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Linking soil biology and chemistry in biological soil
crust using isolate exometabolomics

Tami L. Swenson® !, Ulas Karaoz 2, Joel M. Swenson3, Benjamin P. Bowen'# & Trent R. Northen!#

Metagenomic sequencing provides a window into microbial community structure and
metabolic potential; however, linking these data to exogenous metabolites that micro-
organisms process and produce (the exometabolome) remains challenging. Previously, we
observed strong exometabolite niche partitioning among bacterial isolates from biological soil
crust (biocrust). Here we examine native biocrust to determine if these patterns are repro-
duced in the environment. Overall, most soil metabolites display the expected relationship
(positive or negative correlation) with four dominant bacteria following a wetting event and
across biocrust developmental stages. For metabolites that were previously found to be
consumed by an isolate, 70% are negatively correlated with the abundance of the isolate's
closest matching environmental relative in situ, whereas for released metabolites, 67% were
positively correlated. Our results demonstrate that metabolite profiling, shotgun sequencing
and exometabolomics may be successfully integrated to functionally link microbial commu-
nity structure with environmental chemistry in biocrust.
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n soﬂs, which harbor the largest terrestrial pool of organic

carbon!, organic matter is largely processed by complex

microbial communities. The impact of chmate change on these
communities and their activities is uncertain’. Given the i 1mpor-
tance of these systems, vast amounts of sequencing data have
been and continue to be collected. While metagenomic sequen-
cing provides important insights into community structure and
metabolic potential, if unconstrained, such data are often open to
multiple interpretations. New approaches are needed to help link
the now readily available sequencing data to in situ metabolism in
order to better understand the dynamic reciprocity between
carbon cycling and microbial community structure.

Soil organic matter (SOM) content and moisture have long
been recognized as important factors controlhng soil microbial
community structure and carbon cycling®*. For example,
microbial community diversity and richness are positively cor-
related with soil organics across diverse ecos‘éstems including
polar soils®, agricultural soils® and arid soils’. Similarly, soil
wetting events are well-known to dramatically alter community
structure®) including establishing cascades of microbial abun-
dances’. Arid lands account for over 40% of Earth’s terrestrial
surface!’ and are especially sensitive to SOM and moisture
content. It is predicted that the aridity of drylands will increase,
reducing SOM and microbial community diversity, and that this
will impact ecosystem productivity”>!!. This strong coupling
between soil moisture, SOM and community structure is espe-
cially important in the arid land topsoil microbial communities
known as biological soil crusts (biocrusts), which cover a large
fraction of arid regions and are critical in nutrient cycling'?.
Biocrusts exist in a dormant desiccated state and only become
metabolically active during infrequent rainfall events'? and like in
other soils, organic matter plays a v1tal role in retaining moisture
and increasing microbial diversity'%.

The mechanisms linking SOM composition and microbial
community structure are poorly understood. It is now thought
that the organic matter that is cycled bg soil microbes is a
complex mixture of microbial metabolites!>!© that can be char-
acterized in detail using soil metabolomics!”"'®, The composition
of these exometabolites has a strong impact on community
structure, and in turn, these microbes impact the metabolite pool.
For example, in some cases, resource competition can reduce
microbial diversity through competitive exclusion, whereas cross-
feeding can increase microbial diversity. On the other hand, rich
sources of SOM may promote microbial diversity through niche
divergence!” and exometabolite niche partitioning®°.

Exometabolomics enables direct examination of how microbes
transform the small molecule metabolites within their environ-
ment, prov1d1ng new insights into resource competition and
cross-feeding®!. For this approach, microbes (typically isolates)
are cultured in an environmentally-relevant mixture of metabo-
lites and then spent media is profiled to determine the uptake and
release of metabolites. Recently, exometabolomics was used to
study resource partitioning among symopatric biocrust isolates
using complex biocrust-relevant media®’. This revealed a high
degree of substrate specialization, where 13-26% of the detected
metabolites were consumed by individual isolates. As micro-
organisms from diverse taxa continue to be cultivated and
examined, this approach holds substantial potential to provide
valuable phenotypic information that can link community
structure to SOM composition.

Here we exploited the dynamic and tractable characteristics of
biocrust to explore the relationships between soil microbes and
metabolites for this particular ecosystem after a laboratory-based
wetting event. Liquid chromatography-mass spectrometry
(LC/MS) soil metabolomics was used to characterize the dynamic
metabolite composition of the biocrust soil water and shotgun
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metagenomic sequencing was used to measure single copy gene
markers of the dominant taxa. We then determined the extent to
which isolate exometabolite patterns are conserved in situ (within
the intact biocrust soil community). While the comparison of a
microbe in isolation and in an environmental system is challen-
ging, isolate exometabolomics were performed with media
supplemented with lysed cell metabolite extracts to simulate
the biocrust environment?®’, Our findings reveal significant
agreement between 1solate exometabolomics and in situ
microbe—-metabolite relationships for dominant taxa in biocrust.
To the best of our knowledge, this is the first study using isolate
exometabolomics to link microbial community structure to soil
chemistry.

