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Abstract

In X-ray fluoroscopy, static overlays are used to visualize soft tissue. We propose a system for 

cardiac and respiratory motion compensation of these overlays. It consists of a 3-D motion model 

created from real-time MR imaging. Multiple sagittal slices are acquired and retrospectively 

stacked to consistent 3-D volumes. Slice stacking considers cardiac information derived from the 

ECG and respiratory information extracted from the images. Additionally, temporal smoothness of 

the stacking is enhanced. Motion is estimated from the MR volumes using deformable 3-D/3-D 

registration. The motion model itself is a linear direct correspondence model using the same 

surrogate signals as slice stacking. In X-ray fluoroscopy, only the surrogate signals need to be 

extracted to apply the motion model and animate the overlay in real time.

For evaluation, points are manually annotated in oblique MR slices and in contrast-enhanced X-

ray images. The 2-D Euclidean distance of these points is reduced from 3.85 mm to 2.75 mm in 

MR and from 3.0 mm to 1.8 mm in X-ray compared to the static baseline. Furthermore, the 

motion-compensated overlays are shown qualitatively as images and videos.
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Index Terms

MRI; X-ray imaging; heart; vessels; motion compensation; multi-modality fusion

I. Introduction

X-ray fluoroscopy is an important modality for guidance of minimally-invasive 

interventions. It has good spatial and temporal resolution and clearly visualizes 

interventional devices and bones. However, the contrast of soft tissue is low and 3-D 

information is lost due to the transparent projection to 2-D. To remedy these drawbacks, 

fusion of the X-ray images with previously acquired overlays has been proposed [1]–[3], 

which is also known as augmented fluoroscopy. The overlays are rendered semi-

transparently directly on top of the X-ray images, see Fig. 1. These roadmap overlays are 

generated from 3-D modalities such as magnetic resonance imaging (MR), computed 

tomography (CT), or rotational C-arm CT. X-ray fused with MR imaging (XFM) is 

particularly interesting, because MR offers complementary features. It has good soft tissue 

contrast, provides functional and anatomical information in 3-D, and does not use ionizing 

radiation. The goal of XFM is to reduce procedure times, X-ray dose, and amount of 

injected contrast agent [4], [5].

The early approaches for augmented fluoroscopy [1]–[3] and current commercial systems 

feature static overlays. The roadmap image is registered to the X-ray coordinate system once 

and then automatically follows the changes of the C-arm and table position. If the patient 

moves, the registration is invalidated and the overlay is positioned incorrectly relative to the 

live images and the patient. For infrequent rigid motion of the patient relative to the table, a 

manual or automatic re-registration can be performed [6]. However, respiratory and cardiac 

motion are non-rigid and inevitable in thoracic and abdominal interventions. Thus, static 

overlays are not in correspondence with the fluoroscopic images most of the time, as 

visualized in the supplementary material. Without correction of the motion between overlay 

and fluoroscopic image, the accuracy of the overlay might not be sufficient for some 

procedures. For example, pulmonary vein isolation requires an accuracy of 5 mm [7], while 

other sources use 2 mm as a threshold for cardiac applications [8].

A. Motion Compensation in X-Ray Fluoroscopy

Cardiac and respiratory motion compensation for overlays in X-ray fluoroscopy is an active 

research topic. There are two fundamental approaches. In the first approach, motion 

compensation is based solely on the X-ray images. Brost et al. compensated cardiac and 

respiratory motion of the left atrium based on catheter tracking in 3-D [8]. For abdominal 

interventions, Ross et al. tracked the in-plane motion of the diaphragm and used it to 

compensate overlays of the liver vasculature [9]. Schneider et al. built a rigid 3-D motion 

model for coronary arteries from biplane angiograms [10] based on principal component 

analysis (PCA) and compensated motion using constrained registration. In contrast, Shechter 

et al. built a deformable 3-D motion model from the angiograms and used cardiac phase and 

diaphragm tracking as surrogate signals [11].
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In the second fundamental approach, a pre-procedural motion model is built and used for 

motion compensation during the intervention. King et al. presented a 3-D affine model for 

respiratory motion correction [12]. The model was built from 2-D sagittal MR slices. The 

diaphragm position was used as the respiratory surrogate signal and the influence of cardiac 

motion was removed by cardiac gating. Faranesh et al. used real-time MR imaging on three 

planes to create a 3-D affine motion model [13]. 2-D in-plane motion was computed for each 

plane and a separate 3-D affine transformation was fitted for each cardiac and respiratory 

phase. Surrogate signals were derived from electrocardiography (ECG) and diaphragm 

tracking. De Senneville et al. created a motion model based on PCA for motion 

compensation in MR [14]. Peressutti et al. presented a Bayesian respiratory motion model 

for echocardiography [15]. The affine motion model was based on low resolution dynamic 

3-D MR images. More information on different types of motion models can be found in 

[16].

There are some limitations in the methods proposed in the literature. A parametric motion 

model, e. g., rigid or affine, is commonly used [8], [10], [12], [13], [15]. This is an 

approximation of the real motion that is only sufficient for some cases, e. g., the motion of 

small regions of interest. Another limitation is the use of the diaphragm as a respiratory 

surrogate [12], [13]. Especially in X-ray, it cannot be ensured that the diaphragm is visible, 

for example because of a small field of view or the chosen C-arm angulation. Some methods 

are restricted to respiratory motion compensation only, which reduces accuracy or 

necessitates cardiac gating [12], [15].

B. MR Motion Models

There are three different types of imaging sequences to acquire motion-resolved data from 

MR. The simplest approach is to acquire MR images as fast as possible. 2-D slices can be 

acquired with frame rates of above 10 Hz using parallel imaging and fast protocols, e. g., 

balanced steady-state free precession (bSSFP). Unfortunately, 3-D imaging is not yet fast 

enough to capture cardiac motion directly. The frame rate for 3-D imaging can be up to 2 – 4 

Hz [15], [17]. In addition, there is a trade-off between resolution and acquisition speed.

An alternative approach is binning or gating. A surrogate signal of the desired motion, e. g., 

ECG for cardiac motion or a navigator for respiratory motion, is acquired together with the 

raw MR k-space data. The k-space data is sorted into bins based on the surrogate signal and 

a separate MR volume is reconstructed for each bin. In respiratory binning, one approach is 

to use a radial sampling trajectory with self-gating based on the center of k-space [18], [19]. 

