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Intracellular trafficking of TREM2 is regulated by
presenilin 1

Yingjun Zhao1,2,5, Xiaoguang Li1,3,5, Timothy Huang1, Lu-lin Jiang1, Zhenqiu Tan2, Muxian Zhang2,
Irene Han-Juo Cheng4, Xin Wang2, Guojun Bu2, Yun-wu Zhang2, Qi Wang3 and Huaxi Xu1,2

Genetic mutations in triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to a variety of

neurodegenerative diseases including Alzheimer’s disease, amyotrophic lateral sclerosis, frontotemporal dementia and

Parkinson’s disease. In the brain, TREM2 is highly expressed on the cell surface of microglia, where it can transduce signals to

regulate microglial functions such as phagocytosis. To date, mechanisms underlying intracellular trafficking of TREM2 remain

elusive. Mutations in the presenilin 1 (PS1) catalytic subunit of the γ-secretase complex have been associated with increased

generation of the amyloidogenic Aβ (amyloid-β) 42 peptide through cleavage of the Aβ precursor amyloid precursor protein. Here

we found that TREM2 interacts with PS1 in a manner independent of γ-secretase activity. Mutations in TREM2 alter its

subcellular localization and affects its interaction with PS1. Upregulation of PS1 reduces, whereas downregulation of PS1

increases, steady-state levels of cell surface TREM2. Furthermore, PS1 overexpression results in attenuated phagocytic uptake of

Aβ by microglia, which is reversed by TREM2 overexpression. Our data indicate a novel role for PS1 in regulating TREM2

intracellular trafficking and pathophysiological function.
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INTRODUCTION

Recently, several heterozygous missense mutations in triggering
receptor expressed on myeloid cells 2 (TREM2) have been
identified as risk factors for a number of neurodegenerative
disorders including Alzheimer’s disease (AD), amyotrophic
lateral sclerosis, frontotemporal dementia and Parkinson’s
disease.1–12 For example, the TREM2 R47H variant has been
reported to confer an increased risk of AD in comparable odds
ratios to APOE4,8,9 the greatest known genetic risk factor for
late-onset AD.13

TREM2 is a type I transmembrane protein comprising an
extracellular, Ig-like V-type domain; a transmembrane domain;
and an intracellular domain lacking any obvious signaling
motifs (Figure 1f). Signal transduction induced by ligand
engagement, for example, ApoE,14–16 with the TREM2 extra-
cellular domain is mediated through its association with
DNAX-activating protein of 12 kDa (DAP12), which triggers

intracellular signals through an immunoreceptor tyrosine-
based activation motif.17,18 TREM2 expression is primarily
found in microglia, and mounting evidence indicates that
TREM2 signaling is important in the regulation of microglial
phagocytosis and inflammatory cytokine production.19–30 Sev-
eral disease-associated TREM2 mutations have been reported
to reduce cell surface TREM2 distribution and impair micro-
glial phagocytic function.31,32 Therefore, the presence of
TREM2 at the cell surface is important in mediating microglial
functions such as phagocytosis. However, the precise mechan-
ism by which TREM2 is distributed to the cell surface or
intracellular compartments remains largely unknown.

Interestingly, it has been reported that TREM2 can be
cleaved by the γ-secretase complex,31,33 which is required for
the generation of amyloid-β (Aβ) peptides that comprise
pathological senile AD plaques.34 Aberrant Aβ accumulation
can trigger a cascade of neurodegenerative events including
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synaptic dysfunction, oxidative injury and eventual neuronal
loss.35,36 Importantly, microglia-mediated phagocytosis has
been suggested to be involved in clearing extracellular Aβ
deposits in the brain.37 The γ-secretase complex is composed of
four primary components: presenilins (PSs, including PS1 and
PS2), anterior pharynx-defective-1 (APH-1), nicastrin (NCT)
and presenilin enhancer-2 (PEN-2).38,39 PS1 is the major
presenilin component in the catalytically active γ-secretase
complex, where autoproteolytically derived amino-terminal
fragments (NTFs) and carboxyl-terminal fragments (CTFs)
form functional heterodimers.40 PEN-2 is known to cleave full-
length PS1 to generate NTF and CTF constituents that form
stable heterodimers. APH-1 is required for the assembly of
premature components and for the proteolytic activity of the

complex, and NCT plays a primary role in the intracellular
trafficking and the stability of the assembled complex.41

Numerous PS1 mutations have been identified in early-onset
familial AD patients.42 Although PS1 is believed to be the
catalytic subunit of γ-secretase, additional functions have been
proposed for PS1, including the regulation of vesicular
trafficking,43,44 calcium homeostasis,45,46 autophagy47,48 and
other cellular functions.49

Here we show that PS1 can interact with TREM2 to affect
TREM2-mediated phagocytic capacity in microglia. Our results
identify a novel mechanism underlying the regulation of
intracellular TREM2 trafficking and provide insight into
functional interactions between two fundamental AD risk
components.

