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Abstract

Metabolite identification is still considered an imposing bottleneck in liquid chromatography mass 

spectrometry (LC/MS) untargeted metabolomics. The identification workflow usually begins with 

detecting relevant LC/MS peaks via peak-picking algorithms and retrieving putative identities 

based on accurate mass searching. However, accurate mass search alone provides poor evidence 

for metabolite identification. For this reason, computational annotation is used to reveal the 

underlying metabolites monoisotopic masses, improving putative identification in addition to 

confirmation with tandem mass spectrometry. This review examines LC/MS data from a 

computational and analytical perspective, focusing on the occurrence of neutral losses and in-

source fragments, to understand the challenges in computational annotation methodologies. 

Herein, we examine the state-of-the-art strategies for computational annotation including: (i) peak 

grouping or full scan (MS1) pseudo-spectra extraction, i.e., clustering all mass spectral signals 

stemming from each metabolite; (ii) annotation using ion adduction and mass distance among ion 

peaks; (iii) incorporation of biological knowledge such as biotransformations or pathways; (iv) 

tandem MS data; and (v) metabolite retention time calibration, usually achieved by prediction 

from molecular descriptors. Advantages and pitfalls of each of these strategies are discussed, as 

well as expected future trends in computational annotation.
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Introduction

The aim of any untargeted metabolomics experiment is to identify and quantify disregulated 

compounds relevant to a particular disease or stressor. Untargeted data analysis workflow for 

liquid chromatography electrospray ionization/mass spectrometry (LC/ESI/MS) consist in 

applying peak-picking algorithms [1–6] to detect peaks associated with metabolites, align 
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those peaks across multiple samples to obtain the so-called peak features (defined as a peak, 

or a set of aligned peaks across samples with a unique m/z and a specific retention time), and 

subsequently discover statistically significant variations between experimental groups or 

conditions. Once features of interest are prioritized, their mass values are searched against 

metabolite libraries [7–9] to obtain putative metabolite identifications. Next, those features 

can be identified via fragmentation experiments (tandem MS or MS/MS), usually with 

quadrupole – Time-of-Flight (q–ToF) instrumentation, by comparing experimental 

fragmentation patterns with spectral libraries [10]. Ultimately, unambiguous identification, 

according to the Metabolomics Standards Initiative (MSI) guidelines [11], can only be 

achieved by comparing the experimental tandem MS spectra with standard materials 

analyzed under identical conditions.

Although the untargeted metabolomics workflow is well-defined, annotation of metabolites 

still remains a computational bottleneck due to the nature of LC/ESI/MS data. First, there is 

a high redundancy of features representing the same metabolite, which can be attributed to 

to adducts, in-source fragments and isotopes. Library searching of all statistically significant 

features without prior knowledge of monoisotopic accurate masses of the underlying 

metabolites might lead to missanotations if adducts or in-source fragments are present [12]. 

In addition, accurate mass library searches – considering expected adducts – can lead to a 

large number of potential molecular formulas and thus, molecular entities. Computational 

feature grouping and annotation is therefore a necessary step to reduce the list of putative 

identities. Annotation is defined as the process of “noting” each observed feature with a 

putative identity. Annotation generally refers to assigning each feature with a putative 

metabolite name or molecular formula, but it also includes assigning each feature with the 

identity of formed adducts, neutral losses, etc. This, ultimately facilitates the accurate 

characterization and identification of annotated adduct peaks via tandem mass spectrometry 

(MS/MS).

This computational annotation process ideally consists in i) grouping features stemming 

from the same compound – adducts, isotopes and in-source fragments – which gives 

valuable chemical information for metabolite identification, and ii) determining 

monoisotopic or neutral molecular mass of each metabolite by annotation of formed adduct 

peaks and isotopes. Additional strategies have been proposed which attempt to increase the 

annotation confidence when performing accurate mass search. Those strategies take into 

account biological information such as pathways, tandem MS/MS data, and retention time 

calibration or prediction.

This review provides an overview of LC/ESI/MS based un-targeted metabolomics data from 

a computational and physiochemical perspective, to understand the characteristics of LC/MS 

data and its challenges for accurate computational annotation. We focused on the occurrence 

of in-source dissociation phenomena in metabolomics data, and the pitfalls of using accurate 

mass search without a priori feature annotation. Moreover, we provide an overview of the 

state of the art computational annotation strategies for LC/MS data. Despite that different 

computational tools are cited throughout the paper, we focused on their algorithms and 

strategies rather than providing a comprehensive list of all available annotation tools. For 
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more in depth reviews focused on tools and resources, we encourage the readers to read the 

following literature [13–15].

