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Abstract

Network analysis is quickly gaining popularity in psychopathology research as a method that aims 

to reveal causal relationships among individual symptoms. To date, four main types of 

psychopathology networks have been proposed: (1) association networks, (2) regularized 

concentration networks, (3) relative importance networks, and (4) directed acyclic graphs. We 

examined the replicability of these analyses based on symptoms of major depression and 

generalized anxiety between and within two highly similar epidemiological samples (i.e., the 

National Comorbidity Survey – Replication [n = 9282] and the National Survey of Mental Health 

and Wellbeing [n = 8841]). While association networks were stable, the three other types of 

network analysis (i.e., the conditional independence networks) had poor replicability between and 

within methods and samples. The detailed aspects of the models—such as the estimation of 

specific edges and the centrality of individual nodes—were particularly unstable. For example, 

44% of the symptoms were estimated as the “most influential” on at least one centrality index 

across the six conditional independence networks in the full samples, and only 13–21% of the 

edges were consistently estimated across these networks. One of the likely reasons for the 

instability of the networks is the predominance of measurement error in the assessment of 

individual symptoms. We discuss the implications of these findings for the growing field of 

psychopathology network research, and conclude that novel results originating from 

psychopathology networks should be held to higher standards of evidence before they are ready 

for dissemination or implementation in the field.
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The popularity of network analysis is spreading quickly in the study of psychopathology. In 

particular, a growing number of studies using cross-sectional analyses of networks of 

psychopathology symptoms have appeared in the literature since Cramer et al. (2010a) 

proposed this approach. These networks are based on the foundational premise that 

psychopathology symptoms causally influence one another as part of a complex dynamical 

system, thereby contributing to disorder onset and maintenance (Borsboom & Cramer, 2013; 

Cramer et al., 2010a). Such analyses represent an effort to map the causal structure of 

symptom-to-symptom relationships within and between traditionally-defined mental 

disorders (Borsboom & Cramer, 2013; Cramer et al., 2010a).

The proliferation of network analysis is no doubt related to the attractive qualities of the 

method. For example, network models are promoted as a window into the nuanced and 

complex dynamic processes of mental disorders; by focusing on observed symptoms, the 

models appeal to the salience of proximal, observable clinical targets that other statistical 

techniques may seem distant from. Network analysis is also an accessible statistical method. 

Borsboom and Cramer (2013) highlighted that “…the application of network models does 

not require extensive prior knowledge, as many other methodologies do: All one needs is a 

set of elements and an idea of how these elements are connected.” (p. 100).

Perhaps the most attractive features of network analysis are the graphical representations of 

the networks, which can display the interrelationships among hundreds of variables in a 

single figure (e.g., Boschloo, Schoevers, van Borkulo, Borsboom & Oldehinkel, 2016a; 

Boschloo et al., 2015). Each network figure is generally comprised of circular nodes, which 

represent the symptoms being analyzed, and linear edges, which represent a pairwise 

statistical relationship between each pair of nodes. Edges can be weighted (the width of the 

edge represents the strength of a relationship) or unweighted (representing the presence or 

absence of a relationship); directed (unidirectional, indicated with an arrow) or undirected 

(bidirectional, typically indicated with a line); and positive (e.g., green) or negative (e.g., 

red). This intuitive interpretation is further facilitated by the Fruchterman and Reingold 

(1991) algorithm used in many psychopathology network figures, in which strongly related 

symptoms are attracted towards one another (i.e., tend to cluster together) and symptoms 

with weaker interrelationships repel one another (i.e., tend to be positioned on the edges of 

the network).

The Four Main Types of Psychopathology Networks

There are four main types of networks that psychopathologists have used in cross-sectional, 

observational symptom data, each of which is presented as a step towards characterizing the 

causal system within and/or between mental disorders (e.g., Borsboom & Cramer, 2013; 

McNally, 2016). These four types of networks, in turn, can be considered separately based 

on whether they represent zero-order relationships (e.g., Pearson correlations), or 
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relationships that are conditionally independent of other relationships in the network (e.g., 

partial correlations).

Association Networks

First, association networks are based on the zero-order bivariate relationships (e.g., Pearson 

correlations) among the nodes, and include undirected weighted edges to represent the 

strength of these relationships. Association network figures are useful for visualizing the 

multivariate relationships among symptoms (Epskamp, Kruis & Marsman, under review-b), 

and highlight the patterns in which symptoms tend to cluster together (Borsboom & Cramer, 

2013). However, association networks do not account for the fact that the correlation 

between a pair of nodes might be due to their shared relationships with other symptoms (i.e., 

they may only be conditionally dependent, Borsboom & Cramer, 2013; McNally et al., 

2014).

Conditionally Independent Networks

In contrast, the three other main types of psychopathology networks exclude the variance 

that is shared by more than two symptoms to isolate the conditionally independent 
relationships between each pair of nodes. We will refer collectively to networks based on 

patterns of conditionally independent relationships (i.e., concentration networks, relative 
importance networks, and directed acyclic graphs, discussed in more detail below) as 

conditional independence networks. Figure 1 briefly illustrates the difference between 

conditionally dependent and conditionally independent relationships. For example, on the 

left of the figure, a large proportion of the relationship between A and B is conditionally 

dependent on (i.e., overlapping with) C and D. On the right of the figure, we can see the 

conditionally independent relationship between A and B (i.e., the relationship that is shared 

between A and B, but unshared with any other symptoms). In the network literature, 

conditionally independent relationships are purported to “provide clues about the causal 

skeleton of a network” (Borsboom & Cramer, 2013, p. 105), in that they highlight the direct 

(versus indirect) relationship between nodes (Robinaugh, LeBlanc, Vuletich & McNally, 

2014). In Figure 1, nodes A and B would be more strongly related in an association network 

than in a conditional independence network, but the smaller conditionally independent 

relationship between them might be used to infer that they are directly causally related. 

However, it is important to note that this relationship might also be due to shared item 

content, a reciprocal effect, or the common effect of an unmodelled variable (Costantini et 

al., 2015).

As mentioned above, there are three main categories of conditional independence networks 

that we will explore in this study: concentration networks, relative importance networks, and 

directed acyclic graphs (DAGs). Concentration networks are made up of undirected 

weighted edges that represent the conditionally independent relationships between nodes 

(e.g., partial correlations; see Lauritzen, 1996; van Borkulo et al., 2014a for details). 

Concentration networks are often regularized to eliminate weak and unreliable estimated 

edges from the model (see Friedman, Hastie, & Tibshirani, 2008; Tibshirani, 1996 for 

details). Regularization thus maximizes specificity, but at the cost of sensitivity (Epskamp et 

al., under review-b); van Borkulo et al. (2014a) suggested that by using a regularization 
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method in binary data “the important connections are almost always correctly identified” (p. 

2) and “there is a near absence of false positive among estimated network connections” (p. 

3). This purported reliability—and consequent expected replicability—of regularized models 

is emphasized in the literature (e.g., Boschloo et al., 2016a; Costantini et al., 2015; Epskamp 

et al., under review-b).

Relative importance networks represent the strength and direction of each edge based on the 

average amount of variance that, for example, node X predicts in node Y (X➔Y), and vice 

versa (Y➔X), after controlling for all possible combinations of the other nodes in the 

network. In other words, each weighted and directed edge represents the proportion of 

explained variance (expressed as R2, ranging from 0 to 1) that is attributable to each node 

after accounting for multicollinearity (i.e., the intercorrelations among all of the nodes in a 

network). The interpretation of relative importance networks emphasizes when one of the 

edges between a pair of nodes has higher relative importance than the other (see Johnson & 

LeBreton, 2004 for further discussion of relative importance). When X➔Y is stronger than 

Y➔X it is inferred that X directly predicts Y (Hoorelbeke, Marchetti, De Schryver & 

Koster, 2016; McNally, 2016; McNally et al., 2014; Robinaugh et al., 2014).