Figure 1 Presenilin 1 (PS1) interacts with TREM2. (a, b) PS1 constructs were transfected into HEK293 cells stably expressing TREM2
with a Myc-tag at the C terminus (HEK293-TREM2). (a) Cell lysates were immunoprecipitated with a Myc antibody or control IgG.
Immunoprecipitated proteins were subjected to immunoblotting with an Ab14 antibody to detect full-length PS1 (PS1-FL) and the PS1
N-terminal fragment (NTF), an anti-PS1 loop antibody to detect the PS1 C-terminal fragment (CTF) and a nicastrin (NCT) antibody as
indicated. (b) Cell lysates were immunoprecipitated with Ab14, anti-PS1 loop or control IgG and immunoblotted with Myc and NCT
antibodies. (c) Lysates from BV2 microglial cells were immunoprecipitated with Ab14 and immunoblotted with NCT and mouse TREM2
antibodies. (d) Vectors expressing wild-type (WT) or mutant PS1 (D385A) were transfected into HEK293-TREM2 cells. Cell lysates were
immunoprecipitated with Ab14 or control IgG, and PS1 was detected by immunoblotting. (e) Lysates from HEK293-TREM2 cells with or
without Compound E (CpdE, a γ-secretase inhibitor) treatment were immunoprecipitated with Ab14 or control IgG, and PS1 was detected
by immunoblotting. (f) Schematic representations of full-length (1–230) or truncated TREM2 constructs, all tagged with GST at the C
terminus. SP, signal peptide; TM, transmembrane domain. (g) PS1 was co-expressed with full-length TREM2 or other TREM2 fragments as
shown in f in HEK293 cells. Cell lysates were precipitated with Glutathione Sepharose beads and immunoblotted with the PS1 antibody
Ab14 or an antibody against GST. PS1 co-precipitation levels were determined by densitometric analysis and normalized with respect to
both PS1 expression and precipitated GST. **Po0.01, n=3, Student’s t-test.
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MATERIALS AND METHODS

Antibodies and reagents
Sulfo-NHS-LC-biotin, streptavidin agarose resin beads, Dynabeads
Protein G, Turbofect Transfection Reagent and restriction enzymes
were purchased from Thermo Fisher Scientific (Carlsbad, CA, USA).
Glutathione Sepharose 4B was purchased from GE Healthcare Life
Sciences (Piscataway, PA, USA). The γ-secretase inhibitor Compound
E was purchased from Millipore (San Diego, CA, USA).
6-carboxyfluorescein (FAM)-Aβ was purchased from AnaSpec (Fre-
mont, CA, USA). The following antibodies were used in this study:
mouse anti-Myc (for immunoblot, Life Technologies, Carlsbad, CA,
USA); rabbit anti-Myc (for immunostaining) and rabbit anti-PDI (Cell
Signaling Technology, Danvers, MA, USA); sheep anti-Myc (for
immunostaining, Thermo Fisher, Carlsbad, CA, USA); sheep anti-
TGN46 (GeneTex, Irvine, CA, USA); mouse anti-nicastrin (Abcam,
Cambridge, MA, USA); rabbit anti-PS1-NTF (Ab14) antibody (devel-
oped in-house previously); mouse anti-PS1 loop (Millipore); goat anti-
human TREM2 and sheep anti-mouse TREM2 (R&D Systems,
Minneapolis, MN, USA); mouse anti-β-actin (Sigma, St Louis, MO,
USA); rabbit anti-GST, normal mouse IgG and rabbit IgG (Santa Cruz
Biotechnology, Dallas, TX, USA).

