AP33 recognize E2 residues 412–423, a region that is known for induc-

ing potent, cross-reactive NAbs [30–32] (reviewed in [20]). The antibodies A4, IGH526,

HCV1, and AP33 have been described previously and were produced in-house as recombinant

antibodies [23, 28–32, 40].

The AR1-5 antibodies were isolated previously from an HCV antibody library by phage dis-

play [33, 35]. They recognize three distinct E2 antigenic regions (AR1-3) and two E1E2 anti-

genic regions (AR4-5). mAbs recognizing AR1 are strain-specific and mostly non- or weakly

neutralizing, suggesting this region is occluded in native virions [33]. On the other hand,

mAbs targeting AR2 and AR3 are capable of neutralizing several viral genotypes. AR3 mAbs

recognize the neutralizing face of E2c, which overlaps with the CD81 binding site while mAb

AR2A binds to the back layer of the E2 protein [15, 33]. AR4 and AR5 mAbs are specific for

the E1E2 complex and recognize non-overlapping epitopes. mAb AR4A has been shown to

cross-neutralize the six major HCV genotypes and protected against the human liver chimeric

mouse model from HCV challenge [35, 60].

Overview of methodology

The flow cytometry method measures binding of antibodies to intracellular, membrane-asso-

ciated E1E2. In ELISA, antigens are typically presented as solubilized E1E2 in transfected cell

lysate, enriched onto the microwell surface. Although extraction of E1E2 by non-denaturing

detergents and enrichment of antigens by lectin capture could potentially alter epitope presen-

tation, the antigenicity of the two different forms of E1E2 antigens are mostly equivalent with

some exceptions, predominantly in the E2 back layer. We also confirmed that the antigenicity

of cell lysate-derived E1E2 remains relatively stable over time, even after several freeze-thaw

cycles.

Immunofluorescence assays

For the mutations introduced by Integral Molecular, Inc., the HCV E1E2 mutant library,

arrayed in 384-well microplates, was transfected into HEK-293T cells (ATCC CRL-11268) and

allowed to express for 22 hours. The cells were washed in PBS supplemented with calcium and

magnesium, fixed in 4% paraformaldehyde (Electron Microscopy Sciences), and permeabi-

lized with 0.1% (wt/vol) saponin (Sigma-Aldrich) in PBS supplemented with calcium and mag-

nesium. Cells were stained with mAbs (0.33 to 2.0 μg/ml) diluted in 10% normal goat serum

(NGS) (Sigma), 0.1% w/v saponin, pH 9.0. Optimal mAb concentrations and binding condi-

tions were determined using an independent immunofluoresence curve against wild-type

E1E2 for each mAb. A concentration within the linear range and with suitable signal to back-

ground ratio (>5) was chosen for the library screening. The cells were incubated with anti-

HCV antibody for 1 hour at 20˚C, or overnight at 4˚C, followed by washing three times with

supplemented PBS and 0.1% saponin and a subsequent 30-minute incubation with Alexa

Fluor 488-conjugated secondary antibody (Jackson ImmunoResearch) in 10% NGS, 0.1%

saponin, and supplemented PBS. Stained cells were washed three times with supplemented

PBS and 0.1% saponin, twice with PBS without calcium or magnesium, and were re-suspended

in Cellstripper (Cellgro) plus 0.1% BSA (Sigma-Aldrich). Cellular fluorescence was detected

using the Intellicyt high throughput flow cytometer (HTFC, Intellicyt). Background fluores-

cence was determined by fluorescence measurement of vector-transfected control cells. mAb

reactivity against each mutant HCV E1E2 clone was calculated relative to wild-type E1E2 by
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subtracting the signal from mock-transfected controls and normalizing to the signal from

wild-type HCV E1E2-transfected controls.

The reactivity of the mAb panel to the Q336A, D346A, T396A, C452A, K562A, Y613A,

Y624A, and W712A mutants was measured essentially as described above, but 0.5% saponin

(Sigma-Aldrich) was used. As above, a titration curve for mAb binding to wild-type E1E2 was

performed to determine the optimal mAb concentration (linear range). Fluorescence was

detected using a LSR II cytometer (BD Biosciences). Reactivity was normalized to wild-type

with background binding removed.

