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Abstract

Background: The increasing amount of sequencing data available for a wide variety of species can be theoretically used for
detecting copy number variations (CNVs) at the population level. However, the growing sample sizes and the divergent
complexity of nonhuman genomes challenge the efficiency and robustness of current human-oriented CNV detection
methods. Results: Here, we present CNVcaller, a read-depth method for discovering CNVs in population sequencing data.
The computational speed of CNVcaller was 1–2 orders of magnitude faster than CNVnator and Genome STRiP for complex
genomes with thousands of unmapped scaffolds. CNV detection of 232 goats required only 1.4 days on a single compute
node. Additionally, the Mendelian consistency of sheep trios indicated that CNVcaller mitigated the influence of high
proportions of gaps and misassembled duplications in the nonhuman reference genome assembly. Furthermore, multiple
evaluations using real sheep and human data indicated that CNVcaller achieved the best accuracy and sensitivity for
detecting duplications. Conclusions: The fast generalized detection algorithms included in CNVcaller overcome prior
computational barriers for detecting CNVs in large-scale sequencing data with complex genomic structures. Therefore,
CNVcaller promotes population genetic analyses of functional CNVs in more species.
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Copy number variations (CNVs) are defined as duplications or
deletions of genomic segments that range in size from 50 base
pairs (bp) to megabase pairs (Mb) and vary among individuals or
species [1]. As a prevalent and important source of genetic diver-
sity, more than 50 000 CNVs have been detected in the human
genome, accounting for 10% of the entire genome [2]. CNVs reg-
ulate gene expression via both gene dosage and position effects,
and they have larger expression-altering effect sizes than single

nucleotide polymorphisms (SNPs) and indels [3]. In the human
genome, CNVs are important genetic components of numerous
diseases [4, 5] and a primary driving force of evolution [6]. Fur-
thermore, CNVs are associated with different phenotypes and
functions in animals and plants [7–11].

With the dramatic increase in sequencing capacity and the
accompanying decrease in sequencing cost, whole-genome se-
quencing data are becoming the main source of CNV detection.
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The large-scale population sequencing data also provide an un-
precedented opportunity to discover the functional CNVs us-
ing genome-wide association studies (GWAS) and evolutionary
analysis [11, 12]. To study the polymorphism among individuals,
the overlapping CNVs need to be merged into unified regions,
namely CNV regions (CNVRs) [13]. As merging CNVs identified
in each individual is inconvenient for large populations, some
methods use multiple samples as input, then output the CN-
VRs directly [14]. More importantly, the population-based meth-
ods can improve detection by building statistical models, such
as Poisson distribution and the Gaussian Mixture Model [15, 16].

As the amount of data increases, the computational effi-
ciency is becoming a rate-limiting factor in CNV analysis. In ad-
dition, most CNV detection algorithms are based on mapping
the sequencing reads back to the reference genome. For exam-
ple, the methods of read-pair (RP) and split-read (SR) deduce the
breakpoint of CNVs from the discordant alignments [17–21]; the
method of read depth (RD) refers to the depth of coverage in a ge-
nomic region that can be calculated from the number of aligned
reads [14]. A duplicated or deleted region should have a higher or
lower RD than expected [22–24]. However, the nonmodel genome
assemblies are riddled with many gaps, unplaced scaffolds, and
misassembled segmental duplications (SDs) [25–28]. For exam-
ple, 97% of highly similar tandem duplications in the Btau4.1
cattle genome assembly actually correspond to a single copy
[29]. Therefore,more robust signal detection andnoise reduction
algorithms are required for detecting CNVRs from nonmodel
species.

In this study, we introduce a super-fast generalized method,
CNVcaller, for analysing CNV sequencing data in large popula-
tions (CNVcaller, RRID:SRC 015752). Based on the RD algorithm,
this software applies robust signal detection and noise deduc-
tion methods to increase the computational efficiency in com-
plex genomes. We applied CNVcaller to population sequencing
data of humans, livestock, and crops to demonstrate its utility
and benchmarked it against the widely used CNV detectors.

Materials and Methods
Input data

CNVcaller requires alignment files in BAM format as the main
input. The following data/samples were included in the valida-
tion. (1) Human. Thirty human BAMfiles from the 1000 Genomes
Project (1000GP) Phase 3 [30], including 27 normal (∼×12) and 3
deeply sequenced samples (∼×50) and 30 BAM files (∼×20) for 10
families from the Genomes of Netherlands (GoNL) project [31].
(2) Sheep. Seventy FASTQ files were downloaded from the NCBI
BioProject PRJNA160933 (∼×10). Three Tan sheep trios (∼×19, in-
cluding a total of 8 individuals; 1 ewe was the mother of 2 trios)
were from unpublished data. (3) Goat. A total of 103 FASTQ files
were acquired from NCBI [32–35], and the remaining 129 were
generated by ourselves (∼×12, unpublished data). (4) Plant. Two
maize [36] and 2 soybean [11] FASTQ files (each species contain-
ing 1 ∼×5 and 1 ∼×10 sample) were downloaded from NCBI.
Details of the downloaded files are provided in Supplementary
Table S1.