Tokuda et al. acquired additional navigator echoes to sort the k-space samples into 

respiratory bins in a multi-slice protocol [20]. For cardiac binning, there are acquisition 

protocols that require a single [21] or multiple breath-holds, but free-breathing CINE 

imaging has also been proposed [22]. Binning enables the creation of 4-D MR with multiple 

phases or bins, high resolution, and a large field of view. However, it only yields an average 

motion cycle. Furthermore, dependencies between cardiac and respiratory motion cannot be 

captured unless a 5-D MR with two binning dimensions is acquired. Recent developments 

using compressed sensing reconstruction might make this feasible [23].
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The third alternative to create 4-D MR images is slice-stacking [17], [24]–[30]. A stack of 

parallel slices is acquired with real-time MR imaging and retrospectively sorted into 

volumes. Sorting is often performed using a surrogate signal, for details see Section I-C. The 

main difference to binning is that complete 2-D slices are acquired and reconstructed at high 

spatial and temporal resolution before reordering. In consequence, differences in the motion 

patterns over time can be measured. So far, this approach has only been used to handle 

respiratory motion at a fixed or averaged cardiac state or for a field of view that excludes the 

heart.

C. MR Respiratory Signals

In 4-D MR imaging, many different sources of respiratory signals have been proposed, 

including external devices [28], [30], the center of k-space [18], [19], [23], [26], the body 

area [25], [27], body boundary [26], navigator signals [20], and navigator slices [29]. 

Recently, dimensionality reduction has become popular in MR [17], [31], [32] and other 

applications [32], [33]. It has the advantage of being purely data-driven, so there are no 

geometric or frequency assumptions and no manual interaction is necessary. In addition, 

specific MR acquisition protocols or pre-reconstruction information like k-space data is not 

required. Furthermore, for our application, a corresponding respiratory signal during the 

fluoroscopy-guided intervention must be derivable.

D. Contribution

In this paper, we propose a cardiac and respiratory motion model of the whole heart for 

motion compensation in XFM. The idea is to use MR imaging to create a motion model in 

addition to the overlays. To this end, 3-D MR volumes that resolve cardiac and respiratory 

motion are required. A new slice stacking method is developed to create the 3-D+t MR 

images from a stack of 2-D+t MR slices. The novelty is that cardiac as well as respiratory 

motion is resolved using our slice stacking method. Furthermore, temporal regularity of the 

3-D+t MR volumes is enhanced in an energy minimization formulation. The cardiac 

information is based on ECG data acquired with skin electrodes. The respiratory information 

is extracted directly from the MR images using dimensionality reduction, which means a 

navigator slice does not need to be acquired. For the respiratory signal extraction, we 

propose a new method that automatically detects and aligns the corresponding respiratory 

signals from the MR slices.

A subject-specific, fully deformable motion model is generated from 3-D+t MR. This is 

achieved by deformable registration of all 3-D volumes to an automatically determined 

reference volume. To enable interventional use of the motion model, a fast, linear, direct 

correspondence between surrogate signals and motion is learned.

II. Methods

An overview of the pre-procedural steps of the proposed method is given in Fig. 2a. The MR 

slices are stacked into volumes of consistent cardio-respiratory state (Section II-B). These 

volumes are registered to a reference phase (Section II-E1) to estimate the 3-D motion. A 

regression model is built to relate the 3-D motion and the surrogate signal (Section II-E2). A 
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separate MR volume is acquired for segmenting the overlay. The intra-procedural steps for 

motion compensation in fluoroscopy are given in Fig. 2b. The motion model is driven by a 

surrogate signal based on X-ray images and ECG (Section II-F). The motion is used to 

animate the segmentation as an overlay on the X-ray image in real time.

A. Materials

All experiments were performed at the National Heart, Lung, and Blood Institute of the 

National Institutes of Health in Bethesda, MD, USA. MR-only experiments were performed 

on volunteers and combined MR and X-ray experiments were performed on pigs. Six 

healthy Yorkshire swine were anesthetized with ketamine (25mg/kg), midazolam (15mg/kg), 

and glycopyrrolate (0.01mg/kg), and maintained on isoflurane (2–3%) with mechanical or 

manual ventilation. Femoral vascular access was obtained with ultrasound guidance. The 

experiments were approved by the institutional review board (for humans) or institutional 

animal care and use committee (for animals) and performed according to contemporary NIH 

guidelines. The MR images were acquired on a 1.5 T scanner (Aera, Siemens Healthcare, 

Erlangen, Germany). The ECG was measured using vectorcardiogram computed from the 

standard four-electrode set delivered with the MR scanner. The X-ray images were acquired 

on a floor-mounted, bi-plane, flat-panel X-ray C-arm system (Artis, Siemens Healthcare, 

Forchheim, Germany). The transfer between the MR scanner and the X-ray system was 

performed on a table moving on rails (MIYABI, Siemens Healthcare, Forchheim, Germany).

B. Motion-Resolved MR Volume Generation

For slice stacking, sagittal slices p(t)[n] ∈ ℝDp are acquired at N adjacent slice positions and 

T images per slice. Sagittal slices are used because respiratory motion then is mostly in-

plane, which leads to less space-dependent phase shift [27]. N ∈ {17, …, 20} is chosen such 

that the slices cover the region of interest. The slices with a slice thickness of 6–8 mm and a 

pixel spacing of 1.75 – 2.25 mm are acquired with a bSSFP sequence. BSSFP offers high 

frame rates, good contrast between blood and heart muscle, and is robust to motion and flow 

[34]. A flip angle of 50° and an echo time of 1.1 ms is used. With an acceleration factor of 2, 

a frame rate around 10 Hz is realized. Imaging is performed for 20 s per slice, such that T ∈ 
{174, …, 190}. The slices are acquired sequentially, i. e., slice 1 for 20 s, then slice 2 for 20 

s, etc. The first 5 images of each slice are discarded to avoid the transient magnetization.

For segmentation of the overlay, a static whole-heart 3-D MRI is acquired with respiratory 

self-navigation [35]. It features a 3-D radial bSSFP sequence with a flip angle of 50° – 115° 

and a reconstructed size of 1603 – 1923 voxels with 1.15 – 1.38 mm isotropic voxel size.

C. Slice Stacking using a Markov Random Field

As described in Section I-C, most methods for slice stacking directly match the images from 

different slices based on a description of their motion state. As we want to resolve cardiac 

and respiratory motion in the MR volumes, we describe the motion state of each slice using 

a surrogate signal s(t)[n] ∈ ℝS containing cardiac and respiratory components, see Section II-

D. In addition, we extend this with the idea of temporal smoothness, which assumes that the 

relative sequence of motion states is similar in all slices, i. e., if the image t1 of slice n is 

assigned to image t2 in the reference slice, then it is likely that the image t1 + 1 of slice n 
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corresponds to t2 + 1. However, this assumption is only valid if the slices are acquired 

sequentially.

Our approach is formulated as a second-order Markov random field (MRF). The random 

variable A(t)[n] represents the image number in slice n that is assigned to image t in the 

reference slice, where t ∈ {1, …, T } and n ∈ {2, …, N}. Without loss of generality, n = 1 

denotes the reference slice. Each A(t)[n] is assigned a discrete label a ∈ {1, …, T }. As a 

common MRF notation, A(t)[n] = a is abbreviated as a(t)[n].