Finally, DAGs aspire to discern causality via constraint-based (e.g., Borsboom & Cramer, 

2013) or Bayesian network analysis (e.g., McNally, 2016). More realistically, DAGs depict 

the direction of probabilistic dependencies so that the unweighted and directed edge X ➔ Y 

indicates that the presence of node X is associated with an increased likelihood that Y will 

also be present (see Scutari, 2010 for more information on the computation of DAGs).

The Utility of Psychopathology Networks Relies on Generalizability and 

Replicability

While the global characteristics of these four types of networks are sometimes interpreted 

(e.g., the global connectivity and/or density of the network; van Borkulo et al., 2015), it is 

the detailed features of the networks that are claimed to represent their distinctive promise. 

Specifically, the proponents of network analysis have emphasized two primary types of 

utility for psychopathology networks based on cross-sectional symptom-level data. (1) 

Generating hypotheses about the symptom-to-symptom relationships that characterize 

trajectories toward the onset and/or maintenance of one or more mental disorders (e.g., 

Borsboom & Cramer, 2013; Cramer et al., 2010a; Rhemtulla et al., 2016). (2) Identifying the 

most influential symptoms in the network, which are believed to trigger the development of 

other symptoms, predict disorder onset, and represent urgent clinical targets (Boschloo, van 

Borkulo, Borsboom & Schoevers, 2016b; Cramer & Borsboom, 2015; McNally et al., 2014; 

Rhemtulla et al., 2016). With few exceptions, these detailed characteristics of the networks 

(i.e., the presence, strength, and/or direction of specific edges; and the centrality of 

individual nodes) tend to be the focus of network analysis, and form the basis for studies’ 

conclusions (e.g., Borsboom & Cramer, 2013; Cramer et al., 2010a; Fried et al., 2015; Fried, 

Epskamp, Nesse, Tuerlinckx & Borsboom, 2016; Rhemtulla et al., 2016).

In short, the aim of network analysis is to characterize the role of individual symptoms in the 

onset and course of mental disorders. This aim demands that the inferences and hypotheses 
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derived from psychopathology networks are generalizable and replicable beyond the 

samples in which they were derived. While the proponents of network analysis have noted 

that the symptom-to-symptom relationships estimated in a network will not necessarily be 

present in all individuals (e.g., Cramer et al., 2010a), networks derived from between-

subjects associations would presumably need to be replicable (i.e., in other samples) in order 

for psychopathology network research to have utility. Replicability is particularly pertinent 

given that psychology research—including clinical psychology—is in the midst of a 

replication crisis (Open Science Collaboration, 2015; Tackett et al., 2016). This may be at 

least partly due to a focus on generating new and exciting findings at the expense of rigorous 

and repeated testing of hypotheses. Inferences made from psychopathology networks are 

likely to be particularly susceptible to this pitfall, as network analyses are exploratory, data-

driven techniques that entail estimation of a large number of parameters. For example, an 

association or concentration network of posttraumatic stress disorder (PTSD) symptoms 

from Diagnostic and Statistical Manual of Mental Disorders – Fifth Edition (American 

Psychiatric Association, 2013) would have 20 nodes and 190 possible edges (calculated as 

k*[k−1]/2, where k is the number of nodes).

There are numerous other harbingers of poor replicability for psychopathology networks, the 

most salient of which is the inevitable presence of substantial measurement error in 

symptom-level psychopathology data. In most psychometric models, each of the observed 

scores for symptoms A to D in Figure 1 comprises true score (i.e., the information we are 

interested in learning more about), systematic error (e.g., from overlap in the content of the 

questions about each symptom), and random error (or noise). From a psychometric 

perspective, the most reliable information from the symptoms is in their overlap. For 

example, the darkest areas of the variance used to estimate association networks in Figure 1 

(i.e., the areas with the most overlap) would likely be comprised mostly of true score and 

some systematic error. However, the conditionally independent relationships—on the right 

of Figure 1—are based on the variance shared by only two symptoms, and the reliable 

variance shared by more than two symptoms is not used to estimate the conditional 

independence networks. This means that the conditionally independent relationships are 

more likely to be made up of systematic error and noise, which makes them vulnerable to 

subtle changes in the data and likely to vary depending on the nodes that are included or 

excluded from an analysis (see Supplementary Materials Appendix S1 for examples that 

illustrate the sensitivity of conditionally independent relationships to different types of 

change). Combined with the inherently exploratory nature of psychopathology networks, the 

large number of parameters estimated, and the emphasis on conditionally independent 

relationships among symptoms, this means that the networks are likely highly influenced by 

noise and prone to overfitting the data, potentially resulting in nonreplicable solutions. Our 

aim herein is to explore this possibility explicitly and empirically.

In line with theoretical reasons to expect poor replicability, there have been multiple studies 

that have estimated concentration networks of depression, each of which has differed in the 

rank-orders of node strength centrality (e.g., Fried et al., 2016; van Borkulo et al., 2014a; 

van Borkulo et al., 2015). The network structure of depression also appears to change 

depending on the symptoms included in the model, as well as whether it is modelled alone 

or alongside other syndromes (e.g., Boschloo et al., 2016b; Boschloo et al., 2015; Fried et 

Forbes et al. Page 5

J Abnorm Psychol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al., 2016; Robinaugh et al., 2014; van Borkulo et al., 2014a; van Borkulo et al., 2015), 

although this may be related in part to the use of different measures of depression (Fried, van 

Borkulo, Cramer, Boschloo, Schoevers, & Borsboom, under review). Similarly, studies that 

have examined the network structure of posttraumatic stress disorder (PTSD) using each of 

the four main types of network analysis across two data sets have found results that suggest 

the different methods uncover different relationships, some of which may represent 

idiosyncrasies unique to a dataset that do not generalize to other data (McNally, 2016; 

McNally et al., 2014).

However, despite the a priori reasons to expect poor replicability, and the preliminary 

evidence in extant research that psychopathology network results are unstable, the 

replicability of the focal characteristics of networks (e.g., the presence, strength, and/or 

direction of specific edges; and the centrality of individual nodes) has not been addressed 

explicitly to date. In the context of the proliferation of psychopathology network research in 

prestigious journals, it is therefore critical to determine the extent to which psychopathology 

networks are replicable.

The Present Study

The aim of the present study was to fill this specific gap in the emerging network literature 

by testing the replicability of key features in each of the four main network models used in 

cross-sectional psychopathology symptom research. We examined both generalizability of 

the results (i.e., attempting to produce convergent results in a similar sample; cf. Lykken, 

1968) and the stability of the results (i.e., attempting to duplicate findings in 

methodologically identical samples by comparing random split-halves within samples; cf. 

Lykken, 1968). The between-samples generalizability of the results is representative of how 

we might expect the psychopathology network literature to evolve as network analysts ask 

similar questions in different datasets. While the within-samples tests do not speak directly 

to the generalizability of psychopathology network results, they quantify the sensitivity of 

the networks to smaller differences between samples, and ensure that any differences in the 

between-samples analyses are not unduly biased by idiosyncrasies in the samples we 

selected (Brandt et al., 2014).

Through a review of the network analysis literature, we found a variety of methods that have 

been used to compare networks. These methods include visual comparison of network 

structure (Costantini et al., 2015; Rhemtulla, Fried, Aggen, Tuerlinckx, Kendler, & 

Borsboom, 2016), comparing global strength between networks (Beard et al., 2016; van 

Borkulo et al., 2015), using correlations to quantify the overall similarity in estimated edges 

between networks (Beard et al., 2016; Rhemtulla et al., 2016), comparing the average node 

centrality between networks (Curtiss & Klemanski, 2016; Fried et al., 2016; van Borkulo et 

al., 2015), and visual comparisons of patterns in node centrality indices (Rhemtulla et al., 

2016; van Borkulo et al., 2015). Notably, these analyses have not compared individual edge 

or node characteristics. Given these are the focal features in interpreting networks, there is 

an evident mismatch in extant network comparison methods and the intended research 

questions (cf. Anderson & Maxwell, 2016). Further, all of these comparisons have been 

conducted within samples for different networks, or between different groups of 
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participants; we could not find any examples of cross-sectional psychopathology network 

research that tested the replicability of their results in a second similar sample. As such, 

neither the generalizability nor the stability of the focal psychopathology network 

characteristics have been tested to date, to the best of our knowledge.

