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Abstract

Automated three-dimensional retinal fluid (named symptomatic exudate-associated derangements, 

SEAD) segmentation in 3D OCT volumes is of high interest in the improved management of 

neovascular Age Related Macular Degeneration (AMD). SEAD segmentation plays an important 

role in the treatment of neovascular AMD, but accurate segmentation is challenging because of the 

large diversity of SEAD size, location, and shape. Here a novel voxel classification based approach 

using a layer-dependent stratified sampling strategy was developed to address the class imbalance 

problem in SEAD detection. The method was validated on a set of 30 longitudinal 3D OCT scans 

from 10 patients who underwent anti-VEGF treatment. Two retinal specialists manually delineated 

all intraretinal and subretinal fluid. Leave-one-patient-out evaluation resulted in a true positive rate 

and true negative rate of 96% and 0.16% respectively. This method showed promise for image 

guided therapy of neovascular AMD treatment.
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I. Introduction

Since first described in 1991, optical coherence tomography has become an increasingly 

important imaging technique, especially for the non-invasive imaging of human retina [1], 

[2]. OCT allows to image the inside of the eye with microscopic resolution, enabling 

clinicians better understanding of eye and especially retinal diseases [3]–[8].

Neovascular or exudative age-related macular degeneration (AMD) is an advance form of 

AMD and the most important cause of blindness in the developed world. Neovascular AMD 

or choroidal neovascularization (CNV) is characterized by the growth of abnormal blood 

vessels from choroid into the retina, and associated leaking of fluid. The fluid leads to vision 

loss and ultimate destruction of the normal architecture of the retina. Anti-Vascular 

Endothelial Growth Factor (Anti-VEGF) based drugs have been proven to be highly 

effective treatment of CNV and require precise quantification of the distribution, size, and 

number of fluid pockets [9]–[11].

Several research groups have previously addressed detection, segmentation, and 

quantification of intraretinal and subretinal fluid regions in OCT images using semi-

automatic or fully automatic methods. In 2005, Fernandez et al. proposed a method to 

delineate the intraretinal and subretinal fluid regions in 2D OCT B-scans using a deformable 

model. This semi-automatic method requires human interaction in the initialization of the 

snake [10]. Wikins et al. proposed a fully automatic method to segment intraretinal systoid 

fluid in systoid macular edema in individual 2D B-scan. Intraretinal fluids are segmented by 

a combination of thresholding and boundary tracing [12]. Zheng et al. proposed a semi-

automatic approach to segment intraretinal and subretinal fluid in individual 2D OCT B-

scans [13]. A four step procedure, including a coarse segmentation and a fine segmentation 

step, is applied to generate target region candidates. Then an expert clicks on each of the 

desired candidate and quantitative analysis can be done afterwards. Chen et al. proposed a 

fully automatic and true 3D method for segmentation of fluid-associated abnormalities in 

2012 [11]. A combined graph-search/graph-cut method was developed to simultaneously 

segment the upper retinal surface, lower retinal surface, and one or more fluid-filled regions 

between the two layers.

The above approach [11] yields good segmentation for large, well-defined fluid pockets. 

However, it is substantially less sensitive to smaller fluid regions, whose boundaries are 

more ambiguous and locations are more unpredictable. It also suffers from detecting sub-

RPE deposits or bright drusen as false positives. As reported in their paper, these problems 

were hard to fix as it depends largely on the graph construction. However, increasing 

sensitivity and specificity is quite important for real clinical data, but challenging because 

patients vary greatly in disease severity.
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We formulate the detection of SEADs in OCT scans as a class imbalance problem, meaning 

one of the classes is represented by a small number of cases compared to the other classes 

[14]. High imbalance occur in applications where the classifier is to detect a rare but 

important case (SEADs in our application). Class imbalance can produce a substantial 

deterioration of the performance achieved by existing learning and classification system 

[14], [15]. In the context of SEAD detections, the problem is further complicated by the fact 

that SEADs show some layer-dependent properties, which means SEADs are more likely to 

appear in some layers and less likely in other retinal layers.

In this manuscript, we propose a classification method that utilizes the prior information of 

the layer-dependency of SEADs by employing a stratified sampling technique in order to 

improve the detection sensitivity for real clinical OCT data. Stratified sampling has been 

applied in many areas and achieved good results, including remote sensing studies [16], [17] 

and data analysis in large phytosociological databases [18] to deal with class imbalance 

problem and has achieved good results. Our method was validated on a set of longitudinal 

clinical data from neovascular AMD patients with varying disease stages.