Cell culture and generation of stable cell lines
HEK293 cells and murine microglial BV2 cells were grown in
Dulbecco’s modified Eagle’s medium (DMEM) (Corning, Corning,
NY, USA) supplemented with 10% fetal bovine serum (HyClone,
Piscataway, PA, USA). To generate HEK293 cells stably overexpressing
human TREM2, we transfected cells with pcDNA3.1 vectors (Thermo
Fisher) with Myc-tagged WT or mutated TREM2 cDNA inserts using
Turbofect and selected for G418 resistance (400 μg ml− 1). A lentiviral
vector comprising human PS1 cDNA-IRES-mCherry was purchased
from GeneCopoeia, Rockville, MD, USA and packaged into lentiviral
particles (Lv-PS1) through the viral core at Sanford Burnham Prebys
Medical Discovery Institute. For stable PS1 overexpression, BV2 cells
were transduced with Lv-PS1, and individual mCherry-positive cells
were sorted by flow cytometry using a high-speed cell sorter (BD
Biosciences, San Jose, CA, USA, FACSAria IIu), after which single
clonal cell lines were expanded and characterized for expression.

RNA interference
Two PS1-targeting siRNAs (1, 5′-CCACACCATGTTGGAAATAAA-3′;
2, 5′-CCCACTTGTAAGTTTAAATAA-3′) and a scrambled control
siRNA (Qiagen, Germantown, MD, USA) were transfected into BV2
cells using Lipofectamine RNAiMAX reagent (Invitrogen, Carlsbad,
CA, USA) following the manufacturer’s protocol.

Co-immunoprecipitation
HEK293 cells stably overexpressing WT or mutant TREM2 were
transfected with or without pAG3 vectors for WT or D385A mutant
PS1. Cells were lysed in lysis buffer (1% Nonidet P-40, 50 mM Tris-
HCl, 150 mM sodium chloride, 2 mM EDTA, pH 7.4, supplemented
with protease inhibitor mixture). Alternatively, BV2 microglia cells
were lysed in CelLytic M buffer (Sigma) containing a protease
inhibitor mixture. Lysates were incubated with normal IgG or the
indicated antibodies together with Dynabeads Protein G at 4 °C
overnight. Immunoprecipitated proteins were analyzed by
immunoblotting.

GST pulldown
HEK293 cells were transfected with PS1 and various GST-tagged
TREM2 constructs (Figure 1e). Cells were lysed and incubated with
Glutathione Sepharose beads at 4 °C overnight. Precipitated proteins
were analyzed by immunoblotting.

Cell surface biotinylation
Biotinylation was performed using a previously described protocol.50

Cells were washed three times with ice-cold PBS/CM (phosphate-
buffered saline containing 1.3 mM CaCl2 and 1 mM MgCl2) and
incubated with 0.5 mg ml− 1 sulfo-NHS-LC-biotin for 20 min at
4 °C. Cell lysates were precipitated with streptavidin beads overnight,
and the precipitated biotinylated proteins were subjected to immuno-
blot analysis.

Immunoblot
Samples from co-IP, GST pulldown and cell surface biotinylation were
subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis
and probed using the indicated antibodies.

Immunostaining
HEK293 cells stably overexpressing WT or mutant TREM2 were
transfected with PS1 expression constructs. Twenty-four hours after
transfection, cells were fixed in 4% paraformaldehyde (PFA), permea-
bilized and blocked in 5% bovine serum albumin (BSA). The cells
were then incubated with the indicated primary antibodies at 4 °C
overnight. The cells were washed three times with PBS and then
incubated with secondary antibodies conjugated to Alexa Fluor 488,
555 and 647 (Life Technologies). For cell surface labeling experiments,
cells were blocked in 5% BSA after fixation and stained with a goat
anti-human TREM2 antibody (epitope 19–174 amino acids, R&D
Systems). The cells were then permeabilized and stained with a Myc
antibody to detect total TREM2. Specimens were visualized using a
confocal microscope (Zeiss, Oberkochen, Germany, LSM 710).
Pearson’s correlation coefficient was determined by Zen software to
quantify colocalization between TREM2 and TGN46/PDI, between
PS1 and TGN46/PDI, and between TREM2 and PS1. BV2 cells were
fixed in 4% PFA and subjected to processing for imaging as
described above.

Phagocytosis of FAM-Aβ
Treated BV2 microglial cells were seeded in 12-well plates at a density
of 500 000 cells per well. After 24 h, the cells were incubated with
media containing FAM-Aβ (500 nM) for 2 h. The cells were fixed with
4% PFA and visualized by confocal microscopy (Zeiss LSM 710).
Alternatively, extracellular and cell surface FAM-Aβ was quenched by
incubation with 0.4% trypan blue in PBS (pH 4.4) for 1 min. The cells
were then trypsinized, washed with ice-cold PBS and subjected to flow
cytometry analysis using an LSRFortessa X-20 cell analyzer
(BD Biosciences).