In the present study, we therefore systematically tested the similarities and differences in 

psychopathology network features—from broad (e.g., the level of connectivity in the 

networks) to specific (e.g., the rank-order of individual nodes)—between and within two 

epidemiological samples. We started with the major depressive episode (MDE) and 

generalized anxiety disorder (GAD) symptom data from the National Comorbidity Survey – 

Replication (NCS-R; Kessler et al., 2004), which has been the focus of two seminal 

psychopathology network papers (Borsboom & Cramer, 2013; Cramer et al., 2010a). We 

subsequently sought to replicate the NCS-R networks in a similar epidemiological sample 

(i.e., the 2007 Australian National Survey of Mental Health and Wellbeing [NSMHWB]; 

Australian Bureau of Statistics, 2007; Slade, Johnston, Oakley Browne, Andrews & 

Whiteford, 2009) that used the same structured diagnostic interview. We then compared each 

type of network in ten pairs of random split-halves within each sample.

An auxiliary aim was to examine the consistency among the three types of network models 

that represent conditionally independent relationships (i.e., concentration networks, relative 

importance networks, and DAGs), all of which identify relationships between symptoms that 

are interpreted as reflecting causal associations (McNally, 2016; McNally et al., 2014). 

While we would not necessarily expect the global features of these conditional independence 

networks to be similar (e.g., connectivity or density), it is crucial for the promoted utility of 

psychopathology networks that there is consistency in the focal characteristics of the 

networks, such as the most influential node, and the presence or absence of edges that 

purportedly reflect causal associations at different levels of abstraction.

Method

Samples and Assessment

The NCS-R and the NSMHWB are both nationally representative household surveys of 

English speakers in the United States and Australia, respectively. Detailed information on 

the methodology of these surveys has been reported elsewhere (Kessler et al., 2004; Slade et 

al., 2009). Recruitment and consent procedures for NCS-R were approved by the Human 

Subjects Committees of Harvard Medical School and the University of Michigan; the 

NSMWHB was conducted under the authority of the Census and Statistics Act 1905. Both 

surveys were based on the World Mental Health Survey Initiative version of the World 

Health Organization’s Composite International Diagnostic Interview (WMH-CIDI; Kessler 

& Ustun, 2004). The NCS-R interviews were conducted between February 2001 and April 

2003, and the present study includes the 9282 respondents (mean age = 44.7, standard 

deviation [SD] = 17.50; male = 44.6%) who participated in the core diagnostic assessment. 

The NSMHWB interviews were conducted between August and December 2007, and the 

present study includes the 8841 respondents (mean age = 46.4, SD = 18.99; male = 44.5%) 

who participated in the survey. The average age was higher in NSMHWB, although the 

effect size was small (t(17820.20) = −5.95, p < .0005; Cohen’s d = .09); there were no 
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differences in the proportions of men and women between the two samples (χ2(1) = 1.68, p 
= .195; φ = .01).

The symptoms that were analysed in the present study were derived from the WMH-CIDI 

algorithms that code each diagnostic criterion for DSM-IV MDE and GAD as present (1) or 

absent (0), and are the same in both samples (see Table 1). Missing values that arose from 

the skip structure of the questionnaire were replaced with zeros, in line with Cramer et al. 

(2010a) and Borsboom and Cramer (2013). All of the analyses were based on the bivariate 

relationships among the symptoms, and these patterns were the same in both samples; a 

model that constrained the correlation matrices to be equal in both samples had excellent fit 

(comparative fit index [CFI] = 1.000, Tucker-Lewis index [TLI] = .999, root mean square 

error of approximation [RMSEA] = .017, chi-square difference test [χ2
diff] (171) = 794.80, 

p < .0005)1. In short, we had two representative population samples of similar size and 

equivalent symptom characteristics that were conducted using the same instructions, 

procedures, and measures of MDE and GAD symptoms (cf. Brandt et al., 2014). The only a 
priori reason to expect possible differences between the samples was their countries of 

origin, and this was accounted for by assessing replicability within the samples (i.e, between 

split-half pairs).

Statistical Analysis

Computing the Networks—Borsboom and Cramer (2013) included a tutorial for the 

network analysis of the MDE and GAD symptoms in NCS-R2. However, since the 

publication of Borsboom and Cramer (2013), there have been developments in the methods 

for the network analysis of binary data in particular, but also more broadly for network 

analysis of cross-sectional psychopathology data (e.g., Costantini et al., 2015; Epskamp, 

Borsboom & Fried, under review-a; McNally, 2016; van Borkulo et al., 2014a). Our aim in 

these analyses was to use the most reliable methods for estimating networks to maximize 

their replicability. As such, rather than rely on the methods from the Borsboom and Cramer 

(2013) tutorial (e.g., estimating an association network based on Pearson correlations in 

binary data), we chose four network models to compare in the NCS-R and NSMHWB data, 

following recommendations from the more recent literature (Costantini et al., 2015; 

Epskamp et al., under review-a; McNally, 2016; van Borkulo et al., 2014a): (1) association 

networks based on tetrachoric correlations, (2) concentration networks based on regularized 

Ising models, (3) relative importance networks, and (4) DAGs based on Bayesian network 

analysis.

Association networks were estimated using the R (R Core Team, 2013) package qgraph 
(Epskamp, Cramer, Waldorp, Schmittmann & Borsboom, 2012) based on tetrachoric 

1A two-factor (MDE and GAD) confirmatory factor analysis with all parameters constrained to be equal between the two samples also 
had excellent fit (CFI = .999, TLI = .999, RMSEA = .021; χ2diff (19) = 188.36, p < .0005).
2We also completed the tutorial in Borsboom and Cramer (2013) with the aim of reproducing the original results based on GAD and 
MDE in NCS-R. We were able to reproduce the association network from the NCS-R data. However, we were not able to reproduce 
the DAG, as the PC algorithm in the R package PcAlg was order-dependent (i.e., influenced by the order in which variables were 
included in the analyses). The algorithm was updated in 2012 in the new pcalg package (Kalisch, Maechler, Colombo, Maathuis & 
Buehlmann, 2012) to allow for the computation of order-independent DAGs, and the old PcAlg package is no longer available for use. 
A DAG computed using a fully order-independent version of the PC algorithm in the NCS-R data reproduced only 8 of the 37 (21.6%) 
original paths.
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correlations to represent the bivariate relationships in the data; tetrachoric correlations are 

interpreted just like any other correlation coefficient.

Ising models were computed to represent the conditionally independent relationships 

between nodes. The edges in these models are based on log-linear regression coefficients, 

which can be interpreted much like partial correlations; they represent the association 

between a pair of nodes after controlling for their relationships with all the other nodes. We 

used the eLasso regularization method in the R package IsingFit (van Borkulo, Epskamp & 

Robitzsch, 2014b), which applies an l1-penalty to the log-linear regression coefficients to 

find an optimal balance of sparsity (i.e., having few edges) and goodness of fit of the 

network to the data (e.g., van Borkulo et al., 2014a). Following the recommendations of van 

Borkulo et al. (2014a), we emphasized specificity in these models by encouraging a 

parsimonious solution; the hyperparameter was set at .25 to penalize models with more 

parameters and the “AND-rule” was used to require both regression coefficients (e.g., A➔B 

and B➔A) to be non-zero for an edge (e.g., A—B) to be included in the network.