II. Experimental Methods

In this study, a set of 30 SD-OCT volumes from 10 subjects who underwent anti-vascular 

endothelial growth factor (anti-VEGF) treatment were analyzed. These patients underwent 

an initial 12 week standard anti-VEGF treatment and then continued for a patient-specific 

treatment for a period of 12 months. SD-OCT scans were taken at week 0, 2, 4, 6, 8, 10, and 

12 for the first standard 12-week treatment, and two more scans during the patient-specific 

treatment period.

Two fellowship-trained retinal specialists individually detected and segmented all 

intraretinal and subretinal fluid regions in the original image slices using truthmarker, an 

iPad application [19]. Due to the time-consuming property of the job, only the baseline scan 

(week 0, first scan), 2-month follow-up scan (week 8, middle scan), and 12-month follow-up 

scan (last scan) were used for this study. Informed consent for research use of data was 

sought and obtained from each study participant before participation. The study protocol 

was approved by the institutional review board of the University of Iowa and conformed to 

the tenets of the Declaration of Helsinki.

A Topcon 3D Swept source OCT (Topcon Inc., Paramus, NJ), with a central wavelength of 

1050 nm, was used to acquire the scans. The scanning range is 6 mm × 6 mm × 2.3 mm 

centered on the fovea, with a field angle of 45°. The volume size is 512 × 128 × 885 voxels 

with a physical voxel size of 11.7 μm × 46.9 μm × 2.7 μm. The original intensity value was 

16 bits and has been normalized to [0, 1].

III. Methods

In this section, the proposed method is described in detail. First, a pre-processing step is 

necessary to enhance the signal-to-noise ratio, followed by an 11-layer segmentation. Then, 

a voxel classification is applied and various three-dimensional features, including textural, 

structural, and locational information, are extracted. Although the shape, size, and location 
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of fluid regions are quite unpredictable, we noticed some layer-dependent properties of the 

fluid regions and a layer-dependent sampling model was applied.

Preprocessing includes a recursive anisotropic diffusion filter plus brightness curve 

transform in order to reduce noise and enhance the abnormality regions.

Noise is an inherent problem in coherent imaging techniques, such as ultrasound and OCT. 

The main noise source is speckle noise, which is caused by random interference of waves 

reflected from sub-resolution variance within the tissue. Consequently, with a longer 

wavelength, more speckle noise is expected. Speckle noise is hard to eliminate because it is 

signal-dependent. In the past decades, many denosing techniques have been developed [10], 

[20], [21]. We adapt a non-linear three-dimensional anisotropic diffusion filter to enhance 

the signal-to-noise ratio [22]. Fig. 1(a) and (c) show a typical B-scan before and after 

denoising using the anisotropic diffusion filter.

Fig. 1(c) shows the noise is suppressed after the anisotropic diffusion filter. However, the 

layer as well as the fluid-filled regions (circled in yellow) are also blurred. This introduces 

difficulties to later detection and segmentation. Fig. 1(d) shows the corresponding histogram 

of Fig. 1(c). Note the high peak value at intensity 0, which can go as high as 22 million, is 

not shown so that the rest of the histogram can be shown in better scale. The histogram 

shows a double-peaked bimodal distribution. One centers at around the intensity of 0.04 and 

shows a steep shape, while the other centers at around the intensity of 0.3 and shows a flat 

shape. The histogram drops to near 0 when the intensity is larger than 0.91. A further 

examination shows that most pixels in the left distribution are noise pixels (Fig. 2). Very 

little structural information is found in this area. Hence, a non-linear brightness curve 

transform is applied to further suppress image noise. The red line in Fig. 1(d) is the 

transformation curve and Fig. 1(e) shows the image after brightness curve transform 

followed by another anisotropic diffusion filter. Fig. 1(f) is the corresponding image 

histogram. This histogram again shows a bimodal distribution. Hence, another brightness 

curve transform followed by an anisotropic diffusion filter is applied. The final image and 

histogram is given in Fig. 1(g) and (h). In the final histogram, the bimodal distribution 

begins to merge with most of the noise pixels been removed.