Statistical analyses
Statistical analyses were performed with GraphPad Prism (La Jolla,
CA, USA). N represents the number of biological replications.
Student’s t-test or one-way ANOVA was used. All data are presented
as the mean± s.d.

RESULTS

To identify proteins that may regulate TREM2 trafficking, we
generated a human embryonic kidney 293 cell line stably
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overexpressing Myc-tagged TREM2 (HEK293-TREM2) and
performed co-immunoprecipitation (co-IP) assays to screen
for TREM2-interacting components. Using this system, we
identified positive interactions between TREM2 and PS1: with
PS1 overexpression in HEK293-TREM2 cells, a Myc antibody
immunoprecipitated full-length PS1, PS1-NTF and PS1-CTF,
while no interaction between TREM2 and NCT was detected
(Figure 1a). Conversely, TREM2 was co-precipitated using
antibodies against PS1-NTF (Ab14) or PS1-CTF (anti-PS1
loop) (Figure 1b). Moreover, we found that endogenous
TREM2 co-immunoprecipitated with endogenous PS1 in
BV2 microglial cells (Figure 1c). The catalytically inactive
dominant negative PS1 mutant (D385A)51 retained interaction
with TREM2 comparable to wild-type (WT) PS1 (Figure 1d).
Additionally, inhibition of γ-secretase activity with Compound
E (CpdE) did not affect PS1/TREM2 co-precipitation
(Figure 1e). These results demonstrate that PS1 interacts with
TREM2 and that the interaction occurs irrespective of
γ-secretase activity.

To map the domain(s) required for TREM2/PS1 interaction,
we co-transfected PS1 and glutathione S-transferase (GST)-
tagged full-length or truncated TREM2 into HEK293 cells and
assayed for interactions between PS1 and TREM2-GST con-
structs in Glutathione Sepharose precipitates (Figures 1f and g).
We found that TREM2 constructs comprising the transmem-
brane region (175–195 amino acids) co-precipitated with PS1,
whereas TREM2 fragments lacking the transmembrane region
pulled down much less PS1 (Figure 1g), suggesting that the
TREM2 transmembrane domain is crucial for TREM2/PS1
interaction.

Given that several disease-associated mutations in TREM2
have been previously described to alter its intracellular
localization,31,32 we generated HEK293 cell lines stably over-
expressing TREM2 R47H, T66M and T96K mutants. We found
that WT, R47H and T96K TREM2 predominantly localized in
the Golgi apparatus, as seen by high colocalization coefficients
observed with the Golgi marker TGN46, (Figures 2a and c),
whereas T66M TREM2 primarily localized in the endoplasmic
reticulum (ER) as indicated by colocalization with the ER
marker PDI (Figures 2b and c). In addition, we observed that
T66M mutation markedly reduced cell surface TREM2 expres-
sion, whereas R47H and T96K mutations did not affect surface
expression of TREM2 (Supplementary Figure 1). PS1 could
also be found in TGN46- or PDI-labeled structures
(Figures 2a–c). Partial TREM2/PS1 colocalization was observed
with the various TREM2 variants: specifically, staining overlap
(white color) was observed among WT, R47H or T96K
TREM2, PS1 and TGN46, and overlapping staining of T66M
TREM2, PS1 and PDI was also apparent (Figures 2a–c).
Although mutations in TREM2 did not influence PS1/TREM2
colocalization (Figure 2c), comparatively weaker T66M TREM2
interaction with PS1 was observed relative to the interaction
between WT TREM2 and PS1, based on co-IP assays using the
PS1 antibody Ab14 (Figure 2d). Moreover, we also observed
colocalization between endogenous TREM2 and PS1 in the

BV2 microglial cell line (Pearson’s colocalization coefficient,
0.41± 0.11), primarily in Golgi-like compartments (Figure 3).