Relative importance networks were estimated using the lmg metric in the R package 

relaimpo (Grömping, 2006). Given all 306 possible edges are estimated in this type of 

network, we highlighted nodes with higher relative importance by only retaining an edge in 

the network if it accounted for at least 5% of the variance in the predicted node (cf. 

Robinaugh et al., 2014) and if it had higher relative importance in a pair of nodes (i.e., 

accounted for at least .5% more variance than the other edge in the pair3). In other words, if 

A➔B had an edge weight of .08 (R2 = 8%) and B➔A had an edge weight of .06 (R2 = 6%), 

the network only included the edge from A➔B. This was done to facilitate the objective 

interpretation and comparison of the networks without relying on visual assessment of line 

weights (cf. Diaconis, 1985). The full uncensored relative importance networks with all 306 

edges are included in the Supplementary Materials (Figure S1).

DAGs were computed based on Bayesian network analyses (i.e., the hill-climbing algorithm 

from the R package bnlearn; Scutari, 2010), as described in McNally, Mair, Mungo, and 

Riemann (2017). The hill-climbing algorithm adds, removes, and reverses edges until a 

target Bayesian Information Criterion score is reached. We estimated DAGs based on 1000 

bootstrap samples, taking the average network of the bootstraps and retaining only edges 

that appeared in at least 85% of these networks, plotted in their most frequent direction. 

McNally et al. (2017) describe these sparse networks as the most likely to estimate genuine 

edges, compared to alternative methods for computing DAGs. The DAGs were plotted as 

trees that position predictors upstream from the nodes they predict (i.e., all edges are 

downward-pointing arrows). All other network figures were plotted in using the 

Fruchterman and Reingold (1991) algorithm, which positions nodes with stronger 

connections near the center of the network, and those with weaker connections near the 

periphery. A Fruchterman and Reingold plot of the DAGs is also available in the 

Supplementary Materials (Figure S2) for consistency.

3This value was guided by the range of absolute differences between each pair of edges when at least one edge weight was greater 
than .05. In NCS-R, the range in the absolute values of the difference in edge weights in these pairs was .0001–.0618, with a median 
of .0062. In NSMHWB the range was .0001–.0659, with a median of .0057.
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Comparing the Networks—For the between-samples analyses, we treated the NCS-R as 

the baseline model, and the NSMHWB as the replication model. These analyses tested the 

generalizability of the results by making comparisons within each of the four types of 

network analysis between the two samples (e.g., comparing the Ising model in NCS-R to the 

Ising model in NSMHWB) as detailed below. The figures of these networks are presented to 

show examples of each type of network, and to illustrate specific inferences that generalize 

(or do not generalize) from one network to the other 4. The within-samples analyses were 

based on comparisons within each type of network and within each sample by comparing 

ten pairs of random split-halves in each dataset. Rather than presenting all twenty sets of 

analyses, we summarize the results based on the central tendency (median) for each set of 

split-halves. Reliability within each sample would ordinarily be required before examining 

reliability between the samples, but in this case presenting both sets of results allowed us to 

illustrate the ways in which different indicators of replicability vary within and between 

samples, providing a more complete picture of the performance of network models in cross-

sectional symptom-level data.

There are no established methods for systematically comparing the range of network 

characteristics of interest in psychopathology research or assessing model fit for the four 

types of networks estimated in this study, to the best of our knowledge. As such, we have 

carefully defined the effects that we intended to replicate, and tests specific to those effects 

(cf. Brandt et al., 2014). We compared the network features—from broad to specific—using 

metrics with varying levels of sensitivity to instability in the network characteristics that are 

focused on in the psychopathology network literature. Specifically, we compared the 

following characteristics—presented in order of expected sensitivity to differences between 

networks:

1. The differences in the global connectivity (i.e., the number of connections that 

were estimated to be non-zero; Boschloo et al., 2016a; Costantini et al., 2015; 

Fried et al., 2016) and density (i.e., average edge strength in weighted networks; 

De Schryver, Vindevogel, Rasmussen & Cramer, 2015) between the networks.

2. Changes in estimated edges, including:

a. The proportion of edges in the baseline network that replicated,

b. The average absolute differences (% change) of the replicated edge 

weights,

c. The proportion of edges unique to the baseline network (i.e., that failed 

to replicate), and

d. The proportion of edges unique to the replication network.

3. The rank-order of the node centrality indices in each network, and consistency in 

the most central node5 based on:

4It was immediately evident that the placement of individual nodes and their proximity to one another was unreliable (i.e., differed 
substantially between networks and was not consistent with node centrality indices), so we did not interpret these features of the 
networks. This is revisited in the discussion.
5The most central node was defined as the highest-ranking node for at least two of the three indices (cf. van Borkulo et al., 2014a).
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a. Strength, which represents the sum of the edge weights connected to a 

node. When edges are unweighted (e.g., in DAGs), this metric is called 

degree and represents the number of edges connected to a node. 

Similarly, in networks with directed edges, these metrics are presented 

as out strength/out degree and in strength/in degree to separate edges 

that represent A➔B (contributing to out strength for A) from edges that 

represent B➔A (contributing to in strength for A).

b. Closeness, which represents the inverse of the average shortest path 

length (i.e., the average number of steps in the shortest path between 

pairs of symptoms) for a given node with all other nodes in the network.

c. Betweenness, which represents the number of times a node lies on the 

shortest path between two other nodes.

The rank-orders of the node centrality indices for each model were compared using 

Kendall’s tau-b coefficient, as well as matches in rank-order. While tau summarizes the 

similarities of the relative node rank-orders, examining the exact matches in rank-order (e.g., 

whether a symptom is ranked first for strength in both samples) is more consistent with the 

way node centrality indices are interpreted in the psychopathology network literature, which 

focuses on which specific symptom is ranked first, second, third, or last on each centrality 

index (e.g., Boschloo et al., 2016b; Cramer & Borsboom, 2015; McNally et al., 2014; 

Rhemtulla et al., 2016). We calculated the matches in node centrality rank-order by sorting 

the nodes from highest centrality to lowest centrality within each index, and counting the 

number of nodes with the same rank-order (e.g., fifth) in both samples. Because duplicate 

values (i.e., tied ranks) were common within each centrality index, nodes were often able to 

have multiple ranks; for example, if the second, third, and fourth highest centrality values 

were equal, then the nodes with these values have interchangeable ranks. We took this 

flexibility in the ranks into account, and counted a match in rank-order if there was any 

possible order that facilitated a match and maintained the sorting from highest to lowest 

centrality. In other words, we report the maximum possible number of matches in node 

centrality rank-order.

After doing these comparisons for each pair of networks between and within the two 

samples, we also briefly examined the overall consistency in estimated edges and node 

centrality between the conditional independence networks in the full samples. The results 

are summarized below, and elaborated with specific examples in the discussion.

Results

Tetrachoric Correlation Association Networks

Tables 2–4 show the results from the network comparisons between the samples and 

between the split-halves within the samples. The NCS-R and NSMHWB association 

networks are shown in Figure 2. The darker and thicker edges show that the symptoms of 

MDE and GAD are intercorrelated more strongly within each disorder, compared to between 

the disorders, in both examples. All paths were estimated in all of the association networks, 

which meant their connectivity was identical and all edges were replicated between and 
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within the samples. The density of the networks and the mean differences in edge weights 

were more similar within the samples than between them, reflecting the greater similarity in 

the underlying correlation matrices 6. However, this greater similarity in estimated edges 

was not reflected in node centrality. The node centrality rank-orders tended to be very 

similar within and between samples; the rank-order correlations ranged from τ = .67 to τ = .

79, but individual nodes rarely had the same rank when comparing networks within and 

between samples (13.9–27.8% matches in rank-order). Similarly, the NCS-R and NSMHWB 

networks had different most central nodes, and the split-half pairs within samples had 

different most central nodes in 70–80% of cases.