The MRF energy is defined as

(1)

where ϕ(t)[n] is an unary inter-slice similarity term and ψ a binary smoothness term. The 

corresponding graphical model is illustrated in Fig. 3.

The unary inter-slice similarity term is a weighted squared Euclidean distance of the 

surrogate signals

(2)

where ⊙ denotes the element-wise product. Each dimension of the surrogate signal can be 

weighted differently using w ∈ ℝS.

The temporal smoothness term is an absolute distance function truncated with the threshold 

η ∈ ℝ

(3)

There is no penalty if temporal neighboring frames in the reference slice are assigned to 

temporal neighbors in the target slice. The penalty for skipped frames increases linearly until 

the maximum penalty η is reached. Discontinuities in the assignment of more than η frames 

receive a constant penalty, such temporal distant frames can be assigned to each other if the 

surrogate signals match well.

The optimal assignment a* is given by the minimum of Eq. (1), which corresponds to 

maximum-a-posteriori (MAP) inference in the MRF. The energy decomposes into 

independent optimization problems for each slice, as indicated by the plate notation in Fig. 

3. Thus, belief propagation converges to the global optimum. If the temporal smoothness Eq. 
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(3) was omitted, the minimum of Eq. (1) would be identical to directly matching the 

surrogate signals. Using a*, T 3-D MR volumes q(t) ∈ ℝDq, Dq = NDp are generated as

(4)

The surrogate signal of the volume is by definition identical to the surrogate signal of the 

reference slice s = s[1].

D. Surrogate Signals

The surrogate s(t)[n] ∈ ℝS is generated independently for each slice. It consists of a 

respiratory dimension  and two cardiac dimensions 

, i. e., S = 3. To weight the surrogate components, we use w = 

(1, 0.5, 0.5)⊤, ensuring that overall the respiratory and cardiac components are equally 

weighted. The generation of c(t)[n] and r(t)[n] is described in the following two sections.

1) Cardiac Surrogate Signal—The cardiac surrogate signal c(t)[n] is based on the ECG 

signal for each slice n. ECG is available in MR scanners for patient monitoring and cardiac-

triggering. The ECG signal itself is not an adequate surrogate signal, since it has similar 

values for most of the cardiac cycle, which are not directly related to the motion magnitude 

of the heart. However, prominent features such as the R-peaks are informative and are 

usually used as triggers. The time since the last R-peak is retrospectively converted to a 

linearly increasing cardiac phase φ(t)[n] ∈ [0, 1). To reflect the continuity of cardiac motion 

between end-diastole (φ = 1) and start-systole (φ = 0), the cardiac phase is embedded into a 

2-D circle as

(5)

(6)

This circular embedding is visualized in Fig. 4.

2) Respiratory Surrogate Signal—The respiratory surrogate signal r(t)[n] is derived 

from the respective MR image p(t)[n]. For reasons that will be detailed later, PCA is used 

instead of nonlinear manifold learning for dimensionality reduction. PCA is the orthogonal 

linear transformation that maximizes the variance of the projected embeddings. PCA is 

computed independently for each slice n as the eigendecomposition C[n]E[n] = E[n]Λ[n] of 

the MR slice covariance matrix C[n], where E[n] is the eigenvector matrix and Λ[n] the 

diagonal eigenvalue matrix, which is ordered by decreasing eigenvalues . 
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We compute up to K eigenvectors, as only the largest eigenvalues are of interest in our 

application. The low-dimensional embedding, from which the surrogate signal is derived, is 

computed as

(7)

where the subscript k selects the k-th row of a vector or matrix.

Dimensionality reduction methods suffer from an ambiguity of sign and ordering [36]. In 

our case, this means it is unknown which PCA component k contains respiratory motion and 

whether high or low signal values correspond to exhalation. These ambiguities could be 

avoided if the slices were embedded jointly [24]. However, the manifolds in our application 

are not similar enough, because two independent motion patterns occur in the images, and 

cardiac motion is only visible in a subset of the slices. Joint embedding is evaluated as an 

alternative method in the experiments (Section III).

To remove the ordering ambiguity, prior information about the frequency of breathing is 

used to find the respiratory component. The K possible 1-D signals are the dimensions k of 

the low-dimensional embedding . The respiratory surrogate  is chosen as

(8)

where |ℱ| is the magnitude of the Fourier transform and fmin = 0 Hz, fmax = 1.5 Hz. 

Intuitively, the highest-variance dimension k of the PCA with the peak frequency inside the 

specified frequency range for breathing is selected. As the eigenvalues are sorted by 

decreasing magnitude, the selection can be performed using the argmin over indices. A 

similar strategy was employed in [14] for separating physiological motion and noise. 

Additionally, we suppress noise in the signal by forward-backward filtering with a third-

order Butterworth filter with the same passband as above.

To remove the sign ambiguity, we make use of the respiratory eigenvectors . The 

notation *, κ[n] selects the κ[n]-th column of the matrix E[n]. The alignment procedure is 

visualized in Fig. 5. For each slice, the respiratory eigenvector indicates which pixels gets 

brighter/darker relative to the mean during breathing. This behavior should be similar for all 

slices up to differences due to anatomy. The agreement of the eigenvector signs is 

determined using the normalized cross-correlation (NCC) between the eigenvector images. 

Similar to template matching and convolution, spatial shifts are scanned and NCC is 

computed for each shift. For the shift with the maximum absolute value of NCC, the sign of 

the NCC indicates whether or not the eigenvectors are aligned. As the appearance of distant 

MR slices changes considerably, we sequentially align the sign of neighboring slices 
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and . This idea to use the eigenvectors for alignment is the reason we prefer PCA 

over manifold learning. PCA eigenvectors give spatial information, whereas the eigenvectors 

occurring in manifold learning give the coordinates of the low-dimensional embeddings. To 

align eigenvectors resulting from manifold learning, additional prior information would be 

required [36].

The respiratory signal of each slice is normalized along the whole sequence to [0, 1] 

approximately, using the following method that is robust to outliers. The minimum and 

maximum peaks of the respiratory signal are detected, and the medians of the respective 

extrema are used for linear normalization. With this approach, the respiratory signal can be 

out of the range [0, 1] for deep inhales or exhales. However, the influence of single deep 

inhalations or exhalations on the signal range is restricted, which is important since the 

slices are acquired sequentially and can have different respiratory patterns. In addition, the 

same normalization of the respiratory signal must be achieved under X-ray for applying the 

motion model.

There is a remaining global sign ambiguity, i. e., whether a respiratory signal of 0 

corresponds to exhale or inhale. The procedure described above only aligns the sign of the 

respiratory signals relative to each other. To define the global sign, we exploit the general 

property of human respiration that more time is spent in exhalation than in inhalation [37]. 