Overview of LC/ESI/MS data

LC/ESI/MS data are typically composed of a large amount of features, with a significant 

redundancy belonging to the same metabolite or chemical entity due to commonly occurring 

adducts, neutral losses, isotopes and in-source fragments. This section describes how the 

different levels of redundancy can be used to extract meaningful information and thus 

converting raw data into biologically interpretable information.

Adducts, neutral losses and isotopes

Under normal conditions, protonated and deprotonated are the most common ion species in 

LC/ESI/MS metabolomics measurements, however, different molecular adducts are also 

formed by adduction of ionic species, such as ionic metals (Na+, K+, etc.), halides (Cl−and 

F−) or additives (acetate, formate, ammonium, etc.) usually found in both solvents and 

samples or added to improve chromatographic and ionization conditions. Also, features 

resulting from stable neutral molecules losses such as H2O or CO2 are detected (Figure 1 

(c,d)). This yields a feature redundancy, where usually more than one feature per metabolite 

is observed. Given that the accurate masses of common ion adducts and neutral losses are 

known, the prediction of m/z distance between two or more adducts and losses is possible. A 

list of such adducts and neutral losses m/z values is known as annotation rules [16]. 

Therefore, the presence of two or more adducts together with neutral losses can provide 

useful information that allows the “triangulation” of the monoisotopic mass by comparing 

experimental the distance between two features with the theoretical distance between two 

known adducts. If the experimental distance falls within a user specified window (ppm error) 

of the theoretical distance, then these two features can be annotated and the neutral mass 

using the same rules can be calculated. Of note, the relative intensity among adduct peaks as 

well as the amount of formed adducts will vary from one metabolite to another, as well as 

for the same metabolite depending on experimental conditions [9]. This can make MS1 

spectral information in LC/MS poorly reproducible for annotation purposes. However, some 

adducts and neutral losses are more frequent than others. As observed from available adduct 

spectra in MS/MS libraries, protonated and deprotonated are the most frequent adducts, 

followed by [M+H–H2O]+, [M+Na]+ in positive mode and [M–H–H2O]−, [2M–H]− in 

negative mode [9].

Depending on the signal-to-noise ratio, the isotopic envelope of metabolites and their 

fragments and adducts can increase the feature redundancy. The isotopic pattern 

(relative 12C/13C isotopomer abundances and their masses) for each molecular formula can 

be accurately predicted too, but those peaks are characterized by their low intensity, 

especially for low molecular weight compounds. This is why despite isotopic information 

has been used to narrow the number of putative molecular formulas (see Section Peak 

annotation: adducts, neutral losses isotopes and other mass relationships), this approach 

lacks from suffcient accuracy [17], as even in the cases where peaks are detected by the 
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mass spectrometer and data processing software, the peak intensity precision is too low to 

provide with accurate results.

In-source fragmentation

ESI is considered to be one of the softest ionization sources, still, in-source fragmentation is 

a natural phenomenon in LC/MS [18, 19] and, unlike adducts and neutral losses, exact mass 

of in-source fragments cannot be easily predicted as they are particular of each metabolite. 

These in-source fragments will usually be the ones observed in low energy MS/MS spectra, 

with different relative intensities. The occurrence of in-source fragments can be appreciated 

in Figure 1(a), where only less than 10% of metabolites in METLIN database [7] do not 

readily dissociate in the source, while ~8% generates more than 15 fragments. Interestingly, 

the intensity of the protonated and deprotonated species are the most intense signal in more 

than 50% of the cases. This indicates that assuming that the most intense detected peak is 

generally a protonated or deprotonated ion can likely lead to misannotations.

Another reason for not relying on accurate mass searches without previous feature 

annotation is that in-source fragments might match [M+H]+ and [M-H]- species from other 

metabolites. This might occur when metabolites structural differences differ only in labile 

chemical moieties and chemical substructures are shared with other metabolites. An example 

of this occurs with the low energy spectra (0 V or 10 V) of isoxanthopterin and α-

guanidinoglutaric acid, where one fragment has the same mass as the protonated ion 

corresponding to guanine and glutamate respectively. This can be expected due to the 

structural similarities between pairs of metabolites and it can lead to false annotations and 

identifications. For instance, if isoxanthopterin is present in a sample and the precursor of 

guanine, as in-source fragment, is seen, it might be falsely annotated as guanine. In fact, 

even upon tandem MS experiments to confirm this hypothesis, the similar spectra obtained 

would lead to an incorrect confirmation of this (false) hypothesis (Figure 2). In those cases, 

the spectral fragments are usually the same, but the relative intensities might have slight 

variations. However, these differences could be attributed to different experimental 

conditions and different instruments from different vendors.