Results

Experimental setup. Correlation analyses between microbes and
metabolites were facilitated by monitoring biocrust samples
across two variables: laboratory-based wetting and ecological
succession (Fig. la). Four successional stages of biocrust were
used, ranging from early/ young (labeled as ‘level A’) to late/
mature (labeled as ‘level D’) (Supplementary Fig. 1). We then
compared our current results with previous laboratory-derived
knowledge of substrate preferences for four dominant micro-
organisms by relating the abundance of these bacteria to soil
metabolites measured in the intact biocrust system (Fig. 1b). In
situ, the general assumption is that as a particular microbe grows
and increases in abundance in a community, consumed meta-
bolites will decrease and display a negative-correlation relation-
ship. Conversely, metabolites that are known to be released by a
microbe are predicted to concurrently increase and display a
positive-correlation relationship with growth (Fig. 1b).

Metabolite and microbe dynamics. The metabolic activity
caused by wetting was monitored at various time points ranging
from immediate (3 min) to longer-term (49.5h) across four
biocrust successional stages. Biocrust soil water was analyzed by
LC/MS, resulting in the identification of 85 metabolites for
the experimental data set using authentic chemical standards
(Fig. 2 and Supplementary Data 1). All 85 metabolites identified
in the active biocrust samples changed at least two-fold (between
minimum and maximum peak areas) across both wetting and
successional stages (Fig. 2). Wetting duration had a stronger
impact on metabolite dynamics vs. successional stage (Supple-
mentary Fig. 2). Hierarchical clustering of metabolite patterns
revealed three distinct clusters (Fig. 2). The first cluster (cluster 1,
Fig. 2) consisted of most (5 out of 7) of the detected fatty acids
(palmitate, myristate, stearate, laurate, decanoate), which were
most abundant at the first time point (3 min) for all successional
stages, and gradually decreased with time. The largest cluster
(cluster 2, Fig. 2) was enriched with the majority of amino acids
and nucleobases, which peaked in abundance at the early to early-
mid time points. Within this cluster, the earliest metabolites
included polar amino acids (glutamine, glutamate, asparagine, 4-
oxoproline, aspartate and lysine) and the nucleobases uridine,
guanosine and cytidine. The final cluster (cluster 3 in Fig. 2)
contained metabolites most abundant at late time points and in
more mature biocrust (e.g., salicylate, panthothenate, nicotinate,
xanthine, creatinine). These dynamics, especially metabolite
consumption, were largely of biological origin as demonstrated by
comparison with the killed controls. Thirteen metabolites that
were detected in the active samples were not detected in the killed
controls presumably due to the lack of biologically activity. Of the
72 metabolites that were detected in the killed controls, all but 19
were significantly different (p < 0.05, by two-way ANOVA and
Tukey’s post hoc test) from the active samples and qualitatively
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Fig. 1 Experimental workflow and biocrust microbe-metabolite relationship predictions. a Biocrust wetup metabolomics and metagenomics experimental
setup and analysis. To study microbe-metabolite relationships in situ, biocrusts from four successional stages were wetup and sampled at five time points
(total n=100). Biocrust soil water was removed and analyzed by liquid chromatography/ mass spectrometry (n=5 for each group) and biocrust DNA was
extracted for shotgun sequencing (n=1 for each group). Metagenome-estimated genome and metabolite abundances were analyzed through Spearman
rank correlations to determine microbe-metabolite relationships and compared to the expected relationships based on isolate exometabolomic studies.
b Exometabolomics-based in situ microbe-metabolite relationship prediction. The hypothesis is that isolate exometabolomics can be used to predict

microbe-metabolite patterns in situ based on microbial abundance: Across wetting and successional stages, microbes change in abundance and negatively
correlate with metabolites that they consume and positively correlate with metabolites that they release (metabolites are indicated by dotted lines)

all show different dynamics (Supplementary Data 2 and 3; Sup-
plementary Fig. 3).

Biocrust microbial community structure was inferred by
shotgun metagenomics using a genome-centric pipeline??. In
several recent reports>>~2°, ribosomal protein genes were used as
phylogenetic markers from shotgun sequencing data (rather than
the more classical 16s ribosomal RNA gene) because they exist as
single copies in almost all genomes, assemble well from the
metagenome data sets (typically better than 16s), are well-
conserved and have produced higher resolution phylogenetic
trees>>. We identified a set of 17 previously-benchmarked single
copy universal ribosomal protein genes®” in our biocrust data set
and for community analysis, we selected rplO (ribosomal protein
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L15), which had the most extensive community coverage based
on the total number of assembled genes across our data set
(Supplementary Table 1).