As this property is more stable over long time scales, the sign of the respiratory signals is 

defined such that the temporal median of the respiratory signal of all slices is smaller than 

0.5.

E. Motion Model

This section describes how the patient-specific, cardiac and respiratory motion model is built 

from the previously generated MR volumes by using registration and regression.

1) Registration—All T 3-D MR volumes q(t) are registered to a reference volume q(1) to 

estimate the motion m(t) ∈ ℝ3Dq. The reference volume is selected automatically according 

to the cardio-respiratory state of the static MR volume for segmentation, usually end-

diastole and end-expiration.

Pair-wise, deformable 3-D/3-D registration is performed in a variational framework based on 

the evaluation work of Werner et al. [38]. A NCC data term is combined with diffusion 

regularization and diffeomorphic transformations. It is optimized in a multi-resolution 

strategy using gradient descent. The parameters for registration are the number of 

resolutions Nlevel, the regularization weight γ, the step length τ and the number of iterations 

Niter of the optimizer.

2) Regression Model—In a direct correspondence motion model, f: s ↦ f (s) = m 
directly maps a surrogate signal s to a motion field m. A linear function is used

(9)
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because it is fast to evaluate in the application phase of the motion model. Moreover, 

training is possible from relatively few samples. In the literature, linear regression is a 

common approach for respiratory motion modeling from low-dimensional surrogates [16]. It 

has been shown to be as accurate as more complex regression methods for this application 

[39]. The parameters M ∈ ℝ3Dq×S, m̄ ∈ ℝ3Dq are trained from T samples consisting of 

surrogate signals s(t) as inputs and motions m(t) as targets. The training method is ridge 

regression with the regularization weight λ.

In principle, the input motions allow to capture inter-cycle and intra-cycle variation [16]. 

However, the surrogate signals restrict the flexibility. The circular embedding of the cardiac 

phase in Eq. (6) prevents inter-cycle variation, i. e., the estimated cardiac motion follows the 

same path in each cycle, albeit at different speeds depending on the RR interval. Intra-cycle 

variation, i. e., different cardiac motion during systole and diastole, is possible. The 

respiratory surrogate r(t)[n] is a 1-D amplitude signal, which means it does not distinguish 

between inhalation and exhalation. However, varying breathing depth and breathing 

frequency can be captured. This would not be possible with a phase-based respiratory 

surrogate.

F. Motion Compensation in X-Ray

Our prototype transparently renders 3-D mesh overlays given in the C-arm coordinate 

system onto X-ray images. Originally, the meshes and the motion model are given in MR 

coordinates. Both coordinate systems are registered manually based on multi-modal skin 

markers, which have been shown to yield accurate registration [7], [40].

To compensate the motion of the overlay during the fluoroscopy-guided intervention, the 

main tasks are to determine the surrogate signals, to apply the motion model, and to 

transform the mesh vertices. As in MR, the cardiac surrogate signal comes from the 

simultaneously acquired ECG. The difference is that the cardiac phase is calculated based on 

extrapolated RR intervals, as future triggers as in MR postprocessing are not available. The 

respiratory signal is extracted from the X-ray images using kernel PCA on multi-resolution 

patches [33], which ensures robustness to disturbances occurring in interventional X-ray, 

such as contrast agent injection or automatic exposure control. This method contains a 

training phase of 45 images for each C-arm position, during which the same amplitude 

normalization is applied as for the MR respiratory signal. The output of the motion model is 

computed by applying Eq. (9). The mesh vertices are transformed in MR coordinates after 

linearly interpolating the corresponding position in the motion field.

G. Implementation

The general pipeline was implemented in Python based on its scientific libraries (NumPy, 

SciPy, scikit-learn). However, the MRF energy function and its optimization (OpenGM [41]) 

and the registration (ITK [42]) are implemented in C++. The motion model application and 

the mesh rendering are implemented on the GPU using OpenGL and Glumpy.
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III. Experiments

The following setup is used in the experiments. Due to the lack of data and accurate ground 

truth, all the hyperparameters were tuned manually such that visually good results were seen 

in the algorithm steps. For slice stacking, the weight is μ = 0.001 and the truncation is η = 

32, see Section II-C. K = 3 components are used in the PCAs for respiratory signal 

extraction from MR. The parameters for registration are set to Nlevel = 4, γ = 0.02, τ = 10.0, 

and Niter = 1000. The motion model uses the regularization weight λ = 0.1. In X-ray, the 

respiratory signal estimation uses the settings from [33] and is applied to the whole 

sequence.

A. MR Statistics

To give an intuition of the real-time MR slice images that are acquired for motion modeling, 

we qualitatively show some statistics of the MR images. The magnitude of the motion is 

visualized using temporal minimum and maximum intensity projections of a slice in an 

exemplary dataset.

Another interesting statistic is the coverage of the cardio-respiratory plane. The cardio-

respiratory plane is a 2-D plane spanned by the cardiac phase φ and the respiratory signal r. 

A high coverage means that many images are acquired in that cardio-respiratory state. Since 

cardiac phase and respiratory signal are continuous quantities, we estimate their probability 

density function using kernel density estimation (KDE). We use KDE with a Gaussian 

kernel with a standard deviation of 0.1. The evaluation is based on a single free-breathing 

volunteer dataset with 20 slices and 169 frames per slice. An independent KDE is performed 

for each slice, and we show the point-wise mean, minimum, and maximum density.

B. MR Slice Motion

To compare slice stacking with binning for 4-D MR volume generation and motion 

compensation, 4-D respiratory binned MR, 4-D cardiac binned MR, and real-time sagittal 

slices were acquired for two volunteers and one pig. The volunteers were free breathing, 

while the pig was on a ventilator.

For respiratory binning, 5 breathing phases are acquired with a T1-weighted, self-gated, 

radial stack-of-stars sequence [19]. The reconstructed volume of size 192 × 192 × (28 – 40) 

has a resolution of (1.35–2.08)×(1.35–2.08)×(3–4) mm. For cardiac binning, 30 cardiac 

phases are acquired with a bSSFP CINE sequence during free breathing, retrospectively 

cardiac binned and compensated for respiratory motion [22]. The 4-D volume is created by 

stacking 2-D slices, where each slice is acquired for 8 s, independently reconstructed, and 

sorted according to the ECG trigger times. The reconstructed volume of size (160 – 192) × 

(120 – 128) × (17 – 20) has a resolution of (1.75 – 2.34) × (1.75 – 2.34) × (6 – 8) mm. As an 

alternative to the proposed slice stacking method, we implemented and compare to the self-

alignment of manifold (SAM) technique proposed by Baumgartner et al. [24]. The 

parameters of this method were chosen similar to the ones proposed in the original 

publication with additional fine-tuning: σ1 = 0.15, σ2 = 0.15, μ2 = 0.01, k = 30, and d = 4. 