Epitope mapping

Mutated residues within critical clones were identified as critical to the mAb epitope if they

did not support reactivity of the test mAb but did support reactivity of other control anti-HCV

mAbs. V5-tag expression was also measured to assess the effect of each mutation on overall

E1E2 expression in transfected cells. The counter-screen strategy and V5 expression tests facil-

itates the exclusion of E1E2 mutants that are locally misfolded or that have an expression

defect [68, 69]. To be highlighted as an important residue, binding thresholds were established

in which there was <25% binding of the mAb of interest but>75% binding of appropriate

continuous and discontinuous control mAbs. Mutations resulting in <50% binding for all dis-

continuous mAbs were flagged as causing perturbations in global E1E2 folding.

ELISA

(i) Alanine mutants. Specific E1E2 residues selected based on conservation across geno-

types or by region (eg. back layer) were individually mutated to alanine using the QuikChange

Lightening Site-Directed Mutagenesis kit (Stratagene) and specific PCR primers (Integrated

DNA Technologies). ELISA was used to assess the binding capability of the mAbs (or CD81-

LEL) to the E1E2 mutants [35]. Briefly, cell lysate from transfected HEK-293T cells containing

mutant E1E2 antigen was captured on ELISA plates pre-coated by G. nivalis lectin (GNL,

5 μg/mL) and blocked with nonfat milk (4% wt/vol, BioRad) in PBS/0.05% Tween20. Clarified

cell lysate containing the mutant antigen was used at a 1:5 dilution. After washing, mAb or

CD81-LEL was added to the plates at a concentration of 1 μg/mL and binding was measured

using an HRP-conjugated IgG antibody and TMB substrate (Pierce). Non-transfected cell

lysate was used as a negative control to determine background signal for each mAb. Binding

signals to the E1E2 alanine mutants were then normalized to binding to wild-type E1E2. Bind-

ing studies for each mutant were repeated at least two times.

(ii) E2c construct. Soluble E2c constructs expressing WT E2c [15] or E2c with alanine

mutations (generated using QuikChange Lightning Site-Directed Mutagenesis Kit from Agi-

lent) in the back layer (I622A, F267A and double mutant), were transfected into HEK-293T

cells in the presence of kifunensine as described above. Dilutions of cell supernatant contain-

ing soluble E2c were assessed for ability to bind WT CD81-Fc and CD81-Fc (K124T), a mutant

that reduces dimerization of CD81 [70] using ELISA as described above. Supernatants from

cells transfected with pAdvantage plasmid (without E2c) was used as a negative control.

Diluted supernatants from WT E2c and back layer mutants were also assessed for expression

to bind mAb HCV1 (different range of dilutions used due to high sensitivity of HCV1

antibody).

(iii) Deletion mutants. Different versions of E1E2 were created using the full-length H77

E1E2 construct [67] to remove regions of E2 (-HVR1, -VR2, -VR3, -post-VR3 and -stalk).

The constructs were expressed in HEK-293T cells by co-transfection of expression plasmid

with pAdvantage (Promega) and transfection agent polyethylenimine (PEI; Polysciences) as
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described previously [71]. The binding capability of mAbs to E1E2 was assessed by ELISA as

indicated above. Briefly, E1E2 constructs expressed in HEK-293T cells were captured from cell

lysates (undiluted) onto microwells pre-coated with G. nivalis lectin (GNL), AR4A or AR5A

mAbs (5 μg/ml) as indicated. After blocking and washing (same as above section), captured

E1E2s were probed by biotinylated mAbs A4, HCV1, AR2A, AR3A, AR4A and AR5A. Binding

was measured using HRP- Streptavidin (Jackson ImmunoResearch Laboratories, Inc.). Lysates

from cells transfected with H77 E1E2 (full length) was used as positive control while those

transfected with pAdvantage plasmid alone (without E1E2) was used as a negative control.