After the sequence of brightness curve transform and anisotropic diffusion filter, most of the 

image noise with lower gray value was suppressed while the structural information is 

preserved. Most importantly, the desired fluid-filled regions are further distinguished from 

retinal layers, as shown in Fig. 1(h). A Perona-Malik anisotropic diffusion filter was used, 

with an iteration of 15 and time step of 0.06.

A. Layer Segmentation

Our group has previously reported a simultaneous 11-layer segmentation algorithm based on 

graph methods [24], [25]. The retinal surfaces with more obvious features are first detected 

in a downsampled low-resolution image volume. The other surfaces are refined in full-scale 

subvolumes constrained by the surfaces detected in the first stage. In other words, the eleven 

surfaces are hierarchically detected starting from the most easily detectable ones and ending 
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with the most subtle interfaces. Once all surfaces are detected, a thin plate spline is applied 

to smooth the surfaces (Fig. 3).

Fluid-associated abnormalities also exhibit some layer-dependent properties (Fig. 4). For 

example, intraretinal fluid normally appears above the outer plexiform layer (OPL, L6), 

which shows large, ovoid areas of low reflectivity, separated by high reflective septa that 

represent intraretinal cystoid-like cavities [26]. Subretinal fluid is a dark accumulation of 

fluid beneath the outer segment layer (OS, L7). The highly reflective band created by the 

RPE differentiates sub-RPE fluid (below) from subretinal fluid (above). Hence, these layers 

have a higher likelihood of fluid-associated abnormalities. On the other hand, although the 

outer nuclear layer (ONL) is not a likely region for fluid, because of its reduced intraretinal 

reflectivity, it exhibits a similar texture as fluid-associated abnormalities, thus leading to 

false positives. This is also regarded as a layer-dependent property.

B. Voxel Classification With Stratified Sampling

Based on the previous observations, we propose a supervised voxel classification method 

based on a stratified sampling technique. A stratified sample is constructed by classifying 

the whole sample region in sub-regions (or strata), based on some foregone characteristics of 

the regions [27]. The strata should be mutually exclusive and collectively exhaustive, 

meaning every sample point in the sample region must be assigned to one and only to one 

stratum. Hence, by manipulating the sampling ratio differently within each strata, we expect 

to simultaneously increase sensitivity in regions likely to have SEADs and increase 

specificity in regions prone to false positives.

1) Training Phase—During the training phase, for each sample point, a set of features, 

including textural, structural, and positional information, is calculated (listed in Table I) 

[11]. The sampling strategy is given in Table II. The whole sample region between NFL and 

RPE was stratified into three strata: NFL-OPL, ONL-OSL, and VM-RPE. The ONL-OSL 

region was undersampled to deal with the difficulties of segmenting SEADs reliably without 

increasing false positives in this specific region, whereas NFL-OPL and VM-RPE were 

relatively oversampled to increase sensitivity to SEADs. In doing this, first of all, a total 

number of 40 000 negative sample points were assigned to these three strata proportionately 

to the approximate average total volume of each stratum. Then a total number of 2 000 

positive sample points were empirically assigned to each stratum to oversample NFL-OPL 

and VM-RPE but undersample ONL-OSL. Within each stratum, simple random sampling 

was applied.

2) Testing Phase—During the testing phase, the same set of features is extracted for each 

voxel inside retina layers. A k-nearest-neighbor classifier [28](k = 21) was chosen based on 

its performance in comparative preliminary experiments on a small, independent set of 

images performed in the earlier experiments [11]. For each test voxel, the average label of 

the k nearest neighbors were assigned as a final probability of this voxel being a SEAD, 

assigning each voxel a probability between 0 and 1, which was rescaled to [0, 255] in the 

output image. A leave-one-patient-out evaluation strategy was used.
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IV. Results

Fig. 5 shows a comparison of typical segmentation result overlapped with manual 

segmentation. The proposed method was able to detect SEADs with small sizes and control 

false positives at the same time.

The performance of the stratified sampling method and the simple sampling method [11] 

were compared to the performance of expert 1 (E1) and expert 2 (E2). The average true 

volume (Vt), true positive volume (Vtp), false negative volume (Vfn), and false positive 

volume (Vfp) of E1 and E2 are reported in Tables III and IV. Vf and Va are defined as the 

total SEAD volume segmented by human expert and automatic method, respectively. Vtp is 

defined as the subset of Vt that was detected by automatic method (Vt ∩ Va).Vfn (false 

negative, i.e., the volume only detected by human experts) is defined as the subset of Vt that 

was not detected by automatic method (Vt − Vt ∩ Va).Vfp (false positive, i.e., the volume 

only detected by automatic systems) is defined as Vfp = {V | (V ⊂ Va) ∩ (V ⊄ Vt)}. For the 

sake of easy reading, the results from the same subject were added and shown in the same 

row. True positive rate (TPR) indicates the fraction of correctly detected volume in the 

reference standard delineation; false positive rate (FPR) denotes the fraction of incorrectly 

detected volume in true negative volume. The definitions are given as follows and more 

details can be found in [29].