For respiratory binning, cardiac binning, and for both slice stacking methods, a motion 
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model as in Section II-E is created. These motion models are evaluated regarding their 

ability to compensate the observable patient motion in MR.

For this evaluation, additional real-time slices were acquired in non-sagittal orientations, e. 

g., short axis view, and four chamber view. Key points were tracked using template matching 

with manual correction. In total, 34 key point trajectories from 14 sequences are evaluated. 

The motion models are applied on the evaluation slices to estimate the motion of the key 

points. A difference is that the respiratory surrogate is created from tracking structures 

moving with respiratory motion, e. g., the top of the diaphragm or the chest, instead of the 

method described in Section II-D2 to avoid a bias towards our method.

The estimated position of the key point is compared to the ground truth position for each 

point in time. As the ground truth position can only be annotated in 2-D in the slice, the 

estimated 3-D position is projected into the evaluation slice and compared using the 2-D in-

plane Euclidean distance. As a baseline, a static overlay is used. This corresponds to keeping 

the position of the key point fixed in the reference phase for all images.

C. X-Ray Key Points

To apply the complete motion compensation workflow, a reference 3-D MR for annotation 

and registration, real-time MR slices for motion modeling, and X-ray images for evaluation 

are acquired for 5 pig datasets. There are 2–3 biplane X-ray acquisitions with contrast agent 

injection into the left ventricle (LV) and the left and right pulmonary artery (PA). Images of 

size 1024 × 1024 pixels with a pixel size of 0.15 – 0.31 mm are acquired. The frame rate is 

15 Hz and the length of the image sequences used for evaluation is 151 to 301 frames.

Besides our complete proposed method, we train models that only compensate one of the 

motions to show the relative influence of respiratory and cardiac motion. This is achieved by 

restricting the input of the motion model learning (Section II-E2) to only a respiratory 

surrogate or only a cardiac surrogate. Consequently, the cardiac motion states are averaged 

in the respiratory motion model and vice versa. As a baseline, we use non-motion-

compensated overlays, i. e., fixed at the reference phase without any motion. Additional 

comparison is done with SAM slice stacking with the same parametrization as in Section III-

B.

We measure the 2-D error of key points in contrast-enhanced images. Key points for 

respiratory motion include branching points of the PAs. For cardiac motion, points on the 

heart shadow are used. Initially, we tried to inject contrast agent into the LV and use key 

points on the LV. However, the injection in the LV frequently caused premature ventricular 

contraction. Due to this arrhythmia, which is evident in the ECG (Fig. 6), the heart moves 

abnormally. This type of motion is not observed in the 4-D MR and cannot be compensated 

with our model. This limitation is further discussed in Section V.

The trajectories of key points are annotated manually in X-ray sequences. Different key 

points are annotated in each plane of the biplane sequence, depending on visibility. The key 

points are also marked in the reference 3-D MR, which would usually be used for 

segmentation of the overlay. To accurately mark the 3-D point corresponding to the 2-D key 
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points, the 2-D point of an image close to the reference phase is backprojected to 3-D using 

the projection geometry of the X-ray image. A 3-D point close to the backprojection line and 

to the anatomy of interest is chosen. In total, 35 point trajectories are evaluated on 20 X-ray 

sequences, between one and four trajectories per sequence. The error of the key points is 

measured on the detector plane using the 2-D Euclidean distance.

D. Comparison of Manual and Automatic Ventilation

The proposed method relies on reproducible motion patterns for MR slice stacking and for 

motion compensation. With a ventilation machine, the respiratory motion is regular in 

amplitude and frequency. To test the variability during MR scanning, the volunteer datasets 

were acquired free breathing and the animal datasets were acquired while the pigs were on a 

ventilation machine. A similar MR key point evaluation as in Section III-B is performed 

using 24 trajectories from free-breathing volunteer scans and 42 trajectories from ventilated 

pig scans. To evaluate the robustness of the whole motion compensation pipeline w. r. t. 

variable breathing patterns, X-ray sequences were acquired with manual and with automatic 

ventilation. During manual ventilation, varying breathing depths and frequencies were 

simulated. The same X-ray key point evaluation as in Section III-C is performed. From the 

20 X-ray sequences, 12 were recorded during automatic ventilation and 8 during manual 

ventilation.

E. Comparison of Regression Methods for MR Motion Model

In this experiment, the regression used in the MR motion model is investigated more 

thoroughly. We propose to use linear regression, which is compared to kernel ridge 

regression (KRR) and to principal component regression (PCR) here [43]. In KRR, a 

Gaussian radial basis function kernel with a bandwidth of 0.5 is used. The PCA in PCR is 

computed with 10 components. The regression methods are evaluated on the training data 

with the coefficient of determination R2, which measures how much of the variance in the 

training data is captured. Furthermore, we evaluate the X-ray key point error from Section 

III-C for all three motion models to demonstrate their influence on the whole pipeline.

F. X-Ray Overlay

The error at key points is a quantitative but sparse measure. The general impression of the 

quality of the motion compensation is defined by how well the whole overlay matches the 

fluoroscopic images. This can also be seen using contrast agent injection. To generate the 

overlay, we segment the PAs and the LV manually in the reference 3-D MR. The same 5 

datasets as in the previous experiment are used. For the LV, the same arrhythmia problem 

occurs.

Quantitative results for this use case are challenging and inaccurate. In X-ray, the contrast 

agent flows in and out of the structures, so they are only partially visible most of the time. 

Error measures are dominated by these structural differences due to contrast filling and not 

by the misalignment due to motion. Furthermore, the annotation of the contrast agent is very 

difficult due to the high number of frames and the varying and low contrast. Therefore, we 

show qualitative results only.
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G. Runtime

Since the proposed method is targeted for interventional use, the runtime is important. In 

particular, respiratory signal extraction, motion model application, and overlay rendering in 

X-ray are crucial. These steps are performed during the intervention and must run in real 

time. Slice stacking, 3-D/3-D registration, and motion model training are less time-critical, 

since they are performed pre-procedurally. The runtime of all processing steps is measured 

for 5 datasets. This experiment is executed on a consumer notebook with an Intel Core 

i7-3720QM CPU with 8 GB of RAM and a NVIDIA Quadro K2000M.

IV. Results

A. MR Statistics

In Fig. 7, the temporal minimum and maximum intensity projections of a sagittal slice 

through the LV are shown. The size of the blood pool in the LV is much smaller in the 

minimum intensity projection image. A part of this is also due to respiratory motion of the 

heart. This can be seen at the most inferior level of the heart, which moves by 7mm between 

Fig. 7a and Fig. 7b. In addition, the magnitude of the respiratory motion of the diaphragm 

can be seen nicely. For the top of the diaphragm, the visible motion in these images 

corresponds to 17.5mm in the vertical direction.