Regularized Ising Models

The NCS-R and NSMHWB Ising models are shown in Figure 3. The regularization of the 

log-linear paths between the nodes has resulted in fewer edges being included in each 

network, but we can still see distinct MDE and GAD clusters in both networks. The 

replicability of the edges in the Ising models was remarkably similar in the between and 

within samples comparisons (see Tables 2–4). For example, the connectivity, density, and 

proportion of replicated edges were consistent. A large proportion of edges tended to 

replicate (83.4–86.6%), but these replicated edges differed substantially (i.e., by 30.4–

48.4%) in the their estimated strength. Node centrality was more idiosyncratic: NCS-R and 

NSMHWB had different most central nodes, as did all of the split-halves in NSMHWB. In 

contrast, depressed mood (depr) was consistently estimated as the most central node in 

NCS-R, such that 80% of the split-half pairs matched. The node centrality rank-order 

correlations ranged from τ = .57 to τ = .80 between and within samples, but only half of the 

individual nodes had matches in their rank-order for betweenness centrality (50–55.6% 

matches in rank-order) and even fewer had matches in their rank-order for strength and 

closeness centrality (16.7–33.3% matches in rank-order).

Relative Importance Networks

The censored relative importance networks estimated in NCS-R and NSMHWB are shown 

in Figure 4. Neither network had bridging edges between MDE and GAD with edge weights 

over .05, resulting in distinct disorder clusters. While depressed mood (depr) appears to have 

a similar role in both networks, there are marked differences between the GAD clusters that 

are at odds with the similar number of connections and density between the two networks 

(see Table 2). This similar connectivity and density was also seen between the split-half 

pairs within each sample, and the replicated edges tended to have similar strength between 

and within the samples too (see Tables 3 and 4). However, the replicability between samples 

was worse than within samples, as 25.8% of the edges failed to replicate between samples 

(versus 6.6–14.6% within samples), and the node centrality rank-orders also varied more 

6Constraining the correlation matrices to be held equal between each pair of split-halves was consistent with near-perfect model fit in 
both samples. In NCS-R, all split-half pairs had CFIs and TLIs of 1.000 when constrained to be equal; RMSEA ranged from 0–.011 
(all ps = 1.000); eight of the ten split-half pairs had non-significant chi-square difference tests, and two pairs had small but significant 
chi-square differences at p < .05; χ2range (171) = 145.45–267.49 (median = 165.12), prange = .000–.892 (median = .605). In 
NSMHWB, all split-halves had CFIs and TLIs of 1.000 when constrained to be equal; RMSEA ranged from 0–.005 (all ps = 1.000).; 
and none of the split-halves were significantly different: χ2range (171) = 148.94–192.18 (median = 156.84), prange = .128–.887 
(median = .764).
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between samples. For example, sleep problems in MDE (mSle) was the most central node in 

NSMHWB, but did not rank in the top three most central nodes on any index in NCS-R.

Directed Acyclic Graphs

As for the other conditional independence networks, the DAGs had similar connectivity, but 

approximately one in five of the edges in each sample failed to replicate between the two 

samples (see Table 2 and Figure 5). The node centrality rank-order correlations ranged from 

τ = .57 to τ = .75, also mirroring the other conditional independence networks, but tended to 

have a higher proportion of matches in node centrality rank-order for the strength family of 

indices than other networks, likely due to the compressed information (count vs. continuous 

scale) in in degree and out degree centrality. This same pattern of results was seen for node 

centrality in the split-half comparisons (see Table 3 and Table 4), although it is noteworthy 

that none of the network pairs—within or between samples—had the same most central 

node. In contrast, the replicability of edges was worse in the split-half comparisons, where a 

median of 25.0–37.8% of edges failed to replicate.

Consistency between the Conditional Independence Networks

As a follow-up, we briefly examined the consistency in the focal network characteristics 

(i.e., the most central node, and the presence or absence of specific edges) between the 

conditional independence networks in NCS-R and NSMHWB. There was very little 

consistency in the networks. For example, 44.4% of the nodes (n = 8) were ranked as “the 

most influential” on at least one centrality index (excluding in strength and in degree) in at 

least one of the networks, and there was limited consistency between the three methods (i.e., 

no node was ranked highest on a centrality index across the Ising models, relative 

importance networks, and DAGs). The most striking example of inconsistency between the 

networks was in the proportion of edges that failed to replicate across all six networks: 

There were 90 unique undirected edges between the two Ising models, and one additional 

unique directed edge estimated in the relative importance networks, giving a total of 91 

edges estimated with the aim of uncovering the causal relationships among the 18 

symptoms. In comparing the networks, we allowed an undirected edge to be replicated by a 

directed edge between the same two nodes, and vice versa. Only twelve edges (13.2%) were 

estimated in all six networks. Comparing the three conditional independence networks 

within the NCS-R dataset, only 17 of the 81 unique edges (20.9%) were consistently 

estimated; within the NSMHWB dataset only 13 of the 81 unique edges (16.0%) were 

consistently estimated.7

Discussion

This aim of this study was to test the generalizability and stability of the four main types of 

psychopathology symptom network models used in cross-sectional research. Broadly, the 

global characteristics of the models—such as the presence of MDE and GAD clusters, and 

7Given the relative importance networks were highly censored based on arbitrary criteria, we also examined the consistency between 
the Ising models and the DAGs separately. Across the two samples, there were 90 edges estimated between these four networks, and 
27 (30.0%) were estimated in all four. Within the NCS-R data, 41 (42.5%) of the edges were estimated in both the Ising model and the 
DAG; and within the NSMHWB data, 50 (41.7%) of the edges were estimated in both the Ising model and the DAG.
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the connectivity and density of the networks—tended to be consistent within each method 

between and within the two samples. In contrast, the detailed aspects of the models were 

much less replicable. Specifically, the three types of models based on patterns of conditional 

independence among the nodes were generally not consistent between or within the samples 

with respect to the estimated edges, the rank-order of node centrality, or the most central 

nodes. This meant that each psychopathology network would result in fundamentally 

different conclusions regarding the pathways to disorder onset and comorbidity, and 

regarding which symptoms represent urgent clinical targets, as explored below. Examples of 

poor and absent replicability are elucidated below and interpreted in the context of the 

literature. The statistical and theoretical assumptions of the methods that likely account for 

why we found such poor replicability in the present study are also explored.

Comparing Each Type of Network Between and Within the Two Samples

Tetrachoric Correlation Association Networks—The edges in the association 

networks were by far the most replicable—between and within samples. This was 

anticipated, as we would not expect any of the symptom correlations to be exactly zero, 

which means all of the edges were estimated. However, the node centrality rank-orders were 

evidently highly sensitive to small—even statistically indistinguishable—differences 

between networks, as rank-order correlations and matches in individual nodes’ rank-orders 

in the split-half pairs were generally no more similar than between the full NCS-R and 

NSMHWB networks.

Another unreliable characteristic in the association networks was the placement of the nodes 

and their proximity to one another based on the Fruchterman and Reingold (1991) 

algorithm. Node placement and proximity did not have clear relationships with node 

centrality, nor with the strength of the relationships among the nodes. For example, the most 

central nodes in the two full samples (mCon in the NCS-R network and mSle in the 

NSMHWB network) did not have distinctive positions. It seems likely that this is because 

the Fruchterman and Reingold (1991) algorithm not only places strongly connected nodes at 

the center and weakly connected nodes at the periphery, but also distributes nodes evenly in 

the network, makes edge lengths uniform, and reflects symmetry in the networks. The 

position and proximity of nodes in the network are consequently not synonymous with node 

centrality or influence (cf. De Schryver et al., 2015). Researchers who use this method 

should be aware that this algorithm may obscure—rather than reveal—the detailed 

symptom-to-symptom information in a psychopathology network. The Fruchterman and 

Reingold (1991) algorithm does, however, have utility in revealing more global structural 

features, such as clusters of interrelated nodes.