Finally, in-source fragments could be an informative source of molecular identity. For 

instance, in those cases where only a protonated ion is observed for a certain metabolite, 

there is no evidence that allows us to assume that the peak is a protonated ion of a molecule 

and, accurate mass search could lead to incorrect matching for the above-mentioned reasons. 

In those cases, the presence of in-source fragments might serve as an identity indicator, since 

each in-source fragment and protonated or deprotonated ion are specific of a small number 

of compounds.

Computational annotation strategies

The untargeted LC/MS-based metabolomics data processing workflow consist in peak-

picking and alignment, provided by widely used tools such as MZmine [1, 2] or XCMS [4, 

5], followed by peak annotation. Existing computational annotation tools usually start from 

the input provided by these peak-picking tools, which output consist of a list of features: a 
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peak, or a set of aligned peaks across samples with a unique m/z and a specific retention 

time (mzRT).

We classified the existing annotation strategies into five levels. Each level is independent of 

each other and are usually embedded into computational tools combined or separately. The 

first level includes peak grouping or MS1 pseudo-spectra extraction, i.e., clustering all the 

features corresponding to the same metabolite. The second level aims at using ion adducts, 

in-source or other expected accurate masses to annotate features and thus unravel 

monoisotopic or neutral masses. These two levels are the most widely used strategies and 

they are used in almost all computational tools for metabolite annotation. Other 

complementary strategies make use of biological information (level 3) such as 

biotransformations or pathways, to increase the annotation confidence, or to use and 

integrate MS/MS (MS2) data (level 4). A less used but also a valid strategy is considering 

retention time (level 5), which is usually predicted from molecular descriptors.

Peak grouping: MS1 pseudo-spectra extraction

A straightforward annotation strategy is to compare expected theoretical distances between 

well-known ion adduct masses with experimental distances between peaks eluting around a 

certain retention time. Unfortunately, the high number of peaks in complex metabolomics 

datasets makes this annotation challenging, as co-eluting peaks originated by other 

metabolites, in-source fragments, and spurious peaks by the biological matrix or noise due to 

data processing errors, might lead to an overestimation of adducts and isotopes. Therefore, a 

complementary strategy, usually applied before taking mass relationships into account, 

consists in determining which peaks belong to each metabolite. We will refer to this process 

as the extraction of (MS1) pseudo-spectra (Figure 3(a)). For each metabolite, its pseudo-

spectrum should be comprised of its adducts, isotopes, common neutral losses, in-source 

fragments and any other peaks that, based on a specific metric, are considered to stem from 

the same molecule. Then, searching for mass relationships among a well-defined group of 

peaks (pseudospectra) reduces the number of false positive peaks that could lead to false 

annotations. Specifically, two strategies aimed at extracting pseudo-spectra exist, namely 

peak-shape and peak-abundance correlation.

The first approach to extract MS1 pseudo-spectra from peak-picking strategies is to group 

peaks based on their chromatographic peak shape. This is to take advantage from the fact 

that all the peaks with different m/z ratios that belong to the same metabolite elute in the 

same retention time and, ideally, with a similar peak shape. Therefore, based on the 

correlation value given by simple Pearson correlation test, we can computationally 

determine whether two peaks originate from the same metabolite or not, and cluster similar 

elution profiles together [20] (Figure 3(b)). Different sources of problems hamper the 

efficiency of this approach. First, the noise introduced by the MS detector, specially at low 

levels, biological matrix interactions, ion suppression and other chromatographic effects 

induce changes to the shape of peaks and thus decrease similarities or correlations among 

shapes of peaks from the same metabolite. Second, coelution with other peaks from different 

compounds makes the association of those also challenging, i.e., highly co-eluted peaks 

from two different compounds might show a high similarity/correlation. Interesting 
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examples of poor correlation between related peaks are shown by Mahieu et al [21]. Finally, 

and due to the aforementioned issues, it is difficult to determine a correlation threshold to 

define whether two peaks belong to the metabolite or not. A low similarity threshold will 

lead to an incorrect association of peaks, and peaks from different metabolites will be mixed 

in the same MS1 pseudo-spectrum, which in turn will obstruct its correct annotation. On the 

contrary, a high similarity threshold would lead to only consider peaks with highly similar 

shapes, resulting in important peaks – such as low abundant adducts or isotopes – not being 

taken into account. Another known pitfall of this approach is the high computational 

resources needed to perform a clustering based on peak shape, since raw data needs to be re-

accessed. Variations on peak-shape approaches have been introduced [22, 23]. Essentially, 

these variations propose a different metric to measure the similarity between peak shapes, 

e.g., Ipsen et al. proposed a statistical approach that takes into account the noise of the mass 

spectrometer.