On the basis of rplO genes, 466 distinct biocrust genomes were
identified across all conditions (Supplementary Data 4). As
observed for biocrust metabolites, community structure was
primarily driven by wetting duration. At the phylum level, the
most drastic change was a shift from a Cyanobacteria-dominated
community at early time points (17-28% at 3 min to 1-3% by
49.5h) to a Firmicutes-dominated community by 49.5 h (4-5% at
3min to 19-39% by 49.5h) (Supplementary Fig. 4). Other
dominant phyla included Proteobacteria and Actinobacteria,
which appeared to be indifferent to wetting (i.e., their relative
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Fig. 2 Metabolite patterns detected in biocrust soil water. Metabolite dynamics (85 metabolites displayed as the average peak area, normalized across
each row) were observed in biocrust soil water across wetting and successional stages. Unique patterns are indicated by cluster 1 (early metabolites
including fatty acids), cluster 2 (early-to-mid time point metabolites) and cluster 3 (late metabolites). Putative metabolites are indicated by parentheses.

n=2-5 for each group

abundance was more evenly-distributed across wetting) (Supple-
mentary Fig. 4).

In order to use previous culture-based isolate exometabolomic
analyses to examine the link between microbe and metabolite
dynamics in intact biocrust, we conducted an unbiased rplO gene
sequence comparison between rplO genes assembled from the
native biocrust and previously profiled biocrust bacterial
isolates?® (obtained from the same field site). Fortunately, four
isolates matched relatively abundant native biocrust bacteria at
the species or genus level (Table 1). Further comparative analyses
were conducted to calculate genome average nucleotide identity
(ANI) between isolate genomes and their related metagenome-
assembled genomes (MAGs) to which the rplO gene was co-
binned. This validated that each isolate and their closest matching
environmental relative were of the same genus or species,
following the conventions described in a previous report?®
(Table 1). Additional validation was obtained by comparing gene
average amino acid identity (AAI) (Supplementary Table 2) and
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other ribosomal protein genes (Supplementary Data 5) from
within each MAG to the corresponding isolate. On the basis of
these results, these four isolate-related environmental bacteria
were selected for exometabolomics comparisons: Microcoleus sp.
(a filamentous Cyanobacterium and primary producer), two
Firmicutes (referred to here as Bacillus sp. 1 and Bacillus sp. 2)
and Blastococcus sp. (an Actinobacterium) (Table 1, Supplemen-
tary Fig. 5).

Remarkably, together, these four bacteria accounted for ~30%
of the entire microbial community in many of the biocrust
samples (Supplementary Fig. 6). The overall most abundant
microorganism, Microcoleus sp. is known to be a pioneer species
responsible for initial soil stabilization and biocrust formation?’
and in our study was the most dominant in early wetup biocrust,
accounting for 10-25% of the entire microbial community at 3
min across all successional stages (Supplementary Fig. 6). The two
Firmicutes, Bacillus sp. 1 and Bacillus sp. 2, are likely to be
physically-associated with Microcoleus filaments®® and their
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Table 1 Exometabolite-profiled isolates and their closest matching relative in biocrust

Isolate ID from Closest matching biocrust Taxonomy pl0? (%)  ANI (%)

Baran et al.2® relative

M. vaginatus PCC9802 Microcoleus sp. (rplO 1) Cyanobacteria (p)/ Oscillatoriophycideae (c)/ Oscillatoriales 92.0 94.4
(0)/ Microcoleaceae (f)/ Microcoleus (g)

D1B51 Bacillus sp. 1 (rplO 2) Firmicutes (p)/ Bacilli (c)/ Bacillales (0)/ Bacillaceae (f)/ Bacillus (g) 86.3 75.4

L2B47 Bacillus sp. 2 (rplO 60) Firmicutes (p)/ Bacilli (c)/ Bacillales (0)/ Bacillaceae (f)/ Bacillus (g) 87.6 76.6

L1B44 Blastococcus sp. (rplO 7) Actinobacteria (p)/ Actinobacteria (c)/ Geodermatophilales 87.1 729

(0)/ Geodermatophilaceae (f)/ Blastococcus (g)

@ Similarity in rplO sequence (isolate vs. biocrust microorganism)

relative abundance increased during wetting. The most abundant
of these, Bacillus sp. 1, was a mid-wetup responder and peaked at
9 h for successional levels A, B and D (16—24% of the community)
and at 18h for successional level C (24% of the community)
(Supplementary Fig. 6). Bacillus sp. 2 reached its peak abundance
at later time points, accounting for up to 3% of the community by
42 h in successional level C, noting that by the later time points
the community was less dominated by any one particular
microorganism (Supplementary Fig. 6). Finally, Blastococcus sp.
abundance was found to be relatively resistant to wetting and was
somewhat evenly distributed across all conditions (0.1-2% of the
community) (Supplementary Fig. 6).

Microbe-metabolite relationships in situ vs. in culture. To
determine how isolate substrate preferences impact in situ exo-
metabolite composition, we evaluated microbe—metabolite rela-
tionships, focusing on metabolites known to be released or
consumed by biocrust isolates and their closest matching envir-
onmental relatives, Microcoleus sp., Bacillus sp. 1, Bacillus sp. 2
and Blastococcus sp. The general expectation was that released
metabolites would be positively correlated with the relative bac-
terial abundance while consumed metabolites would be negatively
correlated (Fig. 1b) across environmental variables, including
wetting and successional stage. To link previous isolate exome-
tabolomics data with the current biocrust exometabolome data set
(Fig. 2), we determined the direction and degree of correlation
between the metabolites that were previously found to be con-
sumed and released by biocrust isolates?® and closest matching
environmental relatives (Microcoleus sp., Bacillus sp. 1, Bacillus
sp. 2 and Blastococcus sp).