TPR =
∣ V tp ∣
∣ V t ∣ , (1)

FPR =
∣ V f p ∣

∣ Ud − V t ∣ , (2)

where Ud is the whole scene domain and in the present case the volume between NFL and 

RPE. Tables III and IV show that compared with TPR1, TPR2 decreased slightly (with a p-

value of 0.182 in the paired t-test; the Shapiro-Wilk normality test confirmed at a 

significance level of 0.05.), whereas compared with FPR1, FPR2 showed a significant 

improvement (with a p-value of 0.049 in the paired t-test; the Shapiro-Wilk normality test 

confirmed at a significance level of 0.05.). To calculate Tables III and IV, the values of Vt, 

Vtp, Vfn, and Vfp were first calculated for E1 and E2 separately and then averaged. The 

values were rounded during each step of the calculation.

A comparison between the performance of E1, E2, and the automatic method is given in Fig. 

6. The inset windows shows that the performance generally decreased when SEAD volume 

were small. The automatic method correlated better with the average volume of E1 and E2 

(Fig. 6(c)). Expert 2 gave a consistently larger SEAD volume compared with E1 (Fig. 6(d)). 

Fig. 7 shows the segmented SEAD volume of all subjects by three different methods (i.e., 

E1, E2, and automatic method).
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The ROC curve is given in Fig. 8, which was created by thresholding the output gray-scale 

image and calculating the sensitivity and specificity at different thresholding levels. The area 

under the curve (AUC) was 0.92 for our method with respect to E1 and 0.80 with respect to 

E2. Fig. 9 shows the Bland-Altman plot of SEAD volume per scan. The x-axis is the average 

SEAD volume of the manual segmentation and the automatic segmentation, while the y-axis 

is the difference in SEAD volume between the manual segmentation and the automatic 

segmentation. Fig. 9(a) shows the automatic method gave a larger measurements than E1 for 

median SEADs, but it gave a smaller measurements for large SEADs. Fig. 9(b) shows the 

automatic method gave a consistently smaller measurements than E2. This is consistent with 

the information we observed in Fig. 6.

The longitudinal analysis for all 10 subjects is given in Fig. 10. Each subject underwent an 

initial 12-week standard anti-VEGF treatment and then continued for a patient-specific 

treatment for a period of 12 months. During the whole period, nine visits for SD-OCT scans 

were taken at week 0, 2, 4, 6, 8, 10, and 12 for the standard 12-week treatment and two more 

scans during the patient-specific treatment period. Most patient showed a consistent decrease 

in SEAD volume with anti-VEGF treatment. However, a few subjects showed different 

behavior under anti-VEGF treatment. For example, subject 5 showed a relatively consistent 

volume size over the 9 visits, meaning a failure in anti-VEGF treatment.

V. Discussion

Attempting to simultaneously segment SEADs at different scales, i.e., different sizes, from 

clinical datasets is a challenging problem due to the variation of SEAD size, shape, and 

location of SEADs, and the similarity between the foreground and background textures. 

When a human interprets a scene, he or she generally involves the assessment of high-level 

contextual features [30]. But point-wise queries, as in a supervised classification method, do 

not exploit full interpreter knowledge of the spatial context in all different scales. The 

combination of locational prior information is an attempt to make the machine-based 

classification better resembles human perception.

For the SEADs that have been detected, the scatter plot of the per-SEAD-volume is given in 

Fig. 11. The red points shows the per-SEAD-volume for E1 and the green points for E2. In 

this figure, E2 showed a larger per-SEAD volume, which may be one reason why E2 showed 

a consistently larger SEAD volume per scan as shown in Figs. 6 and 9. On the other hand, 

E1 and the automatic method showed a relatively better agreement on per-SEAD-volume. 

Logarithm scale was chosen so that the SEADs with smaller volumes are shown better.

