Skip to main content
. 2017 Dec 6;4(12):171085. doi: 10.1098/rsos.171085

Table 2.

The case when we observe p = 0.001. Sample output from the R script, calc-FPR+LR.R (see electronic supplementary material). Values mentioned in the text in red.

INPUTS
true mean for sample 1=0
true mean for sample 2=1
true s.d. (same for both samples)=1
Observed p-value=0.001
Calculation of FPR for specified n
OUTPUTS for false pos risk, with: prior, p(H1)=0.1
CASE OF p=alpha
For nsamp=4 False positive risk=0.526 power=0.0089
Lik(H1/Lik(H0)=8.12
For nsamp=8 False positive risk=0.208 power=0.0497
Lik(H1/Lik(H0)=34.3
For nsamp=16 False positive risk=0.0829 power=0.238
Lik(H1/Lik(H0)=99.6
OUTPUTS for false pos risk, with: prior, p(H1) = 0.5
CASE OF p=alpha
For nsamp=4 False positive risk=0.110 power=0.0089
Lik(H1/Lik(H0)=8.12
For nsamp=8 False positive risk=0.0289 power=0.0497
Lik(H1/Lik(H0)=34.3
For nsamp=16 False positive risk=0.00994 power=0.238
Lik(H1/Lik(H0)=99.6