Regularized Ising Models—The Ising models were the first conditional independence 

networks we estimated, purportedly representing the “first step” towards determining the 

causal skeleton of the network (Borsboom & Cramer, 2013, p. 105). One in seven edges 

tended to fail to replicate between and within the samples, and there was a 30–48% 

difference in the strengths of the edge weights between each pair of networks. Further, a 

large proportion of the edges that spanned MDE and GAD (i.e., bridging edges) failed to 

replicate8. While these are all substantial changes in the context of a model that is promoted 
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for its specificity (i.e., its ability to detect and exclude false positives from the model, e.g., 

van Borkulo et al., 2014a), the poor replicability of the bridging edges is of particular 

concern. From the psychopathology network perspective, these edges represent the pathways 

to the development of comorbidity between disorders (e.g., Borsboom & Cramer, 2013; 

Cramer et al., 2010a; Goekoop & Goekoop, 2014; McNally et al., 2014; Robinaugh et al., 

2014). As such, the differences in bridging edges between networks would have important 

implications for the inferences that might be made regarding the development of MDE and 

GAD and/or comorbidity between them. For example, in the full NSMHWB Ising model it 

might have been inferred—see Borsboom and Cramer (2013)—that chronic worry leads to 

sleep problems, which lead to fatigue, which leads to depressed mood (anxi – mSle – mFat – 

depr). This inference cannot be made in the full NCS-R model. Similarly, in the full NCS-R 

model it might have been inferred that a combination of chronic worry (anxi) and difficulty 

controlling this worry (ctrl) activates depressed mood (depr), which in turn activates the 

strongly connected cluster of MDE symptoms (inte, weig, mSle, mFat, mCon, and suic). 

This same inference cannot be drawn from the NSMHWB network.

Relative Importance Networks—Before interpreting the relative importance networks, 

it is important to note that our networks were highly censored based on arbitrary criteria for 

determining relative importance. The full networks each had 684 parameters to interpret and 

compare (i.e., the weight and direction of each of the 306 edges, and the three centrality 

indices for each of the 18 nodes), which would be an onerous task to conduct objectively 

(Diaconis, 1985). This difficulty to objectively identify important results in highly 

parameterized network models (i.e., to preclude confirmation bias) is a general limitation of 

all psychopathology networks, which we will revisit later. These uncensored networks had 

variable replicability9, but given all edges were estimated and represented small effect sizes 

(median R2 = 1–2%), the substantive interpretation of the networks tended to be similar.

Overall, the censored relative importance networks tended to have greater replicability 

within versus between samples, particularly in terms of replicated edges. This was likely due 

to the censoring of weaker edges, which removed 89–92% of the estimated edges from the 

full networks. Combined with the more similar bivariate relationships between the split-half 

pairs, the limited focus on only the strongest relationships in the network likely maximized 

the similarities and stability of the estimated edges. In contrast, the generalizability of the 

relative importance edges between samples was the poorest of all four types of networks: A 

quarter of the edges in NCS-R did not replicate, the majority of which were feeling on edge 

(edge) predicting other GAD symptoms. As was the case for the Ising models, these 

differences had important implications for the inferences we would make from the two 

networks. For example, in the NCS-R network, edge had particularly high relative 

importance for GAD—predicting nearly every other node, and acting as the only link to the 

three core diagnostic criteria (anxi, even, and ctrl). These results may have led some 

8Nearly half (47.4%) of the bridging edges failed to replicate from NCS-R to NSMHWB, and a median of 56.9–69.2% of bridging 
edges failed to replicate in the split-half pairs.
9All edges were estimated in the uncensored relative importance networks, which meant that 100% of the edges were replicated. The 
average difference in edge strength between NCS-R and NSMHWB networks was 23.1%; the most central nodes did not match; node 
centrality rank-order correlations were similar to the censored networks (τrange = .52–.87), but fewer individual nodes had matches in 
their centrality rank-orders (27.8–50.0%).
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investigators to emphasize feeling on edge as an “urgent target for clinical intervention” 

(McNally et al., 2014, p. 10), and press for the development and implementation of clinical 

interventions to address feeling on edge in GAD. However, these relationships were not 

present in the NSMHWB network where feeling on edge was of trivial importance, which 

suggests that those hypothetical efforts to treat the most central symptom in NCS-R would 

likely have been misguided.

One noteworthy consistency between the NCS-R and NSMHWB relative importance 

networks was that there were no nodes in the MDE cluster that accounted for more than 5% 

of the variance in the GAD cluster, and vice versa (i.e., no bridging edges in the censored 

networks). In the context of the MDE and GAD literature, which highlights the remarkable 

overlap between the disorders (e.g., Moffitt, Harrington, Caspi, Kim-Cohen, Goldberg, 

Gregory & Poulton, 2007), this result illustrates the importance of the shared variance 
between the symptoms for understanding the relationship between disorders. As we 

indicated in the illustrative example in Figure 1, this shared variance (i.e., the overlap among 

symptoms) is largely excluded in models that examine patterns of conditionally independent 

relationships, including relative importance networks. In contrast, latent variables are 

estimated based exclusively on shared variance, which is more reliable and less susceptible 

to small differences in the underlying data than the variance that comprises conditionally 

independent relationships (see Supplementary Materials Appendix S1). Accordingly, we 

found a latent variable model of these data (i.e., a two-factor confirmatory factor model) to 

be highly replicable between the two samples in the present study.

Directed Acyclic Graphs—The replicability of the DAGs between the two samples was 

similar to the Ising models and relative importance networks. However, replicability of 

specific edges was notably worse in the split-half pairs, with a median of a quarter to over a 

third of the edges failing to replicate. This finding is in contrast to McNally et al.’s (2017) 

suggestion that this method “depicts only those edges nearly certain to be genuine” (p. 1207) 

and highlights the sensitivity of DAGs to small differences in the relationships among 

symptoms in the network. Overall, the lack of stability and generalizability in the DAGs is to 

be expected once we understand the assumptions, discussed below, that underlie the 

estimation and interpretability of the models.

Comparing the Six Conditional Independence Networks

While there were evidently inconsistencies within each of the network methods, the most 

apparent discrepancies were between the methods; specifically, between the six networks 

that represented the patterns of conditional independence in the full data sets. For example, 

nearly half of the nodes (44%) were indicated as the most central by at least one centrality 

index across the six conditional independence networks. This reiterates the point that 

interpreting the most central node in a network as an urgent target for clinical intervention is 

likely to be a misguided use of time and resources. It also raises the question of how the 

centrality indices should be interpreted individually, given they are highly sensitive to small 

differences in the data, and appear to be measuring different constructs rather than 

converging on particularly important or influential nodes. Ultimately, it is not clear that 

betweenness or closeness mean anything in psychopathology research. We would suggest 
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that the move towards relying on the strength family of node centrality indices alone (e.g., 

Boschloo et al., 2016b; Curtiss & Klemanski, 2016; Fried et al., 2016) is a good idea 

because these indices directly summarize the strength and/or number of bivariate 

associations for each node.

In addition to the evident discrepancies in the node centrality indices, there was also 

remarkably low convergence between the conditional independence networks in the 

estimation of edges. Take, for example, the popular axiom in network analysis “If one does 

not sleep, one will get tired eventually (insomnia➔fatigue)” (Borsboom et al., 2016, p. 9), 

which is often used as a self-evident example of symptom-to-symptom causality to justify 

the premise of network analysis (e.g., Borsboom & Cramer, 2013; Borsboom et al., 2011a; 

Borsboom et al., 2016; Cramer & Borsboom, 2015; McNally, 2016; McNally et al., 2014). 

Between the six full-sample conditional independence networks, there were 32 different 

edges where this relationship could manifest. It was absent in 78% of cases. In the 22% of 

cases where it was present, it was estimated in three different places (mSle—mFat, gSle—

gFat, and gSle—mFat) across four of the networks, and characterized by a negative 

relationship in the NCS-R Ising model (gSle—mFat).