The second approach to extract MS1 pseudo-spectra is to group peak-features based on their 

peak-abundance correlation [24–29]. Ideally, when two peaks belong to the same compound, 

their relative abundance (peak area or intensity) show a strong linear relation across samples 

- and thus a strong correlation (Figure 3(c)). Therefore peaks are grouped based on their 

abundance linear relationship or correlation among samples. Comparing the peak abundance 

relationship is a more robust variable due to the accuracy of current MS detectors, whereas 

natural occurring differences in the shape of two peaks from the same compound makes the 

peak-shape strategy more sensible to outliers. This strategy is capable of distinguishing two 

co-eluting peaks stemming from different metabolites, since their linear relation among 

samples are likely to be different. Overall, this strategy exploits the joint information 

provided by all the samples and does not require high computational resources [25]. Pitfalls 

of this approach are that two co-eluting metabolites could also present a high correlation 

among samples, i.e., their total concentrations are correlated and, despite being two different 

metabolites, all their peaks are correlated as well. Another limitation is its sensitivity to 

outliers, as errors in feature integration one might lead to incorrect peak clustering. Finally, 

this approach also needs a correlation threshold to be determined. Variations on these 

approach include RAMClust [28], that uses an hierarchical clustering-based approach to 

group both MS and MS/MS peaks, or xMSannotator [29], which uses a weighted correlation 

network analysis and does not require a minimum correlation threshold to be defined.

The application of these strategies is not exclusive, and both peak shape similarity and peak 

abundance correlation application can be combined to enhance the efficiency of MS1 

pseudospectra extraction [16].

Peak annotation: adducts, neutral losses isotopes and other mass relationships

As previously described, annotation is accomplished by comparing mass distances among 

experimental peaks to distances among combinations of known adducts, neutral losses, 

molecular multimers or multiply charged ions (Figure 3(e)). This simple approach, 

combined with the use of other LC/MS data properties, is the most common strategy used to 

annotate. For instance, MetAssign [30] uses annotation rules along with peak intensity and 

retention time information to provide annotations by means of sophisticated Bayesian 
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statistics. MAIT [31] takes into account possible known biotransformations – specific mass 

differences caused by chemical modifications made by each organism under study – to 

improve the annotation outcome. Mz.unity [21] aims at expanding the list of annotation 

rules – which typically cover tens of adduct types –, by taking into account more complex 

peak mass relationships such as heterodimers, higher complex adducts, distal fragments, 

relationships between peaks in different polarities, and complex adducts between features 

and background peaks. Also, RAMSI [32] performs a one-step optimization of chemical 

rules among observed ions and chemical formula calculation, yielding a convergence that 

satisfies both criteria. Interestingly, RAMSI does not predefine annotation rules or neutral 

losses and both positive and negative mode data can be jointly analyzed.

The use of adducts or neutral losses rules alone in peak annotation has its limitations. If for a 

given pseudo-spectra no adduct is found, no evidence is available which would allow the 

computation of a monoisotopic mass. Also, due to noise from biological matrix or 

introduced by peak-picking data processing algorithms, false adducts might be found in the 

data. Therefore, finding more evidence, e.g., finding more than two adducts that “point” to 

the same molecular entity, increases the likelihood of those peaks belonging to a real 

metabolite. In that sense, some studies proposed the use of information from in-source 

fragmentation as a complementary evidence layer (Figure 3(f)). In-source fragments can be 

used not only to determine the monoisotopic mass where few or any adducts have been 

found, but also to provide with a more specific list of candidate metabolites, as each of these 

fragments are specific of a small number of metabolites. Examples of adoption of this 

strategy includes RAMClust [28], or the proof of concept by Lynn et al. [33], where they 

matched in-source fragments with low energy MS/MS spectra in public databases. Similarly, 

while attempting to predict in-silico in-source fragments and retention time from molecular 

descriptors, the STOp-1 [34] algorithm uses in-source fragments to rank the list of putative 

identities.

Alternatively, additional chemical heuristic rules such as hydrogen/carbon ratios, restrictions 

for the number of elements, or relative isotopic abundances have been proposed to limit the 

plausible molecular formulas [35–37].