HCV E1E2 infectivity assay (Integral Molecular)

Lentiviral reporter viruses pseudotyped with HCV E1E2 (HCVpp) were produced essentially

as described [72, 73] but in 384-well plates, by co-transfecting the individual expression

plasmids of wildtype and mutant E1E2 with a plasmid encoding HIV core (gag-pol [74]) and

luciferase (pNL4-3.lucR−E−) [75]. Cells were incubated at 37˚C in 5% CO2 to allow for trans-

fection and pseudovirus production. Supernatants were harvested 48 to 72 hours post-trans-

fection and diluted 1:1 with 16 μg/ml Dextran/DMEM and stored at -80˚C. Target Huh-7 cells

were plated at 0.8 x 106 cells/well in DMEM containing additives and incubated at 37˚C in 5%

CO2 overnight. The following day, virus harvests were thawed, medium was removed from the

cells and 40 μl virus was added, cells were then incubated at 37˚C. At 24 hours post-infection,

100 μl of fresh media was added to each well. Infected target cells were lysed 72 hours post-

infection and lysates were assayed for luciferase activity (Promega). The raw luciferase activi-

ties for mutants were background-subtracted and then normalized to the average values

obtained for wild-type E1E2.

Analysis of E1 and E2 in the context of HCVpp

HCVpp was generated by cotransfection of 293T cells with pNL4-3.lucR−E− and the corre-

sponding expression plasmid encoding wildtype or mutant E1E2 genes as described previously

[35]. Cell lysates and culture supernatants were harvested 72 hours post-transfection for im-

munoblotting, infectivity assay and purification of virions. HCVpp was pelleted by centrifuga-

tion of culture supernatant at 16,000 rpm for 1 hour, resuspended, and purified over a 20%

(wt/vol) sucrose cushion [35, 76]. Envelope glycoproteins E1 and E2 were detected by immu-

noblotting using biotinylated mouse mAb A4 [28] and mAb HCV1 [24] and the IRDye680RD

Streptavidin (1:2,000) and IRDye800CW goat anti-human IgG secondary antibodies

(1:10,000) (LI-COR Biosciences), respectively. HIV-1-p24 was detected using biotinylated

mouse monoclonal antibody (diluted to 1:1,000; Aalto Bio Reagents). The immunoblots were

analyzed with the Odyssey Infrared Imaging System and Image Studio software (LI-COR

Biosciences).

E1 and E2 amino acid conservation and hydrogen bonding analysis

For amino-acid conservation, data were obtained from the NIAID Virus Pathogen Database

and Analysis Resource (ViPR) online through the web site at http://www.viprbrc.org [77].

2,345 complete genomes encompassing genotypes 1 through 7 as well as 52 unclassified

genomes were preliminarily identified for HCV. Further inclusion criteria included: human

host only, genders, all geographical regions, and no defined collection period or sample source

(e.g. serum, plasma, etc.). The criteria narrowed the results to 902 E1 and E2 sequences that

were analyzed for sequence variation (SNP) at the amino-acid level. Percent conservation was

calculated by dividing the total number of sequences analyzed by the number of sequences

exhibiting the H77 reference strain (NC_004102) amino acid and subsequently converting to a
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percentage. Hydrogen bond calculations were performed using LigPlot [78]. Complete calcula-

tion results for the E2c—AR3C PDB file 4MWF are available upon request.

Supporting information

S1 Fig. Presentation of E1E2 for flow cytometry and ELISA. Shotgun mutagenesis followed

by whole cell analysis using flow cytometry offers an alternative to ELISA. (A) High-

throughput shotgun mutagenesis was used to create a plasmid mutant library for the entirety

of E1E2, with each clone having a defined alanine mutation. Prior to screening the mutant

library, each primary mAb was tested against wild-type E1E2 to determine optimal mAb

concentration and conditions to achieve high signal to background ratio. HEK-293T cells

were transfected with individual mutants from the library and subsequently fixed and per-

meabilized. Each mAb was tested against each mutant in the library by flow cytometry using

a fluorescent secondary mAb to detect immunoreactivity. Background signal from mock-

transfected cells was subtracted and the signals were normalized to the wild-type E1E2 posi-

tive control [26]. (B) Site-directed mutagenesis was performed on individual conserved resi-

dues of E1E2. Mutant E1E2-containing plasmids were transfected into HEK-293T cells and

the cell lysate was added to lectin-coated ELISA plates at either high (1:5) or low (1:50) con-

centration. The panel of mAbs was tested against the mutant cell lysate using an HRP-conju-

gated secondary antibody and TMB substrate to detect reactivity. Background signal from

mock-transfected cell lysate was subtracted and the signal was normalized to the wild-type

E1E2 positive control.