The cardio-respiratory plane of one dataset is provided in Fig. 8. The mean plane (Fig. 8a) 

shows that more time is spent in end exhale than in other respiratory states, illustrating the 

property that is used as a heuristic for the global respiratory signal sign, cf. Section II-D2. 

The cardiac phases are distributed equally. This is due to the way the cardiac phase is 

computed as the relative time between two R-peaks and due to the trigger-independent 

acquisition of the MR images. In the minimum image, it can be seen additionally that full 

inhale and very deep exhalations did not occur in all slices.

B. MR Slice Motion

For the static baseline, the key points move by 3.85 ± 2.61 mm from the reference. All 

models reduce the motion compared to the baseline. Cardiac binning has an error of 3.80 

± 2.62 mm and respiratory binning an error of 2.92 ± 2.24 mm. The combination of both 

brings the error down to 2.82 ± 2.3 mm. Slice stacking using SAM leads to an error of 3.09 

± 2.4 mm. With 2.76 ± 2.3 mm, our proposed slice stacking has the lowest error. The 

difference to the baseline is significant for the proposed method and for respiratory binning. 

However, possibly due to the small sample size, the difference between respiratory binning 

and the proposed slice stacking is not significant. Statistical testing was performed with the 

Wilcoxon signed rank test and p < 0.01.

C. X-Ray Key Points

The numerical results are summarized in Table I. The experiment is separated into 

trajectories dominated by cardiac motion (left), respiratory motion (middle), and all 

trajectories (right). For all trajectories, the error of the static overlay is 3.01 ± 1.46 mm. This 

is reduced to 2.66 ± 1.1 mm using the cardiac model. The respiratory and the joint model 

have similar errors in the range of 1.8 mm. This amounts to a reduction by 40%. For 
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comparison, the SAM-based model leads to an error of 2.17 mm. Note that the results are 

biased towards static overlays, because the errors are averaged over time and most of the 

time is spent in the reference phase. The difference between all methods and the static 

overlay is significant for all models. Joint and respiratory model are significantly better than 

the cardiac model, but not significantly different from each other. Statistical testing was 

performed with the Wilcoxon signed rank test and p < 0.01.

In Fig. 9, the residual motion per trajectory is shown as boxplots for the different versions of 

the proposed motion model, i. e., joint cardio-respiratory (left), respiratory only (middle 

left), cardiac only (middle right), and the static baseline (right). In most sequences, the 

residual motion is reduced by all motion models. Respiratory motion is incorrectly estimated 

in trajectories 7 and 9, where the breathing depth is varying and the motion is overestimated. 

The cardiac motion model more often performs worse than the static baseline, particularly in 

trajectories 19, 22, 23, 24, 26, and 34, often due to a phase offset between true and estimated 

motion.

D. Comparison of Manual and Automatic Ventilation

In the MR key point experiment, the motion for the free-breathing human subjects without 

motion compensation is 4.76 ± 2.63 mm. Using our motion compensation method, the error 

is reduced to 3.51 ± 2.48 mm. For the pig datasets, the motion without compensation is only 

1.86 ± 0.92 mm, which can be reduced to 1.11 ± 0.48 mm with the proposed method. In the 

X-ray key point experiment, the manual ventilation motion without compensation is 3.76 

± 1.66 mm, which is lowered to 2.38 ± 1.06 mm with motion compensation. For automatic 

ventilation, the initial motion magnitude of 2.57 ± 1.12 mm is reduced to 1.44 ± 0.70 mm 

after motion compensation.

E. Comparison of Regression Methods for MR Motion Model

The coefficient of determination R2 on the training data is 0.66 for linear regression and 0.64 

for PCR. For KRR, R2 is 0.7, showing its increased modeling power. To analyze the 

distribution of the motion types, the R2 is also evaluated for linear regression only with the 

respiratory surrogate, where it is 0.62, and only with the cardiac surrogates, where it is 0.04. 

In the X-ray key point experiments, linear regression has a residual error of 1.79±0.96 mm 

and PCR of 1.78±0.96. KRR has a slightly higher error of 1.82 ± 0.94 mm. The differences 

between PCR and linear regression are marginal. If the number of PCA components is 

increased to 10 in PCR, both methods yield identical results. The higher R2 of KRR together 

with the slightly higher key point error indicates an overfitting on the training data.

F. X-Ray Overlay

In Fig. 10, the static mesh and the mesh with motion compensation are overlaid jointly onto 

an X-ray image. Only the outlines of the meshes are shown to avoid occlusions. All 24 

sequences with contrast agent injection are included. For the angiograms of the left 

ventricle, both overlays often do not match the lumen, e. g., rows 2 and 5 in columns 1 and 

2. This is in part due to premature ventricular contraction and in part due to model errors. 

The motion-compensated overlay is still closer to the true lumen than the non-compensated. 

For the angiograms of the pulmonary arteries, the motion-compensated overlay fits the 

Fischer et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contrast agent nicely in the anterior-posterior (AP) acquisitions, e. g., row 1, 2, and 6 in 

column 3. In the lateral acquisitions, the correspondence of contrast agent and overlay is 

harder to assess due to occlusions of the left and the right pulmonary artery. Note that two 

consecutive images in Fig. 10 are consecutive AP and lateral acquisitions of the same scene, 

e. g., row 1 columns 1 and 2.

In addition to the images here, all results are also shown as videos in the supplementary 

material. In these videos, the static and motion-compensated mesh are overlaid separately 

onto the corresponding X-ray sequence and visualized side-by-side using mesh rendering. 

The videos demonstrate the performance of motion compensation for different cases, for 

example respiratory motion of the pulmonary arteries and cardiac motion of the left ventricle 

during normal rhythms and during arrhythmias caused by contrast agent injection.

G. Runtime

First, the runtimes of the pre-procedural steps to create the motion model are reported. Slice 

stacking using the proposed method is performed in 40.1 ± 3.6 s. The registration of the 3-D 

MR volumes requires 2.6 ± 1.3 hours per dataset. As there are 176 to 185 volumes in a 

dataset, this means that a single 3-D/3-D registration is processed in 52.8±26.1 seconds. 

Another 1.3 ± 0.1 s are needed to learn the regression model.

The overall runtime of the intra-procedural processing is 10.7 ± 5.8 ms per image. This 

includes the computation of the surrogate signals on the CPU, the transfer of image and 

surrogate data to the GPU, and the application of the motion model and the rendering of the 

overlay on the GPU. With 7.8 ± 2.3 ms per image, the majority of the runtime is spent for 

extracting the respiratory signal from the image. The processing time is well below the 

shortest sampling intervals usually used in fluoroscopy, which is 66.7 ms, i. e., the method is 

real-time-capable. In a clinical product, an additional delay of the display of the X-ray image 

by 11 ms might not be tolerable. In this case, an additional surrogate signal or motion 

prediction step would be required [44].