Biochemical knowledge

In cellular metabolism, metabolites are connected among and within pathways through 

biochemical reactions. That means that a considerable proportion of observed metabolites in 

biological samples will be related by these chemical reactions, being products or substrates 

themselves. Different ways to use this biochemical information to narrow down putative 

identifications based on accurate mass search alone exist. The most simple is to consider 

only those molecules known to be present in the organism or tissue under study e.g., human 

serum, mouse urine. Another possibility is to consider putative enzymatic 

biotransformations among metabolites, by taking advantage of canonical reactions that 

might occur, e.g., hydrogenation–dehydrogenation (± H2), oxidation (O) or phosphorylation 

(PO3H) [38]. Each biotransformation corresponds to an addition or subtraction of a known 

exact mass. As an example, two observed m/z values with a difference of 2.015 Da, are 

likely to be related by an hydrogenation, and therefore their molecular formula will differ by 
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an addition/removal of H2 [39,40] (Figure 4). Specifically, the proof-of-concept by Rogers 

et. al. [39] and MAIT [31] take into account these biotransformation relationships, where the 

presence or absence of related metabolites increase or decrease the likelihood of putative 

identifications.

An extension of this methodology is provided by computational tools such as MI-Pack [41], 

mummichog [42], ProbMetab [43], xMSannotator [29] or XCMS [44], among others [45, 

46]. These tools use biochemical pathways to filter and rank lists of putative identifications 

obtained after accurate mass search, increasing the likelihood of obtaining correct putative 

metabolite identifications. Essentially, these algorithms first map putative identifications – 

from quantitative statistically significant peaks – onto pathway networks. Next, they take 

into account potential substrate/product biochemical reactions between all possible 

metabolites combinations (as many metabolites as hits provided by accurate mass matches) 

and detect the combinations that make more biochemical sense. These approaches take 

advantage of the fact that if a list of putative identifications reflect biological activity, these 

should show an enrichment on local pathway regions (Figure 3(i)), whereas false annotations 

would show a random distribution throughout pathways (Figure 3(j)) [42, 47]. Specifically, 

mummichog uses a stastistical-based approach to determine the most plausible combinations 

whereas ProbMetab uses a Bayesian inference approach. At the same time, those algorithms 

can be used to obtain tentative functional biochemical activities prior to metabolite 

identification via tandem MS experiments. xM-Sannotator makes use of a correlation-based 

network analysis to identify related peaks among samples and metabolites within pathways.

Generally, biochemical/pathway knowledge-based strategies facilitate further identification 

steps, providing also preliminary mechanistic insights of the biological system under study. 

However, it should be noted that these approaches are limited by the fact that they assume 

hypothesis (e.g., local enrichments) that are not always met in real studies, and even when 

those are met, it is difficult to correctly discover the identity of peaks based on mass search 

alone and pathway activity. Also, it is well known that pathways are not completely 

annotated and not all links between them have been discovered. On the computational side, a 

limiting aspect is that pathway databases such as KEGG [48], Cytoscape [49], MetaCyc 

[50], are generally commercial, non-downloadable or non-redistributable. Only Reactome 

[51] has a Creative Commons license which allows developers to easily integrate it with 

their own computational tools.

Use and integration of tandem MS data

Tandem mass spectrometry (MS/MS) is employed to generate MS/MS spectra by 

fragmentation of ions of interest. Those contain specific fragments that, in most cases, allow 

the differentiation among molecules with the same neutral mass with the exception of 

stereoisomers. In fact, a level 2 identification, according to the MSI guidelines [11], can be 

achieved by comparing experimental MS/MS spectra with reference libraries. Thus, MS/MS 

data is a rich source of information that some tools have taken advantage of. As described 

before, an example of integration of MS/MS information to annotate is considering in-

source fragments, which can be retrieved from low energy MS/MS spectra. For example, 

RAMClust [28], reduces false positive annotations by jointly processing both MS1 and data-
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independent MS2 data, whereas Scheubert et. al. [52] propose a false discovery rate of these 

annotations to filter “significative” annotations by considering the effect of different 

spectrum-spectrum match criteria on the number and the nature of the molecules annotated.