The FASTQ files were aligned to their respective reference
assemblies using the Burrows-Wheeler Aligner (BWA) 0.7.13
(BWA, RRID:SCR 010910) [37]. The versions of the reference
genomes included human GRCh37, maize B73 RefGen v3, soy-
bean Glycine max v2.0, sheep OAR v3.1, and goat ARS1. After
alignment, the polymerase chain reaction (PCR) duplications
were marked using Picard 2.1 [38], and realignment was per-

formed by GATK v3.5 (GATK, RRID:SCR 001876) [39]. The reads
with a 0×504 flag (indicating unmapped, secondary mapped, or
PCR duplication) were removed.

Individual RD processing

RD estimation
The pipeline of CNVcaller is shown in Fig. 1. To calculate the
RD signal, we first divided the reference genome into overlap-
ping sliding windows, which were used for all samples. Win-
dows with >50% gaps were excluded from the database and fur-
ther computation. Then, the BAM file for each individual was
parsed out using SAMtools v1.3 (SAMTOOLS, RRID:SCR 002105)
[39], and the RD signal was calculated for each window as the
number of placed reads with centres within the window bound-
aries. Considering the uncontrollable effect of gap ratios from
different genome assemblies, all of the end reads located in the
windowwere independently added to the RD of this window, re-
gardless of whether the read was from single-end mapping or
paired mapping. The window size was an important parameter
for RD methods. CNVcaller uses half of the window size as the
step size. The optimal window size is 800 bp (with a 400-bp over-
lap) for ×5–10 coverage human and livestock sequencing data
(Supplementary Figure S1). The recommended window sizes are
inversely relatedwith coverage, and thus, ∼400-bpwindows cor-
respond to ×20 coverage, and ∼200-bp windows correspond to
×50 coverage.

Absolute copy number correction
To perform absolute copy number correction, windows with
>97% sequence similarity were linked together to form a du-
plicated window record file. This file was generated by split-
ting the reference genome into nonoverlapping windows and
aligning the windows onto the reference genome using the pre-
cise aligner BLAT v. 36×1 [40]. Windows with more than 20 hits
were excluded to remove the low-complexity regions. The record
files for humans, livestock, and main crops can be downloaded
from the CNVcaller website [41]. Based on the duplicated win-
dow record file, the raw RDs located on similar windows were
summed to generate the absolute RD for all high-similarity win-
dows:

RDi
absolute =

t∑

j=1

RDi j
raw

where i is the index of the window to be corrected, t is the total
number of the high-similarity windows, RDi j

raw is the raw RD of
the window that is similar to the ith window (including the ith
window itself), which is counted directly from the BWA align-
ment, and RDi

absolute is the corrected RD of the ith window, which
can be used to deduce the absolute copy number.

GC correction
Considering that the population sequencing data may come
from different platforms, the RD of each individual sample was
counted and corrected. Because the resequencing samples may
show various GC content distributions, the GC bias was cor-
rected individually, similar to themethod used in CNVnator (CN-
Vnator, RRID:SCR 010821) [23]:

RDi
corrected = RD40

RDgc
RDi

absolute
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Figure 1: CNVcaller algorithm flowchart (left) and the key algorithms of each step (right). (1) Individual RD processing. In the absolute copy number correction, the RDs

of highly similar windows were added together to deduce the absolute copy number. (2) Multicriteria CNVR selection. The curves show the copy numbers in a specific
region for multiple samples. The blue transverse boxes mark the windows with a significant distinguishing copy number from the average (individual criterion).
The green vertical boxes indicate that these regions meet the frequency conditions, and the red frame indicates that the RDs between the 2 adjacent windows are
significantly correlated (population criteria). The fourth bar from the left, satisfying all the above conditions, is selected as the CNVR. (3) Genotyping: The copy numbers

in each CNVR are clustered by a Gaussian Mixture Model to distinguish the normal, heterozygous, and homozygous samples.
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where i is the window index, RDi
absolute is the RD after absolute

copy number correction, RDi
corrected is the final corrected RD for

the window, RD40 is the mean RD of windows with 40% GC as a
standard, and RDgc is the mean RD over all windows that have
the same GC content as the ith window.

RD normalization
Because the samples have different sequencing depths, the
corrected RD must be normalized to a single standard before
population-level CNV detection. Assuming that the majority of
the genome has normal copy numbers, the corrected RDs were
divided by the global median RD for normalization to 1:

RDi
normalized = RDi

corrected

RDglobal

where RDglobal is the median of the RD
i
corrected of all windows.