V. Discussion

The MR slice motion experiments show that slice stacking is competitive with binning 

approaches for motion modeling. The proposed method to stack slices based on cardiac and 

respiratory surrogate signals is relatively simple. Additionally, some other properties of the 

MR sequence for slice stacking are advantageous for our application. Firstly, only one scan 

is necessary instead of two, reducing the scan and setup complexity. Secondly, this scan 

resolves cardiac and respiratory motion, such that derived motion models can capture the 

dependency between them. Thirdly, slice stacking gives multiple cardiac and respiratory 

cycles, instead of one binned average. Last but not least, a multi-slice, real-time MR 

sequence is available on modern scanners from all major vendors. In this work, we used the 

bSSFP sequence, but the method is not limited to this sequence. Depending on the 

application, other fast MRI sequences could be used [28], [45]. This simplifies reproduction 

and distribution of our method.
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In our experiment to evaluate the full motion compensation workflow based on X-ray 

images (Section IV-C), the joint motion model gives the lowest errors. The apparent 2-D 

motion was reduced by 40% on average for both motion types. In relation to previously 

published results, this is state of the art. The following reported percentages are based on 

different datasets and measures, thus, the values are not directly comparable. King et al. 

achieved a reduction of respiratory motion between 23% and 79%, but cardiac motion was 

excluded by gating [12]. Shechter et al. reduced cardio-respiratory motion of the coronaries 

by 48 – 63% [11]. The reduction achieved by Faranesh et al. was between 8% and 52% for 

aorta and right coronary artery [13]. The motion model based on SAM slice stacking [24] 

leads to comparable results for the respiratory trajectories, but fails for cardiac trajectories. 

This is an indicator that SAM focuses mostly on the dominant motion type, i. e., respiratory 

motion, and largely ignores cardiac motion.

The comparison of our motion compensation method on free-breathing/manually ventilated 

subjects and automatically ventilated subjects from Section IV-D confirms the expectations. 

The motion magnitude is lower for automatic ventilation, as indicated by the lower mean 

error without motion compensation. Additionally, in both the MR experiments and the X-ray 

experiments, the percentage of the motion that can be compensated is higher in the datasets 

with automatic ventilation. This means that also the variability of the motion is lower with 

automatic ventilation. However, the results for manual ventilation are encouraging as well. 

The relative performance of the motion compensation is only worse by 7–12 percentage 

points.

Regarding the different types of motions, the motion in cardiac trajectories is generally not 

compensated as well as the motion in respiratory trajectories. Cardiac motion is spatially 

less smooth and therefore harder to estimate using registration. To investigate the influence 

of the registration on those results, we computed the motion fields with additional 

regularization weights γ. This is the main influence on the smoothness of the motion fields 

in the registration. For the X-ray key point experiments of Section III-C, the cardiac 

trajectories without motion compensation have an error of 2.66 ± 1.12, which was reduced 

to 2.20 ± 0.89 with the standard setting of γ = 0.02. For a larger regularization of γ = 0.05, 

the error is 2.23 ± 0.85, and for a smaller regularization of γ = 0.005, the error is reduced to 

2.15 ± 0.94. However, for the respiratory trajectories, the trend is reversed, i. e., slightly 

smaller errors for larger γ and higher errors for smaller γ. Thus, even though optimized 

registration parameters can improve cardiac motion compensation results, it is not the main 

reason why respiratory motion is captured better than cardiac motion. A more important 

reason seems to be the relationship of the surrogate signal with the cardiac motion, as 

indicated by the low R2 score for the cardiac model in Section III-E. However, it has to be 

considered that one reason for the low score is the fact that cardiac motion has a smaller 

magnitude than respiratory motion and only covers a small part of the field of view. Another 

issue is the less accurate annotations in the X-ray image for cardiac trajectories, since the 

heart shadow lacks prominent key points. All in all, the quantitative results for cardiac 

motion compensation in Section III-B and Section III-C are not satisfactory. Further work is 

required to better compensate and better evaluate the cardiac component of the motion 

model. Nevertheless, the motion-compensated overlays presented in the supplementary 
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material and Section III-F subjectively fit the cardiac motion well and improve the 

perception of the motion.

Of course, our method for motion compensation is not perfect and there are residual errors. 

All steps in the proposed pipeline can introduce some inaccuracies, e. g., misregistrations in 

the 4-D MR or insufficient capacity of the motion model. These are the interesting errors for 

this study. However, there are other sources of error that are not directly related to motion 

compensation but still influence the results. First of all, the manual annotation of 2-D point 

trajectories in X-ray is error-prone because of transparency effects such as foreshortening, 

overlapping structures, and varying contrast levels. Second, other steps in the workflow can 

adversely affect the evaluated measures. For example, the rigid registration of the coordinate 

systems of X-ray and MR based on skin markers cannot account for non-rigid movements of 

the subject during transfer. We use the rail-based table to minimize this issue. Third, the 

behavior and appearance of the anatomical target region can change during the intervention. 

The stiffness of devices such as guidewires or needles distorts the anatomy and changes its 

mechanics. The physician might also interact with and alter the anatomy, for example 

ablation or biopsy. For Section IV-F, there is the additional issue of segmentation. Due to 

noise, low resolution, and partial volume effects in MR, the manual segmentation of PAs and 

LV does not exactly correspond to the contrasted lumen in X-ray.

Another limitation of the presented approach is the compensation of abnormal motions. 

Abnormal motions can occur in respiration, e. g., coughing, or in the heart, e. g., 

arrhythmias. The majority of motions observed during MR imaging are normal. 

Furthermore, the surrogate signals are low-dimensional representations of the motion state. 

Thus, the motion learned by the linear model is dominated by the normal motions. This is 

good, because most motions during the intervention are normal as well. The model can 

adapt to changing rates or amplitudes of the motion. However, more complex motion 

patterns cannot be learned due to these limiting factors. For use in a clinical setting, the 

ability to deal with abnormal motions still has to be improved or the cases of failure have to 

be highlighted to the clinicians. Currently, the proposed method is not equipped to detect 

false overlays. This would be an interesting direction for future work.

An important alternative to patient-specific motion models, as proposed here, would be a 

population-based statistical motion model. A statistical model would enable a reduction in 

MR scan time and computation time and could increase the robustness of the method. 

However, it is more difficult to deal with abnormalities. The major limitation would occur 

for abnormal anatomies, for example in the case of structural heart disease, where it is 

challenging to fit a population-based model. However, the need for guidance is particularly 

high, since the anatomy and the motions are different for each patient.

For clinicians, the compensation of cardiac and respiratory motion in image fusion is 

important, depending on the application [1]. The fact that the overlays are static in current 

systems is a problem in the transcatheter treatment of structural heart disease [46]. In all 

cardiac interventions, target structures such as pulmonary veins, valves, and coronaries, are 

affected by both types of motion. Correction of cardiac motion matters most for precise 

targeting. Respiratory motion affects the whole heart and can be described well with 
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parametric models [12], such that compensation is feasible and generally advantageous. For 

interventions in other areas of the thorax and abdomen, only respiratory motion occurs and 

should be compensated.