Traditionally, tandem MS has been used in a targeted fashion – where only selected ions in 

an inclusion list are fragmented –, or via data-dependent acquisition modes, such as “auto 

MS/MS”, a less time consuming mode in which fragmentation is triggered on precursor ions 

that meet user-defined criteria of intensity and charge state [53]. Limited metabolite 

coverage is obtained when using data-dependent modes since only intense ions are 

fragmented and many artifact ions will be detected and fragmented due to the inherent 

presence of isotopes, in-source fragments or high abundance ions from contamination or 

chemical noise [53]. Resources to annotate MS/MS spectra by comparison with 

experimental [53] or in-silico spectral libraries have been proposed, including MolFind [54], 

MetFrag [60], MetFusion [55], MyCompoundID [56, 57], CFM-ID [58] and MS-FINDER 

[59]. Alternatively, data-independent acquisition (DIA) modes such as MSE [62] or SWATH 

[63], in which all fragment ions for all precursors are simultaneously acquired, allows an 

increased MS/MS spectral coverage and reinforces the annotation confidence [64]. However, 

processing DIA data is more challenging, since the direct link between the fragmented 

precursor ion and its specific fragments is lost [65]. Algorithms to specifically process DIA 

MS/MS data include MS-DIAL [64] or MetDIA [65].

High-throughput identification of tandem MS can be achieved by comparing acquired 

spectra with reference libraries. However, only ~10% of known metabolites in databases 

such as Human Metabolome Database (HMDB) [8] or METLIN [7] have experimental 

spectral data [9]. In that sense, in-silico prediction of MS/MS spectra has gained a 

substantial interest, and multiple studies report different algorithms to provide MS/MS data 

not yet available in databases [66–69]. Conversely, inverse solutions have also been 

proposed where experimental spectra, that cannot be attributed to any metabolite when 

compared to available experimental or even in-silico libraries, is interpreted to provide 

putative structural annotations [70].

In comparison to peptides and proteins, which are composed of sequences of amino-acids 

and thus, their MS/MS spectra can be much more easily predicted, in-silico prediction of 

MS/MS spectra from metabolite structures still represents a challenging process. Defined 

fragmentation rules are used in proteomics which allows accurate in-silico MS/MS 

predictions, but due to the high chemical diversity of metabolites, existing rules to model 

CID behavior are not sufficiently accurate [71]. In-silico MS/MS data in metabolomics are 

usually generated from heuristic approaches that predict fragmentation routes by indirectly 

estimating bond dissociation energies. Since all possible fragmented substructures of a given 

metabolite can be relatively easily determined, in-silico prediction is characterized by a high 

probability of detection – recall – but a low specificity. This means that whereas most of the 

in-silico predicted fragments are going to match those in the experimental spectra, more in-
silico false fragments are going to be predicted that actually are detected in empirical spectra 

[68]. As an example of in-silico strategy, a competitive fragmentation modeling (CFM) was 

proposed [68], where a model was built to determine the likelihood of particular bond 

breaking under specific conditions (Figure 5 (a)). CFM takes into account the presence of 
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atoms adjacent to a broken bond, formation of specific neutral losses and molecular 

rearrangements. Machine learning algorithms are used to build the model. Bond strength 

might dramatically vary with different adjacent chemical structures, which potentially leads 

to low performance of in-silico predictions if it is not correctly modeled [72]. An extended 

review of algorithms for in-silico MS/MS prediction can be found elsewhere [73].

Retention time prediction

The comparison of two orthogonal pysicho-chemical properties such as neutral mass or 

MS/MS spectral pattern with retention time (RT) is a robust metric to assess the identity of a 

metabolite. Retention time can differentiate between multiple isomeric candidates obtained 

by accurate mass search or even tandem MS. Unlike gas chromatography – mass 

spectrometry, where the robustness of capillary columns allow the standardization of RT into 

library-available retention index, analysis of pure standards are needed to obtain empirical 

metabolite RT in LC/MS. To overcome this problem, RT prediction has been proposed as an 

alternative to the use of standard materials. These strategies propose the use of a series of 

theoretical molecular descriptors obtained from molecular structures, and correlate these 

descriptors with empirical retention time of a “training set” of metabolites. Once a statistical 

model is created, it is possible to infer the RT for any existing metabolite not included in the 

“training set”, greatly improving metabolite annotation. Those models are known as 

quantitative structure–retention relationships (QSRR) models [74]. As an example, partition-

coefficient (log P) is known to show a relevant correlation with experimental RT in reverse 

phase chromatography [75]. Different studies proposed (QSRR) models to predict 

metabolite RT [54,76–84] . For example, Creek et al. [76] performed a multiple linear 

regression among molecular descriptors and RT in hydrophilic interaction liquid 

chromatography (HILIC) chromatography. Wolfer et al. [82] combined artificial neural 

networks to select the best combination of molecular descriptors to subsequently predict RT 

in reversed-phased (RP) chromatography by support vector machine and random forest 

learning methods. As commented before, the 1-SToP algorithm [34] also uses QSSR models 

to predict both in-source fragments and retention time.