(TIF)

S2 Fig. Critical residues for AR3 antibodies. Data shown are the mutations resulting in

�25% mean reactivity, expressed as percent of wild-type AR3B-D mAbs, but>75% of at least

one control mAb, using the E1E2 mutant library and flow cytometry analysis (see Fig 6A for

AR3A data). Mutants resulting in poor E1E2 expression (<40%) as determined by the C-ter-

minal V5 tag and those implicated in global misfolding were removed. Binding assays were

performed twice with the range indicated.

(TIF)

S3 Fig. Variable regions and stalk of E2 are critical for assembly of E1E2 complex. The

importance of variable regions (HVR1, R2, VR3, post-VR3) and stalk of E2 for E1E2 complex

formation was tested by ELISA. E1E2 from HEK-293T cell lysates (undiluted) co-transfected

with deletion mutants lacking these regions and pAdv plasmid was captured using GNL,

AR4A or AR5A (as indicated) and evaluated for binding using a panel of antibodies. Full-

length E1E2 without deletions (E1E2) and pAdv plasmid (Control) were used as positive and

negative control, respectively.

(TIF)

S4 Fig. Functional analysis of E2 back layer. HCVpp was generated by transfecting 293T cells

with plasmids expressing wild-type or back layer E1E2 mutant (W616A, I622A, V629A and

R639A). A) Transfected cell lysates were analyzed by reducing SDS-PAGE and immunoblot-

ting using biotinylated mAb A4 for E1 (red) and mAb HCV1 for E2 (green). E1 and E2 in

mutants were quantified as a percentage of wild-type levels (middle and right panels). B) Puri-

fied virions were analyzed by reducing SDS-PAGE and immunoblotting using mAb HCV1 for

E2 (green) and anti-p24 for HIV-1-p24 (red). Percentage of E2 (relative to wild-type) was nor-

malized to corresponding p24 levels (right panel). C) Purified virions were analyzed by non-

reducing (left panel) and reducing (right panel) SDS-PAGE and immunoblotting using bioti-

nylated mAb A4 for E1 (red) and mAb HCV1 for E2 (green). M, Molecular Marker; WT, wild-
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type. Experiments were performed in duplicate.

(TIF)

S1 Table. Percent reactivity of the mAb panel and CD81-LEL to E1E2 mutants. Mean reac-

tivity determined by flow cytometry (FC) and ELISA, if available, is expressed as % wild-type

binding level. Results from previous mapping experiments by others and those from our study

are included for comparison. The percent conservation of each residue is included. Flow

cytometry and ELISA analyses were performed as described in materials and methods.

(XLSX)

S2 Table. Comparison of flow cytometry data with previous mapping experiments. Our

present flow cytometry (FC) and ELISA data with previously published ELISA data [35] were

compared for mAbs AR1A & AR1B (A), AR2A (B), and AR3A-D (C). Coloring is based on

percent reactivity relative to wild-type: <25%, red; 25–50%, orange; 51–75%, green; >75%,

white; and—, not tested. �likely perturbs global folding based on control mAb reactivity by

flow cytometry.

(XLSX)

S3 Table. Back layer hydrogen bonding partners. Hydrogen bond interactions between sev-

eral residues in the back layer region (BLR) and the front layer (FLR), the central Ig scaffold or

the variable region 3 (VR3). Data were calculated from the E2 structure, PDB ID 4MWF [15].

m.c—main chain; s.c—side chain.

(XLSX)

S4 Table. E2 back layer mutations modulate CD81 binding to the E2 front layer and CD81

binding loop. The percent reactivity (given as percent of wild-type E1E2) of a panel of mAbs

along with CD81-LEL, was determined for several back layer alanine mutants using either

ELISA or flow cytometry (FC). Coloring corresponds to the level of binding:�25%, red; 26–

50%, orange; 51–75%, green; 76–150%, white; and>150%, blue. Reactivity shown is a mean

of 2–3 experiments. �Based on FC, these mutants may inhibit proper global folding of E1E2.
#A—>G mutant tested by ELISA; A—>S mutant tested by FC. —, not tested.

(XLSX)

S5 Table. Effect of back layer mutation on HCVpp infectivity. A panel of HCVpp with point

mutation in the E2 back layer (residues 600–645) were generated. Infectivity of each mutant

was measured in triplicate using Huh-7 cells and the results are shown as a percentage of infec-

tivity relative to wild-type HCVpp.

(XLSX)
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