PS1 has been reported to regulate cell surface delivery of
several transmembrane proteins such as amyloid precursor
protein.43,44 We next determined whether PS1 can affect
surface expression of TREM2 by cell surface biotinylation
assays. PS1 overexpression in HEK293-TREM2 cells resulted
in a significant reduction in cell surface TREM2 levels with no
change in total TREM2 levels (Figure 4a). Furthermore, we
found that PS1 overexpression reduced cell surface TREM2
levels in the presence of the γ-secretase inhibitor CpdE,
indicating that PS1-dependent depletion of TREM2 at the cell
surface occurs independently of γ-secretase activity (Figure 4a).
To confirm these effects in a microglia-derived cell line, we
generated a murine microglial BV2 cell line stably overexpres-
sing PS1, transduced with a lentiviral delivery system (BV2-
PS1). We observed a reduction in endogenous TREM2 at the
cell surface in BV2-PS1 cells compared with control BV2 cells
(Figure 4b). To further clarify the regulatory effects of PS1 on
TREM2 trafficking, we examined the effect of PS1 down-
regulation on cell surface TREM2 expression in BV2 cells. We
found that PS1 knockdown significantly increased cell surface
TREM2 levels (Figure 4c). As expected, cell surface NCT levels
were concomitantly reduced upon PS1 knockdown (Figure 4c).
We then investigated whether upregulation of other γ-secretase
components such as NCT may have similar effects, and we
found that overexpression of NCT had little effect on cell
surface TREM2 distribution (Figure 4d). Together, these results
indicate that TREM2 cell surface distribution is regulated by
PS1 in a manner independent of the γ-secretase complex.

The presence of TREM2 at the cell surface is important for
transducing extracellular ligand signals to enact a microglial
response. Several studies have reported that reduction of cell
surface TREM2 expression in microglia cells can attenuate
phagocytic function.23,31 In support of this notion, transient
overexpression of PS1 reduced phagocytic uptake of FAM-
labeled Aβ42 within a 2-h incubation period in BV2 cells
(Figure 5a). We further confirmed a reduction in FAM-Aβ42
uptake in BV2-PS1 cells by flow cytometry analysis (Figure 5b).
To determine whether this reduction was TREM2-dependent,
we transduced BV2-PS1 cells with lentiviruses expressing
human TREM2. Strikingly, BV2-PS1 cells overexpressing
TREM2 (BV2-PS1+TREM2) exhibited comparable phagocytic
activity to control BV2 cells lacking PS1 and TREM2 over-
expression (Figure 5b). In addition, we found that cell surface
expression of TREM2 in BV2-PS1+TREM2 cells is comparable
to that in BV2-control cells (Supplementary Figure 2). We
observed no significant difference between the control and PS1
knockdown samples in bulk microglial phagocytic uptake
(Figure 5c). Together, these results indicate that PS1 and
TREM2 interact to reduce cell surface TREM2 distribution
and downstream phagocytotic function.

DISCUSSION

TREM2 has been previously reported to be a substrate of the γ-
secretase complex,31,33 which suggests that TREM2 proteolysis
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Figure 2 Mutations in TREM2 affect colocalization and interactions between TREM2 and presenilin 1 (PS1). PS1 was transfected into
HEK293 cells stably expressing Myc-tagged TREM2 WT or TREM2 mutants as indicated. (a, b) Cells were then subjected to
immunostaining with antibodies against Myc, PS1, and TGN46 (a marker for the Golgi, a) or PDI (a marker for the ER, b). White arrows in
magnified images indicate colocalizing overlap for TREM2, PS1 and TGN46/PDI. Scale bars for a, b, 10 μm. (c) Quantification of
colocalized signals. Pearson’s correlation coefficient is shown. ***Po0.001, n=3 independent experiments, one-way ANOVA with
Dunnett’s post hoc analysis. (d) Cell lysates were immunoprecipitated with the PS1 antibody Ab14 or normal IgG. TREM2, NCT and PS1-
CTF were detected by immunoblotting. The levels of precipitated TREM2 WT and mutants were normalized to the input. *Po0.05, n=3,
Student’s t-test.