QSRR models performance largely depend on the “training set” used, and therefore they 

need a wide representative set of empirical retention times to be able to effectively predict 

RT for any other metabolite, which molecular predictors have never been “seen” before by 

the QSRR model. While a small set of training metabolites will not be able to accurately 

predict RT, a large number of training metabolites requires several experimental assays. 

QSRR models performance also depend on the limited accuracy of molecular descriptors 

[75]. Moreover, those models are going to be unique for the chromatographic method used 

(e.g., type of column, solvent), which makes them non-extensible to other configurations.

An interesting concept was recently introduced by Stanstrup et al. [85], a collaborative web-

based platform for RT prediction named PredRet. Users upload their empirical RT along 

with the description of the chromatographic method used. PredRet then constructs a model 

by projecting users’ RT into a similar chromatographic system in the database. The RT of 

the metabolites in the database can then be projected back onto the user’s chromatographic 

system, allowing a larger number of metabolites RT to be obtained. This approach is 
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however limited by the number of chromatographic systems and metabolite RT available in 

the database.

Conclusion and perspective

Despite the fair range of algorithms, tools and resources to annotate data derived from 

complex experiments in untargeted metabolomics studies, users still have to go through a 

tiresome process of annotation, which involves manual data curation. This is attributed to the 

rich and complex nature of LC/MS-based untargeted metabolomics samples, which makes 

the computational translation of raw signals into interpretable biological knowledge difficult. 

In gas chromatography – mass spectrometry (GC–MS) for instance, the highly reproducible 

electron impact (EI) ionization source together with the robustness of capillary columns 

allow a more straightforward identification of metabolites, using both spectral and 

standardized retention time comparison with longstanding libraries such as NIST. 

Specifically, and compared to GC–MS, while the application of more advances multivariate 

techniques for high-throughput spectral extraction in GC–MS have been used [86, 87], the 

application of those approaches in LC/MS data is still a proof-of-concept [88]. In GC–MS, 

these multivariate strategies have allowed to replace features as the analysis entity, and 

provide a single metabolite quantitative value per sample. In LC/MS, an effective extraction 

of MS1 pseudospectra could replace the feature for the metabolite as the analysis entity, thus 

reducing the number of features and facilitating the quantitative and annotative tasks in 

metabolomics. Developing smarter and more accurate tools for LC/MS based metabolomics 

studies is of great interest to the entire community, given the broader metabolome coverage 

and simpler sample preparation steps compared to GC–MS based experiments.

Whereas genes or proteins are composed of well-defined sequences of amino acids, 

metabolite structures are highly diverse, which makes spectral libraries a necessary resource 

in metabolomics research. However, only ~10% of known metabolites in databases such as 

Human Metabolome Database (HMDB) [8] or METLIN [7] have experimental spectral data 

[9]. On the other hand, in-silico MS/MS or retention time predictions are still far from 

having the necessary accuracy to serve as gold standard reference for metabolite 

identification. Advanced models based perhaps on first-principle CID fragmentation, or 

other innovative resources have to be designed to provide accurate layers of complementary 

– or orthogonal – information that help address these issues.

Overall, the available tools and methods for metabolite annotation now partially enable the 

broad utility of metabolomics. However, ultimately this field will depend on new 

computational resources, algorithms and instrumental advances to facilitate the complete 

interpretation of complex mass spectrometry data.
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Fig. 1. 
Occurence of in-source fragments. (a) Percentage of metabolites in positive (red) and 

negative (blue) mode showing a determined number of in-source fragments: from 0 to 14, 

and 15 or more (15+). (b) Percentage of metabolites versus the intensity of protonated or 

deprotonaded species. Common neutral losses observed in metabolites for positive (c) and 

negative (d) modes. Only losses from the precursor ion where considered, i.e., losses from 

fragments were discarded. The number of fragments, precursor ion intensity and neutral 

losses descriptive statistics were assessed from METLIN MS/MS database from low 

collision energy spectra. The number of fragments showing a relative intensity above 5% in 

a low collision energy (0 V and 10 V) were considered fragments that might appear as in-

source fragments. Of note, neutral losses were considered as fragments. The information 

from ~15,000 experimental MS/MS spectra were used to retrieve these statistics.
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Fig. 2. 
Empirical MS/MS spectra (20 V) of guanine vs. isoxanthopterin (a) and gluatamate vs. α-

guanidinoglutaric acid in positive- or negative-ion mode? (b). In an hypothetic case, one of 

the in-source fragments of isoxanthopterin (low energy spectra not shown) could be 

mistaken by the protonated peak of guanine. Even in MS/MS fragmentation of this in-source 

fragment of isoxanthopterin corresponding to the precursor ion of guanine, this would 

produce similar spectra to guanines. This phenomenon can be explained by the high 

similarity between metabolite structures (highlited in orange). The precursor ion is marked 

with * and its m/z between brakets if not observed in the experimental spectra. 