The average distances between SEADs to fovea center and between SEADs to Bruch’s 

Membrane were also measured (Figs. 12 and 13). The location of the fovea center was 

automatically detected as the A-scan location with the minimum distance between the first 

and fourth surfaces and results were manually checked for correctness. Compared with the 

average distance to Bruch’s Membrane, the distance to fovea center showed more 

consistency. However, the distance to fovea center is given as a distance in a 3D volume 

(distance to a point in 3D), while the distance to Bruch’s Membrane is a distance in 2D 

(distance to a 2D plane). Hence, Fig. 13 has a smaller scale than Fig. 12 and the error is also 
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exaggerated. In Fig. 13, a few points showed a negative distance to Bruch’s Membrane 

because the average location of SEADs was beneath the average level of Bruch’s 

Membrane. A density plot is used to show overlapped points.

The total number of small (<0.01 mm3), median (>0.01 mm3 and <0.1 mm3), and large 

(>0.1 mm3) SEADs in all test OCT volumes is given in Fig. 14. As expected, in the small 

SEAD group, the number of automatically detected SEADs is significantly larger than 

manually segmented SEADs, while in the other two groups, the number is almost even. It is 

consistent with our expectation because false positives are mainly small regions and fall in 

the small SEADs group.

A. Limitations

There are several alternative venues for further improving the proposed method. The current 

method depends on the layer segmentation results. If the layer segmentation is incorrect, it 

will affect the sampling ratio and may cause classification errors. Besides, the final SEAD 

segmentation is achieved by a simple thresholding of the gray value classification result, 

which gives no guarantee as to the smoothness of the SEAD boundary. As can be imagined, 

the lack of a smooth boundary causes problem in accurate SEAD delineation, but does not 

have a significant impact on volume. Because of the same reason (simple thresholding), 

many small false positives were left in the image and the number of SEAD was not a reliable 

parameter in comparison to the human expert, especially for smaller SEADs. One method to 

alleviate the above problems was to apply adaptive thresholding.

In this study, the method was only validated on three time-points (out of a total nine 

timepoints) for all the 10 patients. The reason is that manual tracing of all intraretinal and 

subretinal fluid regions required expert knowledge and is tedious and time-consuming. With 

the facilitation of the tablet-based software, tracing all fluid regions and later review of the 

segmentation result takes around 120 minutes for each OCT volume.

Even though the method has achieved good results, the distribution of sample points is 

mainly based on empirical analysis. In the future, we plan to design a more systematic 

stratification method.

VI. Conclusion

We reported a fluid-associated abnormality detection and segmentation method in this 

manuscript. Detection and segmentation of fluid-associated abnormalities in clinical data is 

a challenging problem in several aspects. Patients might have different severity of disease, 

which makes the size, location, and shape of fluid regions unpredictable. Moreover, 

simultaneously improving true positives and controlling false positives is clinically 

important. We introduced a layer-dependent stratified sampling strategy to solve the 

problem. Results showed this method was able to achieve very high TPR (96%) and 

maintain the value of FPR to a very low level (0.16%).

Though our approach still has some weaknesses, including the lack of smoothness in region 

boundary, it has shown good performance if tested on clinical data. Automated segmentation 
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of subretinal and intraretinal fluid in neovascular AMD is going to be crucial in improved 

image-guided therapy, and thereby improve outcomes in this potentially blinding disease.
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Fig. 1. 
Image quality enhancement. The left column shows a single B-scan of the volume from the 

same subject. The right column shows the intensity histogram of the entire volume. Note in 

(d), (f), and (h), the high peak at intensity 0 is clipped so that the rest of the histogram can be 

better viewed. (a) Single B-scan of raw, unpreprocessed volume. A Perona and Malik 

conductance function is applied and the gradient magnitude threshold is 2.0 [23]. (b) 

Histogram of the raw volume. The regular peak is caused by the scanner hardware. (c) The 

same B-scan after an anisotropic diffusion filter. (d) Histogram of (c). The red line is the 

brightness transform curve (axis on the right side) applied on this histogram. (e) The same 

B-scan after a brightness curve transform and a followed anisotropic diffusion filter. (f) 

Histogram of (e). The red line is the brightness transform curve (axis on the right side) 

applied on this histogram. (g) The same B-scan after a second brightness curve transform 

and a followed anisotropic diffusion filter. In this final figure, the speckle noise has been 

suppressed while the texture information of the layers and SEADs has been preserved. (h) 