Overall, fewer than one in every seven of the edges (13%) were consistently estimated 

across the six conditional independence networks; this proportion rose to 16–21% 

comparing the networks within each sample. Even in the least restrictive comparison 

between conditional independence networks (i.e., comparing only the Ising model and the 

DAG within the NCS-R or NSMHWB data sets), less than half of the edges were present in 

both networks. The choice of network model may thus result in vastly different conclusions, 

which is inconsistent with the way these models tend to be discussed in the psychopathology 

network literature. These striking dissimilarities between the different types of network 

analysis underscore the importance of considering the statistical and theoretical 

underpinnings of each model.

Why Might Conditional Independence Networks have Such Poor Replicability?

The inconsistency within and between the conditional independence network analyses raises 

the question of why these methods—which are all intended to represent the causal skeleton 

of a network—give rise to inconsistent and unstable results. To start, we might consider the 

question: What are the networks representing, if not robust causal relationships among 

symptoms? Network analysis research often borrows heavily from the language of graph 

theory to discuss activation spreading through the networks, and nodes being turned on or 

turned off (e.g., McNally, 2016; McNally et al., 2014; van Borkulo et al., 2014a), but it is not 

clear what this means in the context of the cross-sectional relationships among symptoms of 

psychopathology. Ultimately the edges in the networks are visual representations of 

correlations (association networks), or the combined results of multiple multivariate 

regressions (Ising models, relative importance models), or the patterns of conditional 

probabilistic independence among the nodes (DAGs). Reminding ourselves of this reality 

highlights many of the stumbling blocks in applying network analysis to psychopathology 

data. Coming back to the statistical and theoretical foundations of network analysis can also 

offer some clues as to why the networks might be behaving unpredictably, as many of the 
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underlying assumptions of the methods are not met in cross-sectional and observational 

symptom-level psychopathology data.

Violated Statistical Assumptions—By definition, cross-sectional and observational 

symptom-level psychopathology data do not have the necessary information to derive causal 

relationships, nor do they meet the required assumptions. For example, by relying on 

atemporal, unrandomized, non-experimental data, there is limited causal information in the 

data to start with (Dawid, 2008; Winer et al., 2016). We are also dealing with “noisy” 

dynamic systems where a single state (i.e., the presence of any given combination of 

symptoms) might lead to any number of future states, which further limits causal 

information (Markon & Jonas, 2016). Trying to draw either casual or directional inferences 

from cross-sectional data thus relies on strong and strict statistical assumptions (Dawid, 

2008; Wiedermann & von Eye, 2015a, 2015b). Further, directionality of the edges in relative 

importance networks and DAGs cannot be established—not only because of the high 

likelihood of violating specific statistical assumptions, but because reversing the direction of 

an edge results in a model in the same equivalence class (i.e., with the same implied 

covariance matrix), which is typically indistinguishable on the basis of statistical evidence, 

including the size of the directed effects (Thoemmes, 2015). Most importantly, to avoid 

making misleading conclusions, there is a fundamental assumption that all nodes that may 
have a causal role are included in the network (i.e., every common cause that two or more 

variables share; Dawid, 2008; Glymour, 1997). In psychopathology research, it is 

unfortunately inevitable that there are external factors with direct and indirect effects on the 

nodes that have not been modelled (Borsboom, Epskamp, Kievit, Cramer & Schmittmann, 

2011b; Young, 2015). Ultimately, psychopathology networks do not and cannot illuminate 

causal relationships among psychopathology symptoms in cross-sectional data.

Other key statistical pitfalls of psychopathology networks were described earlier: The 

influence of measurement error in conditional independence networks, the inherently 

exploratory nature of the methods, and the estimation of hundreds of parameters in most 

examples mean that the methods are inherently prone to overfitting the data, resulting in 

non-replicable solutions. Among the many parameters in each network model, it is easy to 

identify a few intuitive findings to bolster our confidence in their validity. However, there are 

no established guidelines with which to evaluate the models or interpret the parameters 

objectively. This introduces additional error and bias into the interpretation of the results, 

which is unavoidably tainted by confirmation bias (Diaconis, 1985). We recommend some 

changes for psychopathology network analysis shortly to address these limitations.

Violated Theoretical Assumptions—In addition to the statistical pitfalls of conditional 

independence networks, the utility of cross-sectional psychopathology networks 

fundamentally relies on the assumption of ergodicity: that the between-person structure at 

one time is the same as the within-person structure over time (Molenaar, 2004). In contrast 

with this assumption, the proponents of network analysis have suggested that 

psychopathology networks likely vary over time and individuals (e.g., Borsboom & Cramer, 

2013; Borsboom et al., 2011b; Cramer & Borsboom, 2015; Cramer, Waldorp, van der Maas 

& Borsboom, 2010b; Rhemtulla et al., 2016). Consistent with these expectations, time series 
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network analyses of depression symptoms differ from cross-sectional analyses (Bringmann, 

Lemmens, Huibers, Borsboom & Tuerlinckx, 2015; Fried et al., 2016), and individuals have 

been found to have highly distinct networks of associations among domains of 

psychopathology (Beltz, Wright, Sprague, & Molenaar, 2016; Wright, Beltz, Gates, 

Molenaar & Simms, 2015). These assumptions evidently require further investigation. 

However, if intraindividual networks do indeed “differ markedly in terms of their 

architecture” (Cramer & Borsboom, 2015, p. 5), and are expected to change over time 

(Cramer et al., 2010b), then it is likely that networks represent ungeneralizable and locally 
irrelevant constructs (Borsboom, Mellenbergh & van Heerden, 2003). In short, it is not clear 

how networks derived from between-subjects variation in observational data can have utility 

in identifying clinically useful information.

Redeeming the Utility of Psychopathology Networks

In the present study we have presented evidence that conditional independence 

psychopathology networks are unstable and lack replicability, likely due at least in part to 

the predominance of measurement error in the nodes. It is also evident that psychopathology 

networks based on cross-sectional observational symptom-level data are not appropriate for 

making causal inferences. Further, it seems likely that networks derived from between-

subjects variation will not generalise to individuals, as discussed above. As such, it is 

unrealistic to expect that psychopathology networks can fulfil the optimistic expectations 

surrounding their utility. Specifically, the estimated edges and most central nodes in 

conditional independence networks are unlikely to represent important dynamic 

relationships among symptoms, paths to disorder onset and maintenance, or influential 

symptoms that should be the focus of future clinical interventions. As it stands, the unique 

utility of network analysis in cross-sectional psychopathology research thus seems limited to 

visualizing complex multivariate relationships in association networks (remembering not to 

interpret node placement, proximity, or closeness or betweenness centrality).

Recommendations to Improve Network Analysis—The flaws in the current 

applications of psychopathology networks do not detract from the attractive idea of 

analyzing symptom-level relationships that might allow us to carve psychopathology at finer 

joints, thereby deepening our understanding the dynamic mechanisms of disorder onset, 

maintenance, and treatment (Cramer et al., 2010a; Goekoop & Goekoop, 2014). As such, it 

is useful to consider how these methods could be improved to overcome some of the flaws in 

their current application. The minimum change that we would recommend for cross-

sectional psychopathology network estimation would be to improve the measurement of 

symptoms, thus reducing the measurement error modeled in conditional independence 

networks. One road to this change would be to use multiple items to measure each symptom, 

and/or to use multiple methods, such as self-report, others’ reports, daily diaries, 

observation, or physiological measures (cf. Fried & Nesse, 2015). Analyzing broader 

constructs—such a symptom clusters (e.g., Anker et al., 2017)—versus single symptoms 

would also be amenable to this approach. Specifically, we would suggest—as others have 

(Eaton, 2015; Epskamp et al., in press; Markus, 2010; Stapel, 2015; Young, 2015)—that 

integrating latent variables into network analysis is the best way forward. We echo the 

suggestions made by Epskamp et al. (in press), who recently proposed latent network 
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modeling, in which latent variables are used to extract the most reliable variance from 

multiple measures of a symptom, and these latent variables subsequently act as the nodes in 

a network analysis. This method helps to ensure that the conditional independence networks 

are modeling more true score, rather than error, although it is noteworthy that latent variable 

models also face challenges inherent in the assessment of psychopathology (e.g., 

associations among multiple informants are often modest, and multiple ways to approach 

this issue have been suggested; Bauer et al., 2013; Funder & West, 1993). Taking a 

hypothesis-driven approach to controlling for the shared variance among symptoms (e.g., 

Anker et al., 2017) could also avoid the over-partialling of shared variance that currently 

weakens the replicability of the fully conditionally independent edges. However, it is 

important to note that even if these changes were made, the other limitations of network 

analysis will remain.