Isoxanthopterin is a pteridine normally present in plasma, urine, and other bodily fluids. 

JChem Base 2017 (ChemAxon) was used for structural comparison.
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Fig. 3. 
Overview of computational annotation strategies. Annotation comprises feature grouping, 

annotation and putative identification. Feature grouping (a-c) aims at grouping peaks that 

belong to each metabolite (a). To do so, if peak shape (b) or peak-abundance (c) correlation 

between two peaks is above a pre-defined threshold, these two features are considered to 

belong to the same metabolite. Specifically in peak abundance (c), when the areas of peaks 

belonging to the same metabolite are compared across samples (A vs. C and B vs. D), a 

linear relation is expected to be observed, whereas when comparing areas of peaks that do 

not belong to the same metabolite (A vs. B), no linear relation would be observed. In feature 

annotation (e, f), expected theoretical distances between known ion adduct masses are 

compared with experimental distances found among peaks (e). This allows annotating the 

protonated/deprotonated ion together with adducts and neutral losses (f). For each 

metabolite, in-source fragments in MS1 data can be characterized by comparison with peaks 

from low energy MS/MS spectra. After peak annotation, putative identification can be 

achieved by accurate mass search (g) or by comparison with MS/MS data (h). Finally, 

pathway biochemical knowledge can be used to increase the annotation confidence (i, j). 

Statistically significant metabolites retrieved after accurate mass search are projected onto 

pathway networks. Each metabolite in the pathway is represented by a circle, and those 

statistically significant are shown in red. From all the hits after accurate mass search (true 

and false), true identifications are filtered by detecting combinations that have more 

biochemical sense. Combination of “true” identifications should show an enrichment on 

local pathway regions (i), whereas false annotations would show a random distribution 

throughout pathways (j). In this illustrative example, the detected feature m/z 118.0863 has 
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multiple putative hits (g), where only one of the hits correspond the “true” metabolite. When 

projecting all the putative hits onto pathways, only valine shows a biochemical sense, as 

other neighboring metabolites in the pathway also show activity (i). Instead, other false hits 

such as 4-methylaminobutyrate are discarded, as its neighboring metabolites in the pathway 

show no activity (j).
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Fig. 4. 
In this hypothetic situation, based on the example by Rogers et al. (2009) three features are 

observed in a dataset and, for each feature, putative identities (formulas) are assigned after 

accurate mass search (hits). The third feature (m/z 194.06) might correspond to two 

compounds (caffeine or glucuronic acid) with two molecular formulas respectively. 

However, based on mass differences, glucuronic acid might be related to (b) (galacturonate 

1-phosphate and gluconic acid) by a phosphorylation (PO3H) and a hydrogenation–

dehydrogenation (±H2). Therefore, this supports the evidence that the identity of the third 

feature (m/z 194.06) might correspond to glucuronic acid instead of caffeine. This is a 

simplified example and, in fact, the algorithm computes all the formula assignments 

interdependently, and thus potential assignments are dependent on one another, e.g., 
glucuronic acid also reinforces the likelihood of gluconic acid being present. Overall, the 

presence or absence of related metabolites increase or decrease the likelihood of putative 

identifications.
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Fig. 5. 
In-silico MS/MS and retention time prediction. In (a), in-silico predictions are based on 

inferring resulting substructures after fragmentation for a given collision energy. Each of 

these substructures correspond to a m/z ratio. If substructures are not correctly predicted, 

false peaks will be generated in the in-silico spectra (red). Of note, each of these 

substructures or neutral losses can undergo through rearrangements and neutral losses. In 

(b), from a given metabolite structure, softwares or databases are used to predict molecular 

descriptors. From these predicted descriptors, a machine learning algorithm is trainned with 

experimental values. Machine learning then builds a model that relates molecular descriptors 

with retention time. This allows computing predicted retention times for any metabolite not 

initially included in the tranning set.
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