Of the 85 metabolites identified in the biocrust soil water, 32
matched the isolate exometabolome data set. Nine of these
displayed temporal patterns that were not significantly different
than the killed control and were excluded from this analysis since
abiotic controls on these metabolites could not be ruled out
(Supplementary Data 6). Spearman’s rank correlation was used to
assess the directionality (positive vs. negative correlations) of
biocrust microbe—metabolite relationships. Strikingly, of the 48
microbe—metabolite relationships evaluated (Supplementary
Fig. 7), 69% had the expected directionality that would be
predicted based on isolate exometabolomics data. This overall
observation of correct directionalities is significantly higher than
what would be expected by chance (p-value=0.01 by two-tailed
binomial test; Supplementary Data 7).

We next combined our microbe-metabolite correlation data
with the isolate exometabolomics data in order to visualize a
wetting-induced dynamic exometabolomic foodweb that may
result from the release of metabolites by a primary producer (e.g.,
Microcoleus sp.) and consumption of metabolites by heterotrophs
(e.g., Bacillus sp. 1 and 2) (Fig. 3). For simplicity, Blastococcus sp.
is not shown in Fig. 3 since this microorganism did not display
sequential responses to wetting. It should be noted that the
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bacteria specified here likely represent metabolically similar
groups of organisms that release or consume the same
metabolites. Of the set of metabolites that were most highly-
released by M. vaginatus PCC 980227, 14 of these were detected in
the biocrust soil water and half were positively correlated with
Microcoleus sp. across wetting and successional stages (Fig. 3 and
Supplementary Fig. 7). While Microcoleus sp. was most abundant
immediately following wetting, most of these metabolites (71%)
reached their highest level during the first three time points (3
min, 9 h or 18 h; Supplementary Fig. 7) just after the Microcoleus
sp. spike, suggesting release by Microcoleus sp. followed by
consumption by heterotrophs as they become metabolically
active.

Consistent with a heterotrophic lifestyle, most metabolites
evaluated displayed a negative relationship with the relative
abundances of Bacillus sp. 1, Bacillus sp. 2 and Blastococcus sp. Of
the metabolites that were consumed by the Bacillus sp. 1. related
isolate, D1B51 (Table 1)29, six were detected in the current
biocrust soil water samples and reached their highest level early-
on (at either 3 min, 9 or 18 h), decreasing just after the Bacillus sp.
1 peak (Supplementary Fig. 7). Four of these metabolites were
negatively correlated with Bacillus sp. 1, consistent with
metabolite consumption, and all three D1B51-released metabo-
lites were positively correlated with Bacillus sp. 1 (Fig. 3 and
Supplementary Fig. 7). As for the less dominant microorganisms,
the late-wetup responder, Bacillus sp. 2, was negatively correlated
with all seven metabolites that were consumed by the related
isolate (L2B47) and positively correlated with all four isolate-
released metabolites (Fig. 3 and Supplementary Fig. 7). Further-
more, Blastoccocus sp., was negatively correlated with eight out of
the ten metabolites that were consumed by the related isolate
(L1B44). Finally, the closest matching environmental relatives to
the three remaining exometabolomic-profiled isolates (L1B56,
D1B2, and D1B45) accounted for 0.1% or less of the microbial
community in our metagenomes and thus, not surprisingly, did
not display exometabolite-based microbe—metabolite relation-
ships (data not shown).

Transcriptomics support soil microbe-metabolite relation-
ships. Transcriptomics has the potential to test if gene expression
is consistent with predicted substrate utilization and release pat-
terns. As an initial proof of concept, we further analyzed the data
obtained from a previous study that evaluated M. vaginatus gene
expression following wetup and drydown in biocrusts collected
from the same field site’’. We found that pathways involved in
the biosynthesis of amino acids (KEGG pathways ‘biosynthesis of
amino acids’, ‘phenylalanine, tyrosine and tryptophan biosynth-
esis’ and ‘valine, leucine and isoleucine biosynthesis’) all increased
dramatically during early wet-up (Supplementary Fig. 8,
Supplementary Data 8). In contrast, pathways involved in the
degradation of these same metabolites were relatively constant
(‘phenylalanine metabolism’) or only slightly increased
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(‘tryptophan metabolism’ and ‘valine, leucine and isoleucine
biosynthesis’) following wet-up (Supplementary Fig. 8). These
observations are consistent with the release of these metabolites
by M. vaginatus PCC 9802%° and the observed immediate
increase of most amino acids in biocrust soil water in the present
study.

Discussion
Sequencing has the potential to link exometabolite composition
to specific microbes based on genome annotations. However, with
these data alone, relating metabolic potential to activity is chal-
lenging. Despite this challenge, sequencing and other approaches
have started to shed light on the impact individual microorgan-
isms®!, microbial genes*? and enzymatic activities*> have on the
chemistry within their environment. Here we evaluated exome-
tabolite profiles of individual bacteria in order to link soil exo-
metabolites to bacteria in biocrust, a critical ecosystem that lends
itself to studies of community responses to soil wetting.