Figure 3 Endogenous TREM2 partially colocalizes with endogenous presenilin 1 (PS1) in microglial BV2 cells. BV2 cells were
immunostained with antibodies against PS1 and mouse TREM2. White circles in magnified images indicate some colocalizing overlap
between TREM2 and PS1 in Golgi-like structures. Scale bar, 5 μm.
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could influence cell surface TREM2 distribution and function.
Coordination of γ-secretase subunits including PSs, APH-1,
NCT and PEN-2 is a prerequisite for γ-secretase-mediated
proteolysis.41 Since total full-length TREM2 levels were unaf-
fected by PS1 overexpression, this suggests that PS1 upregula-
tion alone cannot enhance TREM2 proteolysis. Although
inhibition of γ-secretase activity has recently been shown to
reduce TREM2-mediated phagocytosis, which may be due to
competitive binding between accumulated TREM2-CTF and
DAP12, thereby impairing interactions between full-length
TREM2 and DAP12 that are required for phagocytosis,52 our
results demonstrate that PS1-dependent TREM2 trafficking
remains unaffected by γ-secretase inhibition. Therefore, the
effects of PS1 overexpression on TREM2 trafficking and
microglial phagocytosis are likely not due to γ-secretase-
dependent TREM2 cleavage in our system. Moreover, PS1
knockdown also had no effect on microglial phagocytosis. We
speculate that cell surface full-length TREM2 and TREM2-CTF
are both increased with PS1 knockdown, whereby both full-
length TREM2 and TREM2-CTF can compete for DAP12
binding, thus producing no net effect on DAP12 signaling. On
the whole, it is likely that PS1 can regulate the phagocytic
function of TREM2 through both γ-secretase-dependent pro-
teolytic and γ-secretase-independent trafficking roles.

Since TREM2 can be cleaved by (ADAM10A disintegrin
and metalloproteinase domain-containing protein 10) on the
cell surface,31 we speculate that overexpression of PS1 may
reduce TREM2 ectodomain shedding. Although we do not
know at this time how PS1 regulates TREM2 intracellular
trafficking, several possibilities exist: one possibility is that PS1
affects the TREM2 trafficking from the Golgi/TGN;
alternatively, PS1 may affect TREM2 internalization from the
cell surface; a third possibility is that PS1 modulates the
recycling of TREM2 from the endosomes and TGN to the cell
surface. Future study may yield further information regarding
how TREM2/PS1 interplay can affect consequent TREM2
distribution.

Various mutations identified in the TREM2 ectodomain
exert differing effects on TREM2 structure. While R47H and
T96K do not drastically affect TREM2 folding, T66M results in
misfolding of TREM2 protein.53 Indeed, this may explain the
altered subcellular localization of T66M TREM2 and reduced
T66M/PS1 interaction that we observed. In addition to its role
in mediating proteolytic catalysis within the γ-secretase com-
plex, PS1 has been shown to execute other functions including
the regulation of calcium homeostasis,45,46 autophagy47,48 and
trafficking of various membrane proteins such as amyloid
precursor protein.43,44 Our results here point to a novel role for

Figure 4 Upregulation of presenilin 1 (PS1) reduces steady-state levels of TREM2 at the cell surface. (a) Following PS1 overexpression,
HEK293-TREM2 cells were treated with or without the γ-secretase inhibitor Compound E (CpdE) and subjected to cell surface biotinylation
assay. Precipitates from streptavidin-agarose beads were immunoblotted for biotinylated TREM2 and total TREM2 levels (levels of TREM2
in 2% total cell lysates). *Po0.05, n=3, one-way ANOVA with Sidak post hoc analysis. (b) The level of endogenous TREM2 at the
surface of microglial BV2 cells stably expressing PS1 (BV2-PS1) was determined by biotinylation. **Po0.01, n=3, Student’s t-test.
(c) BV2 cells were transfected with a scrambled control siRNA or PS1-targeting siRNAs for 72 h. The level of cell surface TREM2 was
determined by surface biotinylation. *Po0.05, n=3, Student’s t-test. (d) Cell surface expression of TREM2 in HEK293-TREM2 cells with
NCT overexpression, as determined by biotinylation. n=3, Student’s t-test.
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PS1 in regulating microglial phagocytosis through the regula-
tion of TREM2 trafficking. Given that TREM2 signaling is also
involved in the production of inflammatory cytokines,25,26,28 it
may be of interest to further determine whether PS1 has a γ-
secretase-independent role in mediating neuroinflammation.
As neuroinflammatory processes such as microglial activation
and cytokine generation are commonplace in multiple neuro-
degenerative diseases such as AD,22,54 modulation of PS1/
TREM2 trafficking may present alternative targeting strategies
to treat AD. Since the use of γ-secretase inhibitors to inhibit Aβ
generation has largely failed clinically,55 alternative strategies
such as targeting PS1/TREM2 trafficking may be more effective
in reversing cognitive decline near the onset of AD.
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