Other changes to strengthen not only the reliability but the validity of network analysis 

would include analyzing data that contains more causal information, such as data with 

temporal information (e.g., longitudinal or intensive time series data) and experimental or 

quasi-experimental data (e.g., randomized groups in treatment studies). These changes are 

routinely recommended in the network analysis literature (Borsboom & Cramer, 2013; 

Borsboom et al., 2016; Cramer & Borsboom, 2015; Cramer et al., 2010a; Rhemtulla et al., 

2016), and would represent a necessary step for these models to live up to their promise. 

Researchers should also routinely examine the generalizability of findings from 

psychopathology networks, including the presence, strength and direction of specific edges 

and the centrality of individual nodes, by replicating them in multiple samples (cf. Klaiber, 

Epskamp & van der Maas; van Borkulo et al., 2014a). The replicability of networks could 

also be improved with the continued development of methods to establish confidence 

intervals for estimated parameters in the four main types of psychopathology networks (cf. 

Epskamp et al., under review-a).

Further, in contrast to Borsboom and Cramer’s (2013) suggestion that “the application of 

network models does not require extensive prior knowledge, as many other methodologies 

do” (p. 100), we emphasize that it is essential that researchers understand and carefully 

consider the assumptions that underlie these statistical methods. While estimating a network 

model in R is straightforward and the required code is freely available, the underlying 

statistics are complex. Researchers should be explicit about justifying and testing the 

underlying assumptions—including the assumptions for computing the foundational 

correlation matrices (cf. Cliff, 1996)—and be aware of how sensitive the models can be to 

violations of these assumptions (Dawid, 2008). Finally, researchers should consider 

alternative statistical models or methods that might be appropriate for their data, as there are 

many different statistical models that can fit any given data set, including multiple 

statistically equivalent models (Dawid, 2008; Epskamp et al., under review-b; Klaiber et al.; 

Markon & Jonas, 2016). In order for this to become common practice, it is important to 

continue to develop methods to rigorously evaluate and compare networks with one another, 

and with other methods.
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Limitations of the Present Study

Much of the present discussion has been focused on the limitations of network analysis in 

general, as revealed by evidence of limited replicability and consideration of corresponding 

methodology. However, it is also important to note the specific limitations of the present 

study as an examination of replicability in network analysis. The primary limitation was that 

we could not find established methods for comparing the variety of characteristics of interest 

in psychopathology networks. We were consequently guided by our review of the literature 

to identify the focal characteristics of psychopathology networks and to determine 

reasonable ways to compare these characteristics with varying levels of sensitivity to change. 

Further, our analyses were based on networks of eighteen dichotomous nodes, so we cannot 

be sure that these findings will generalize to smaller or larger networks, or to other scales of 

measurement. Similarly, our analyses were based on comparing two samples, and multiple 

sets of random split-halves within those samples. Other comparisons are possible (e.g., 

testing generalizability between samples matched and/or differentiated by specific 

characteristics; quantifying stability in samples with substantial overlap) and we encourage 

ongoing efforts to evaluate the replicability of network models across other types of sample 

comparisons. It is also important to note that our discussion emphasized the weaknesses of 

psychopathology networks, with relatively little emphasis on the examples of replication in 

the networks. However, the design of the present study was engineered to maximize the 

replicability of the networks, and the examples of failures to replicate that we elucidated in-

text were consistent with the overall trends in the methods. Importantly, the patterns of 

instability and poor generalizability in the results were evident even in randomly split halves 

within the two epidemiological samples. We are therefore confident that the limitations of 

the present study did not compromise the validity of the results, particularly in the context of 

the extant literature, which shows that psychopathology networks vary based on the sample, 

item content, number of constructs included, and specific type of network analysis used.

Conclusion

We found psychopathology networks to have poor replicability between and within methods 

and samples. The more detailed aspects of the models were the least replicable, and this 

trend was particularly pronounced in the conditional independence networks. This poor 

replicability likely arises due to the violated statistical and theoretical assumptions that 

underlie the models, and highlights that these methods—as they are applied here—have 

limited utility. We look forward to developments in this area that involve building on the 

fundamentals of latent variable modeling, improving the measurement of key symptom 

constructs, and using designs that are suited to discerning potential fine-grained relationships 

among symptoms (cf. Epskamp et al., in press). Ultimately, we suggest that novel results 

originating from psychopathology networks should be held to higher standards of evidence 

before they are ready for dissemination or implementation in the field.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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General Scientific Summary

A statistical method called network analysis is quickly gaining popularity for analyzing 

the relationships between symptoms of mental disorders. This study found that popular 

network analysis methods produce unreliable results, particularly for the symptom-level 

aspects of the models. We highlight the need to be particularly cautious in interpreting, 

disseminating, or implementing results that arise from psychopathology networks.
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Figure 1. 
An illustrative example of the variance that is used to calculate association networks (left); 

and concentration networks, relative important networks, and directed acyclic graphs (right).
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Figure 2. 
Association networks based on tetrachoric correlations. NCS-R = National Comorbidity 

Survey – Replication; NSMHWB = National Survey of Mental Health and Wellbeing. See 

Table 1 for symptom abbreviations.
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Figure 3. 
Regularized Ising models. NCS-R = National Comorbidity Survey – Replication, NSHWB = 

National Survey of Mental Health and Wellbeing. The following edges are negative in NCS-

R: gSle–mFat, gCon–mFat, and gFat–moto. All other edges are positive, and the line 

weights represent the strength of the relationship between two nodes. See Table 1 for 

symptom abbreviations.
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Figure 4. 
Censored relative importance networks. The network represents the edges that highlight 

which nodes have higher relative importance as predictors in the model: Edges were only 

estimated if they represented an R2 of at least 5% (i.e., an edge weight of .05) and had at 

least .5% stronger relative importance than the other edge in the node pair. The line weights 

represent the strength of the relationships, and the arrows represent the direction. NCS-R = 

National Comorbidity Survey – Replication, NSHWB = National Survey of Mental Health 

and Wellbeing. See Table 1 for symptom abbreviations.
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Figure 5. 
Directed acyclic graphs (DAGs) based on a hill-climbing algorithm for NCS-R (left) and 

NSMHWB (right). Note that these DAGs are presented in a tree format where nodes are 

positioned according to their predictive power, as all “causal” arrows point downwards; 

nodes at the top of the graph predict the nodes lower in the graph (but the reverse is not 

true). Symptom abbreviations for each disorder are listed in Table 1. NCS-R = National 

Comorbidity Survey – Replication; NSMHWB = National Survey of Mental Health and 

Wellbeing.
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Table 1

Abbreviations for Symptoms Included in Analyses

Major Depressive Episode (MDE) Generalized Anxiety Disorder (GAD)

Abbreviation Symptom Abbreviation Symptom

depr Depressed mood anxi Chronic anxiety/worry

inte Loss of interest even Anxiety about >1 event

weig Weight problems ctrl No control over anxiety

mSle Sleep problems edge Feeling on edge

moto Psychomotor disturbances gFat Fatigue

mFat Fatigue gCon Concentration problems

repr Self-reproach irri Irritability

mCon Concentration problems musc Muscle tension

suic Suicidal ideation gSle Sleep problems
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