We found that a biocrust wetting event set in motion an
immediate cascade of microbial activities marked by a drastic
shift in community structure. The dominance of Cyanobacteria
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during early time points is consistent with previous reports34 as is
the subsequent Firmicutes-bloom®°. The Firmicutes phylum
consists mostly of gram-positive, spore-forming bacteria with
rapid ggreneration times, enabling them to ‘bloom’ upon soil wet-
ting>®>”. The observed switch from a Cyanobacteria-dominated
community to a Firmicutes-dominated community (mostly
Bacillus sp. 1 in this study) agrees with our observations of
metabolite release by the dominant photoautotroph (Microcoleus
sp.)?0 followed by consumption and growth of diverse hetero-
trophs (e.g., Firmicutes), possibly including symbiotic nitrogen-
fixers®®, While we did not observe evidence of fixed nitrogen
transfer into Cyanobacteria, this process may occur during dry-
down, when nitrogen-rich nutrients may be released upon the
mother cell lysis stage of sporulation”.

It has been suggested that copiotrophic microorganisms
(e.g., many Firmicutes) are superior competitors for a limited
number of compounds, whereas oligotrophs (e.g., many Actino-
bacteria) support a more stable population by using a wider range
of substrates?’. Our previous isolate exometabolomics work is
consistent with this view by showing that the two Firmicutes
isolates depleted the narrowest range of substrates (10%), whereas
the two Actinobacteria used almost twice as many?’. During
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biocrust wetting, we found that, unlike the boom-bust cycle of
Firmicutes, the Actinobacteria phylum (such as Blastococcus sp.)
appeared more resistant to wetting duration. This provides lim-
ited evidence that utilization of diverse substrates, which is con-
sistent with oligotrophy, may enable slow but continuous growth
under conditions with highly dynamic exometabolite pools.

The wetting-induced initiation of microbial community
dynamics coincided with an immediate release of metabolites into
biocrust soil water. Killed controls were used to differentiate
biotic processes of interest from abiotic dynamics driven by
metabolite leakage, slow diffusion, mineral sorption, thermolysis
and photolysis. As expected, the active biocrusts exhibited
extremely different dynamics, with dramatic, near complete
depletion of many metabolites, whereas the killed controls (with
the exception of the antioxidant ergothionine) show a gradual
increase in most metabolites presumably as they are released from
the dead biomass (Supplementary Fig. 3). Some likely biological
mechanisms involved in the active metabolite “pulse” include
osmotic stress induced release of solutes (e.g., proline, betaine and
disaccharides) to maintain cell integrity*'*? as well as photo-
synthate release from the primary producer. These metabolite
dynamics that followed wetting resulted in strong
microbe—metabolite relationships that were tracked across time
and interestingly, most of these strong relationships (correlations)
were conserved from one successional stage to another for the
four bacteria that were examined (Microcoleus sp., Bacillus sp. 1
and 2 and Blastococcus sp.) (Supplementary Fig. 9). This supports
the notion that the content of water-soluble SOM in these bio-
crusts, to a large degree, originates from and is controlled by
microbes!® and the composition of this pool may be predictable if
a change in microbial community structure is anticipated. This
finding has particular significance for biocrusts, since changes in
temperature and rainfall are expected to shift microbial com-
munity structure*>#4, As a result, these alterations are expected to
impact SOM cycling, especially if there is loss of taxa responsible
for utilization or production of specific SOM components.

Next, we explored the connection between the observed
microbe—metabolite relationships in biocrust and culture-based
exometabolite profiles, focusing on metabolites found to be
controlled by biological mechanisms. Comparison of the two data
sets was facilitated by the fact that the isolates were obtained from
the same field site. Therefore, we used the phylogenetic marker,
rplO (which had the most coverage in our data set) to relate
exometabolite-profiled isolates to native biocrust bacteria. Isolate
genomes and their closest matching environmental MAGs had
between 73—-94% genome ANI values and were 86-92% identical
in their rplO sequences (Table 1). These relationships were fur-
ther confirmed by comparing other ribosomal protein genes,
which all ranged between 72—100% identical between each isolate
and its environmental MAG (Supplementary Data 5). While there
is a general lack of consensus of valid isolate-to-native population
comparisons, our values indicate matching at approximately the
genus or species level?®. Much of the difficulty in these com-
parisons is due to genomic heterogeneity within environmental
samples®®. However, despite these complexities with determining
exact phylogenetic distances, we observed functional similarity
between the isolate and environmental exometabolomics data
sets, which is consistent with the view that many metabolic traits
are conserved at the genus level*®. An exciting alternative
explanation for our observations is that the clades that these
isolates are members of exhibit the same cohesive dynamics as the
closest-matching bacteria in the biocrust?’.