Considering runtime, only the transfer time between MR and X-ray is available for creating 

the motion model. In the hybrid OR setup with a C-arm and an MR scanner in the same 

room, there are only around 10 minutes between the acquisition of the MR images and the 

start of the interventional procedure. With the current solution, we do not yet meet that goal. 

The computationally most intensive task is registration. (T – 1) 3-D/3-D registrations have to 

be performed to create the motion model. To reduce this time, better hardware to compute 

the (T – 1) registrations in parallel, a more efficient GPU-based implementation, or a 

simplified registration method, e. g., non-diffeomorphic transformations, is required. 

Alternatively, the number of time steps could be reduced, which leads to a trade-off between 

accuracy and runtime. The runtime of the application phase during the intervention already 

fulfills real-time constraints. This is achieved with a CPU and GPU implementation of 

respiratory signal extraction and motion model application.

VI. Conclusion

We have presented a new method for motion compensation of overlays in augmented 

fluoroscopy. The method uses real-time MR imaging to create a 3-D model of cardiac and 

respiratory motion. This motion model is driven by surrogate signals. The cardiac surrogate 

signal is based on ECG and respiratory surrogate signal is extracted from the MR images. 

The model can be applied in the fluoroscopy-guided intervention because ECG is also 

available and a corresponding respiratory signal can be extracted from the X-ray images. To 

the best of our knowledge, it is the first method to compensate cardiac and respiratory 

motion in a fully deformable manner. In the experiments, we showed that cardiac and 

respiratory motion are reduced substantially. The motion model can be applied during the 

intervention in real time. However, the runtime of model generation is not yet clinically 

acceptable.

The approach for respiratory signal extraction still has some drawbacks. The respiratory 

signal extraction must be retrained for each C-arm position [33], leading to short time 

without motion compensation for each position. Additionally, it is assumed that the 

respiratory signals for MR and X-ray are equivalent to each other, because they are extracted 

from the images in a similar manner. However, the signals depend on the breathing patterns 

during the training phase. Ideally, a mapping between the different signals would be trained, 

but this is infeasible because there is no concurrent X-ray and MR imaging. One solution to 

these problems with image-based respiratory signal extraction would be an external 

respiratory sensor that is attached during MR and X-ray. However, this has other issues such 

as drift and synchronization. A fusion of image-based and sensor-based respiratory signals is 

a promising direction for research.

In the future, we want to apply the method to human patient data. The datasets used here 

come from pig experiments, which have different motion characteristics. Furthermore, all 

pigs were anesthetized and on a ventilation machine during MR scanning. Consequently, the 
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motion variability is small. To test how the model handles variability, we used manual 

ventilation during X-ray imaging in some pigs, but this was just a first step in that direction.

Furthermore, the proposed workflow should be evaluated in a clinical prototype. Pediatric 

cardiology is a suitable clinical specialty for initial testing. Many patients are anesthetized, 

leading to reproducible motions, and have structural heart disease, where the abnormal 

anatomy increases the need for advanced guidance systems. However, the method is very 

general and can be applied to all kinds of fluoroscopy-guided thoracic and abdominal 

interventions. Further work is needed to evaluate the value of animated overlays to the 

physicians in terms of reducing fluoroscopy time, contrast dose, and improving overall 

procedure success rates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Augmented fluoroscopy using an MR-based overlay onto an X-ray image of a pig. Best 

viewed in color.
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Fig. 2. 
Illustration of MR-based motion compensation for augmented fluoroscopy. Input data is 

colored in green, pre-procedural processing steps in blue, real-time processing steps in red. 

Two MR acquisitions are necessary, a 3-D volume for segmenting the structures of interest 

and dynamic MR slices for motion modeling. ECG is required in MR and X-ray to inform 

about the cardiac phase. X-ray images are displayed to the physician and used to extract the 

respiratory signal during the intervention. Best viewed in color.
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Fig. 3. 
Graphical model for slice stacking. Random variables are displayed as circles. Observed 

variables are shaded.
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Fig. 4. 
The linear cardiac phase is embedded in a 2-D circle to enforce a consistent position of end-

diastole and start-systole.
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Fig. 5. 
Respiratory signal alignment for neighboring MR slices. PCA embedding of the slice images 

(a) results in a respiratory signal for each slice (b). The signals themselves have no inherent 

temporal correspondence and are not sufficient to determine the sign ambiguity. The PCA 

eigenvectors (c) indicate how the intensity of the images changes with respiration. The 

maximum NCC (d) between the eigenvectors is positive if the respiratory signals are 

aligned, and negative if the signs are flipped. In (c) and (d), negative values are blue, 0 is 

white, and positive values are red. In this example, the correlation is positive, which means 

there is no sign flip between the respiratory signals in (b). Best viewed in color.
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Fig. 6. 
ECG of a pig during normal fluoroscopic imaging (a) and during contrast agent injection in 

the left ventricle (b) causing arrhythmia.
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Fig. 7. 
The pixel-wise minimum (a) and maximum (b) intensity of a slice acquired for slice 

stacking indicates the extent of cardio-respiratory motion.
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Fig. 8. 
Coverage of cardio-respiratory plane for the real-time slices for an exemplary dataset. The 

mean (a), point-wise minimum (b) and point-wise maximum (c) density over all the slices is 

shown. Best viewed in color.
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Fig. 9. 
Boxplots of the root mean square error per keypoint trajectory for the cardio-respiratory 

(left), respiratory (middle left), and cardiac motion model (middle right) and for the static 

baseline (right). Trajectories 0–30 are dominated by respiratory motion, while the others are 

mostly influenced by cardiac motion. Best viewed in color.
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Fig. 10. 
Outline of the static (green) and the motion-compensated overlay (blue) for all sequences 

with contrast agent injection. From each sequence, an image with good contrast filling and 

as much motion as possible relative to the reference phase is displayed. Best viewed in color. 

In the supplementary material, a video of each sequence with and without motion 

compensation is available.
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TABLE I

Results of X-ray motion compensation on porcine data (mean Euclidean distance in mm ± standard deviation)

Cardiac Traj. Respiratory Traj. All Traj.

Joint 2.20 ± 0.89 1.63 ± 0.94 1.79 ± 0.96

Respiratory 2.25 ± 0.86 1.62 ± 0.95 1.79 ± 0.97

Cardiac 2.32 ± 0.99 2.80 ± 1.11 2.66 ± 1.10

SAM 2.90 ± 1.30 1.89 ± 1.05 2.17 ± 1.21

None 2.66 ± 1.12 3.15 ± 1.55 3.01 ± 1.46
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