Histogram of (g). The final histogram doesn’t show a bimodal distribution, meaning the 

lower distribution, most of which are noise pixels, has been removed.
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Fig. 2. 
An examination of the histogram. The lower part of the histogram is mainly composed of 

noise while the retinal layer information is inside the higher part of the histogram. The gray 

level of B-scans were adjusted for better visualization. (a) and (b): Single B-scan from the 

raw OCT volume and the histogram of the raw OCT volume. (c) Histogram of the total raw 

OCT volume, in which the lower part of the histogram is indicated with arrow. (d) The same 

B-scan as in (b), in which only pixels that fall in the lower part of the histogram are shown. 

(e) Histogram of the total raw OCT volume, in which the higher part of the histogram is 

indicated with arrow. (f) The same B-scan as in (b), in which only pixels that fall in the 

higher part of the histogram are shown.
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Fig. 3. 
An example of eleven-layer segmentation. The level scale and orientation of the B-scan was 

adjusted when the layers were overlapped on the B-scan.
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Fig. 4. 
Examples of intraretinal fluid and subretinal fluid. (a) Intraretinal fluid. It norally appears 

above OPL. (b) Subretinal fluid. It is normally dark accumulations of fluid beneath OSL. It 

is also shown that ONL has a very similar texture to fluid-associated abnormalities.
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Fig. 5. 
Example of typical results. Left column: original B-scan. Middle column: segmentation 

result. The green line is the segmentation by the human expert. The red line is the 

segmentation by the automatic method. Right column: inset view of SEAD segmentation.
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Fig. 6. 
Inter-grader assessment. (a) The scatter plot of SEAD volume between the automatic 

method and E1, and the corresponding R-squared value. (b) The scatter plot of SEAD 

volume between the automatic method and E2, and the corresponding R-squared value. (c) 

The scatter plot of SEAD volume between the automatic method and the average of E1 and 

E2, and the corresponding R-squared value. (d) The scatter plot of SEAD volume between 

E1 and E2, and the corresponding R-squared value.
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Fig. 7. 
Bar plot of SEAD volume (ten subjects, each with three OCT scans).
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Fig. 8. 
ROC of the stratified sampling algorithm for detected SEAD volume. The green line is the 

ROC with respect to E1 and the red line is with respect to E2.
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Fig. 9. 
Bland-Altman plot of SEAD volume per scan. The x-axis is shown in logarithm scale. (a) 

Bland-Altman plot for E1. (b) Bland-Altman plot for E2.
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Fig. 10. 
Longitudinal analysis of 10 subjects, each with 9 OCT scans from 9 visit taken at week 0, 2, 

4, 6, 8, 10, 12 for the first standard 12-week treatment and two more scans during the patient 

specific treatment period. With anti-VEGF treatment, most of the patients showed a 

consistent decrease in SEAD volume. However, there are a few exceptions. For example, 

subject 5 showed a relatively stable SEAD volume over the 9 visits.
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Fig. 11. 
Scatter plot of per SEAD volume.
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Fig. 12. 
Scatter plot of average distance to fovea center.
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Fig. 13. 
Scatter plot of average distance to Bruch’s Membrane.
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Fig. 14. 
Number of SEADs categorized into small (<0.01 mm3), median (>0.01 mm3 and <0.1 

mm3), and large (>0.1 mm3).
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TABLE I

A List of Selected Features

Feature Index Description

1–5 First eigenvalues of the Hessian matrices at scales σ=1, 3, 6, 9, and 14.

6–10 Second eigenvalues of the Hessian matrices at scales σ=1, 3, 6, 9, and 14.

11–15 Third eigenvalues of the Hessian matrices at scales σ=1, 3, 6, 9, and 14.

16–45 Gaussian filter banks of zero, first, and second orders with derivatives at scales σ=2, 4, and 8.

46–48 Distances to surfaces 1, 7, and 11.

49–52 Texture information, including mean intensity, co-occurrence matrix entropy and inertia, and wavelet analysis standard 
deviation.
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Xu et al. Page 26

TABLE II

The Distribution of Positive Sample Points (Sp) and Negative Sample Points (Sn)

Stratum Sp Sn Sp : Sn

NFL-OPL 1,200 12,000 1:10

ONL-OSL 400 24,000 1:60

VM-RPE 400 4,000 1:10

Total 2,000 40,000 1:20
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