Overall, we found that isolate exometabolomic patterns were
conserved in the intact biocrust soil microbial community. The
expected directionality (positive or negative microbe—metabolite
relationships) (solid arrows in Fig. 3) was significantly higher
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than predicted by chance, indicating a linkage between laboratory
observations and in situ soil activities. While most metabolites
displayed the expected patterns, some biocrust soil water meta-
bolites (e.g., uracil, N6-acetyl-lysine, hypoxanthine and xanthine)
behaved inconsistently with M. vaginatus PCC 9802 exometa-
bolite profiles. However, these were also released by and positively
correlated with Bacillus sp. 1 and 2. Deconvoluting this may be
possible using dynamic utilization models*®*° to account for the
relative contributions of the two microorganisms. Ultimately, this
same approach could be used to account for rare community
members that may also have an impact on the exometabolite pool
or may alter the metabolism of other microbes®®>!. Although
outside of the scope of the current work, we anticipate that these
substrate-genome linkages could be further tested and refined by
using other approaches. Stable isotope probing coupled with
labeled DNA sequencing®®°? and integrated NanoSIMS and FISH
imaging®>>* may be used to examine the spatial localization of
microbes and their activities.

We next used the biocrust microbe—metabolite relationships to
display a simplified dynamic exometabolomics web describing the
wetting response of three dominant bacteria in biocrust (Fig. 3).
While this network portrays the dynamic substrate preferences of
three specific native biocrust bacteria, there are many
functionally-similar microorganisms that could fall into the
categories of ‘early responders’, ‘mid-responders’ and ‘late-
responders’ (grouping with Microcoleus sp. and the two Bacilli
sp., respectively) for a wetting event. However, based on our
available data and analyses, this network displays the role of
Microcoleus sp. as the biocrust primary producer, releasing many
metabolites, which stimulates the growth and metabolite con-
sumption by heterotrophs (in this case, the two heterotrophic
Firmicutes). Our findings suggest unique microorganismal roles
in the biocrust foodweb, including the release of nucleobases
(uracil, hypoxanthine and xanthine) by the two Firmicutes, which
is consistent with our earlier reports of heterotrophs releasing
these compounds®™. This may reflect a nitrogen-scavenging
mechanism by consuming N-containing substrates (cytosine,
adenine, guanine, and histidine), producing uracil, hypoxanthine,
and xanthine as byproducts, which may then be consumed by
late-responding microorganisms. Even though these observed
functional linkages are for a fraction of the biocrust microbial
community, these small yet significant pieces of the puzzle have
the potential to help understand and predict nutrient cycling in
terrestrial microbial ecosystems®® analogously to the many
microorganisms that have been linked to specific transformations
within marine ecosystems. For example, Cyanobacteria release
and reuptake organic carbon®”, a variety of uncultured taxa utilize
dissolved proteins®?> and SARI11 bacteria assimilate amino acids
and dimethylsulfoniopropionate®®.

We attribute much of the success of this study to the suitability
of the relatively simplified biocrust soil ecosystem. One such
advantage is that the biocrust used in this study is primarily
quartz sand, facilitating metabolite analysis compared to many
other soils which are typically rich in clays and other strongly-
sorptive mineral surfaces®. Accurately representing the compe-
tition between microbes and mineral surfaces would require
additional studies examining mineral-metabolite sorption
dynamics®®®!. Another simplifying factor is that the biocrust
community, unlike many other soils, is dominated by a few
bacteria, greatly enabling accurate correlations between taxa and
metabolites. We anticipate that in order to more accurately pre-
dict microbe—metabolite relationships for more diverse commu-
nities and complex environments, a large number of relevant taxa
would need to be subjected to exometabolite profiling. Addi-
tionally, accounting for switching between metabolic states will
require profiling under diverse environmental conditions. For
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example, the discrepancy between metabolites that were released
by M. vaginatus PCC 9802%°, but were not correlated with
Microcoleus sp. abundance in biocrust may be due to different
metabolic processes occurring during the day (photosynthesis) vs.
night (respiration) (i.e., Diel cycle)**2. Thus, modeling approa-
ches will be required to account for metabolic state switching
among other processes. One exciting possibility of expanded
exometabolomic data sets, is that knowledge of uptake and release
of metabolites can be used as boundary constraints for flux-
balance analysis in metabolic models®® and to inform trait-based
models®®! providing a genome-scale approach for linking soil
metabolites with metagenomic data. For example, OptCom®, a
multi-level and multi-objective flux balance analysis framework
to understand metabolism within microbial communities, which
currently primarily relies on genomic information, could be used
in conjunction with exometabolomic data.

In conclusion, this study suggests that, for biocrust, many
genotype-to-phenotype relationships are conserved from test tube
to soil. These conserved isolate exometabolite patterns begin to
provide a functional link between in situ community structure
and metabolite composition. We expect that exometabolomic
characterization of additional taxa and determination of mineral-
metabolite sorption dynamics, under a range of environmentally
relevant conditions (e.g., day/night cycles), integrated with
modeling approaches will further enhance the predictive power of
these relationships. These studies may help pave the way for
interpretation and use of metagenomic and metatranscriptomic
approaches for linking soil chemistry to soil microbiomes to
define exometabolite webs of microbes in complex ecosystems.

Methods

Materials. LC/MS-grade water and LC/MS-grade methanol (CAS 67-56-1) were
from Honeywell Burdick & Jackson (Morristown, NJ). LC/MS-grade acetonitrile
(CAS 75-05-8) and ammonium acetate (CAS 631-61-8) were from Sigma-Aldrich
(St. Louis, MO). LC/MS internal standards included MOPS (CAS 1132-61-2),
HEPES (CAS 7365-45-9), 3,6-dihydroxy-4-methylpyridazine (CAS 5754-18-7), 4-
(3,3-dimethyl-ureido)benzoic acid (CAS 91880-51-2), ds-benzoic acid (CAS 1079-
02-3) and 9-anthracenecarboxylic acid (CAS 723-62-6) from Sigma-Aldrich.

Sample collection. Petri dishes (6 cm? x 1 cm depth) were used to core biocrust
samples from the Green Butte Site near Canyonlands National Park (38°42'54.1" N,
109°41'27.0" W, Moab, UT, USA). Samples were collected along an apparent
maturity gradient of Cyanobacteria-dominated biocrusts ranging from light, young
(level A) to darker, more mature (level D) (Supplementary Fig. 1). Dry samples
collected in the field were maintained in a dark desiccation chamber in the
laboratory for approximately 11 months until lab-based experiments were per-
formed consistent with previous reports®®. Biocrusts are adapted to prolonged
desiccation though it is important to note that the duration of desiccation likely
affects metabolite composition and biological responses.

Biocrust wetting. Biocrust (0.5 g) was transferred to each well within 12-well
plates. Sterile LC/MS-grade water (1 mL) was added to each sample and placed
under a 12 h light (~300 pmol photons/m?s)/ 12 h dark cycle. Microcosms were
completely enclosed by aluminum foil to prevent infiltration by outside light
sources. At each time point (3 min, 9h, 18 h, 42h and 49.5h), biocrust and soil
water were removed and placed in 2 mL Eppendorf tubes and 500 pL of additional
water was used to rinse out the wells and added to the sample. Tubes were cen-
trifuged at 5000 x g for 5 min and supernatant (biocrust soil water) was pipetted
and placed in new 2 mL tubes. Remaining biocrust was stored at —80 °C until
nucleic acid extraction was performed. There were five biological replicates, five
time points and four successional stages of biocrust resulting in 100 total samples.
An extraction control (three replicates of water, no soil) was included and sampled
at 49.5 h to evaluate background contamination. To control for abiotic metabolite
processes (such as sorption, photodegradation, etc), a separate experiment was
performed where soil water was sampled along the same time points (5 sampling
time points in triplicate) from killed (autoclaved four times) biocrust from a late
successional stage.

Metabolite extraction and LC/MS analysis. Biocrust soil water samples (1.5 mL)
were lyophilized and resuspended in methanol (200 pL) containing internal stan-
dards (2-10 pg/mL) and filtered through 96-well Millipore filter plates (0.2 pm

PVDF) by centrifuging at 1500 x g for 2 min. Samples were analyzed using normal-
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phase LC/MS with a ZIC-pHILIC column (150 x 2.1 mm, 3.5 pm 200 A, Merck
Sequant, Darmstadt, Germany) using an Agilent 1290 series UHPLC (Agilent
Technologies, Santa Clara, California, USA). Chromatographic separation was
achieved using two mobile phases, 5 mM ammonium acetate in water (A) and 90%
acetonitrile with 5 mM ammonium acetate (B) at a flow rate of 0.25 mL/min with
the following gradient: 100% B for 1.5 min, decreased to 50% B by 25 min, held
until 29.9 min then returned to initial conditions by 30 min with a total runtime of
40 min. Column temperature was maintained at 40 °C. For MS, negative mode data
were acquired on an Agilent 6550 quadrupole time-of-flight mass spectrometer and
positive mode data were acquired on a Thermo QExactive (Thermo Fisher Sci-
entific, Waltham, MA). Fragmentation spectra (MS/MS) were acquired for some
metabolites using collision energies of 10—40 eV. For the killed biocrust controls,
samples were analyzed using an Agilent 1290 series UHPLC with a SeQuant ZIC-
HILIC column (150 x 2.1 mm, 5 pm, 200 A, MilliporeSigma, Billerica, MA). The
two mobile phases used were 5 mM ammonium acetate in water (A) and 95%
acetonitrile with 5 mM ammonium acetate (B) at a flow rate of 0.45 mL/min with
the following gradient: 100% B for 1.5 min, decreased to 65% B by 15 min then 0%
B by 18 min, held until 23 min then returned to initial conditions by 25 min with a
total runtime of 30 min. The negative and positive MS data for the killed controls
were obtained using a Thermo QExactive.

Metabolite identification and statistical analysis. Metabolomics data were
analyzed using Metabolite Atlas®’ (https://github.com/biorack/metatlas) in con-
junction with the Python programming language to construct extracted ion
chromatograms corresponding to metabolites previously detected in biocrust or
contained within our in-house standards library. Note that this same analysis could
be done with other open-source software packages. Authentic standards were then
used to validate assignments based on two orthogonal data (accurate mass less than
15 p.p.m., retention time within 1 min and/or MS/MS matching major fragments)
relative to standards and/or the Metlin database®®%® and are provided in Supple-
mentary Data 1. Metabolites that did not match orthogonal measures were clas-
sified as putative and are indicated by parentheses in figures. Internal standards
were assessed from each sample to ensure peak area and retention times were
consistent from sample-to-sample. Quality control mixtures were included at the
beginning, end and throughout the runs to ensure proper instrument performance
(m/z accuracy and retention time and peak area stability). Sample QC failed
(internal standards were not present within the specified retention time window)
for some replicates including all 9 h wetup level D samples and were not included
for further analyses.

To explore the degree of variation in biocrust metabolite profiles across wetting
and successional stages, biocrust samples were PCA-ordinated based on their
metabolite profiles. Significance between temporal patterns from active biocrust
and killed control samples was analyzed using the anovan and multcompare
functions in Matlab R2016A with an alpha of 0.05 corresponding to 95%
confidence level and Tukey’s honestly significant difference test where time is
considered a continuous variable and succession is considered a categorical variable
(Supplementary Data 3).

DNA extraction, sequencing and microbial annotation. DNA was extracted
from biocrust (0.25 g) using the MoBio Powersoil DNA isolation kit (MoBio
Laboratories, Inc, Carlsbad, CA) resulting in 100 pL of eluted DNA. Library pre-
paration and sequencing were done at the QB3 facility at the University of Cali-
fornia, Berkeley using Illumina HiSeq4000 (see supplementary methods for details
on metagenome analysis). In recent studies?*2>70, ribosomal protein genes have
been used as phylogenetic markers as an alternative to the more classical 16s
ribosomal RNA gene. Ribosomal protein genes exist as single copies in almost all
genomes, assemble well from metagenome datasets, are well-conserved and have
produced higher resolution phylogenetic trees?>. Given these advantages, the 50S
ribosomal protein L15 (rplO) gene had the most extensive community coverage for
our data set and was therefore used as a phylogenetic marker to examine the
relative abundance of individual microorganisms within the microbial community
across wetting and successional stages. The rplO genes from the genomes of the
seven exometabolite profiled biocrust bacterial isolates®” were compared to all the
rplO genes recovered from biocrust MAGs. Those with the highest percent simi-
larity were considered the “closest matching environmental relatives” to the isolates
and are reported in Table 1. Average nucleotide and amino acid identity metrics
were calculated using the ‘enveomics’ tool”!.

Microbe-metabolite correlations. Correlations were used to identify
microbe—metabolite relationships across both wetting and successional stages.
Spearman’s rank (rho) correlation coefficients for every pairwise
(microbe-metabolite) relationship and p values (unadjusted and FDR-adjusted)
were calculated using the cor() stats function in R. A Spearman’s rho value greater
than or equal to 0.5 was considered “highly correlated” and less than or equal to
—0.5 was considered “highly negatively correlated”. To test if the overall observed
directionality (positive vs. negative correlations) was due to chance rather than as
would be predicted based on exometabolomics (release vs. consumption), the exact
binomial test was conducted using R (binom.test) with a total of 48 “trials” or
observed microbe-metabolite interactions (Supplementary Data 7).
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Exometabolomics comparison and analysis. Of the 85 metabolites detected in
biocrust soil water, 32 were previously analyzed for consumption and release by
biocrust isolates?’. Of those metabolites, 23 were selected for further analyses since
they were considered to be biologically-controlled (they displayed temporal pat-
terns that were significantly different from the killed controls). For continued
analyses of the isolate exometabolomics data here, fold-change was calculated by
dividing the average peak area of each metabolite in (isolate) inoculated spent
media by the non-inoculated control spent media (raw data can be found in the
Supplemental Table in Baran et al.>%). A metabolite was considered consumed if
the fold-change was 0.5 or less and released metabolites had a fold-change of 2 or
greater.

Microcoleus gene expression analysis. Microcoleus genes from Supplementary
Table 6 in Rajeev et al.® were categorized into KEGG pathways (for genes con-
taining KEGG ID numbers), which are summarized in Supplementary Data 8.
Analyses focused on pathways that are primarily anabolic or catabolic for meta-
bolites that were released by Microcoleus PCC 9802. The average fold-change
(relative to dry biocrusts) and standard errors were calculated for all genes
belonging to pathways of interest.

Data availability. Sequencing data that support the findings of this study are
available at the NCBI Sequence Read Archive (project accession number
PRJNA395099; sample accession numbers SRX3024638 to SRX3024657, https://
www.ncbi.nlm.nih.gov/bioproject/395099) and metabolomics data have been
deposited to the EMBL-EBI MetaboLights database’? with the identifier
MTBLS492 (http://www.ebi.ac.uk/metabolights/ MTBLS492). Other relevant data
supporting the findings of the study are available in this article and its Supple-
mentary Information files, or from the corresponding author upon request.
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