RD corrections for sex chromosomes
Most mammalian and avian genomes show an XX/XY-type or
ZZ/ZW-type sex-determining system. Their homogametic sex
chromosomes (X or Z) constitute 5–10% of the total genome
and show half the RD of the autosomes in XY or ZW individu-
als. Therefore, intensive correction for X and Z chromosomes is
needed. The RD of the X or Z chromosome (the particular name
provided by the user) is used to determine the sex of a particu-
lar individual. If themedian RD of this chromosome is <×0.6 the
median RD of the autosome, the individual is considered an XY
or ZW type, and the RDs of this chromosome are doubled before
normalization. Otherwise, nothing is performed for individuals
determined to be XX or ZZ type.

Parallel processing of individual RDs
The CNVcaller processes the BAM file of each individual sepa-
rately in the first step, and therefore, parallel computations can
be performed to reduce the total running time. All BAM files are
equally distributed into N groups, and each group contains M
files. The max N is the total available processing cores, and M
is the total number of BAM files/N. For example, the 232 goat
BAMfileswere processed on a nodewith 32 processing cores and
124 GB of RAM. We distributed the 232 files into 20 groups, and
each group contained 12 BAM files. The shell command for 1
group is as follows:

#!/bin/sh
for i in {1..M}
do bash Individual.Process.sh -b $i.bam -h $i -d dup -s

sex chromosome
done
After corrections and normalization, the comparable RDs of

each sample are aggregated into an ∼100-MB intermediate file
and output, thus preventing repeated calculations for the same
individual in different populations.

CNVR detection by multiple criteria

Individual candidate CNV window definition
The individual candidate CNVwindows are definedusing 2 crite-
ria: (1) The normalized RD must be significantly higher or lower
than the normalized mean RD (deletions < 1–2 ∗ STDEV; dupli-
cations > 1 + 2 ∗ STDEV). (2) Considering that the normalized RD
of heterozygous deletions and duplications should be approxi-
mately 0.5 and 1.5, respectively, an empirical standard for the
normalized RD (deletions < 0.65; duplications > 1.35) also must

be achieved. For some strictly self-bred species, such as soybean
and wheat, this empirical standard should be raised to 0.25 or
1.75 for the normalized RD of the homozygous deletions or du-
plications, respectively.

Population-level candidate CNV window definition
All the individual RD files are arranged according to the univer-
sal window index into a 2-dimensional population RD file. Each
line of this file is the multisample RDs of a particular window,
from which the candidate CNV windows are selected. The user
can retain all the windows with at least 1 individual that shows
heterozygous deletion or duplication. However, we recommend
removing low-frequency windows in large populations with low
sequencing coverage because of increased random mistakes.
By default, windows with an allele frequency ≥0.05 or at least
2 homozygous duplicated/deleted individuals are selected for
further validation. Then, Pearson’s product-moment correlation
coefficients of themultisample RDs are calculated between 2 ad-
jacent nonoverlapping windows. If the Pearson’s correlation in-
dex is significant at the P = 0.01 level by the Student t test, the 2
windows are merged into 1 call.

CNV region definition
The initial calls are selected if more than 4 sequential overlap-
ping windows are defined as population-level candidate win-
dows. Regarding noise tolerance, a maximum of 1 unselected
windowout of 4 continuous candidatewindows is allowed; how-
ever, their RD is not calculated in the RD of CNVR. As CNVRs can
be separated by gaps or poorly assembled regions, the adjacent
initial calls are merged if their RDs are highly correlated. The
default parameters are as follows: the distance between the 2
initial calls is less than 20% of their combined length, and the
Pearson’s correlation index of the 2 CNVRs is significant at the 0
= 0.01 level.

CNVR genotyping

After merging the candidate CNVwindows into a CNVR, the RDs
of all samples in each CNVR are clustered, and the integer copy
number of each individual is calculated, which represents the
genotyping step as used in SNP detection. The copy number of a
specific sample is initially estimated as 2 times themedian RD of
all candidatewindows in a given region. Then, the copy numbers
of all samples of a CNVR are decomposed into several Gaussian
distributions. The expectation maximization (EM) algorithm is
used to estimate the model parameters, and the effective num-
ber of components is inferred by the Dirichlet Process. To ensure
the quality of the genotyping, the silhouette coefficient is calcu-
lated for each CNVR. The Python package scikit-learn v0.19.0 [42]
is used to implement the above algorithms. This genotyping step
can be performed in sequence or in parallel, and the parameter
“nproc” is used to control the number of processes. The geno-
typing of 232 goats took 17.49 minutes and 488 MB of memory
on 1 node with 2 processors. The final output is a VCF file, which
can be analysed by SNP-based population genetic software.

Performance evaluation

Competing methods
Most of the validations were based on the 30 human BAM files
from 1000GP Phase 3 data, and only the autosomes were in-
cluded unless otherwise noted. The performance of CNVcaller
was compared with 2 pipelines, including CNVnator v0.3.3 (CN-
Vnator, RRID:SCR 010821) [23], which is widely used for CNVR

https://scicrunch.org/resolver/RRID:SCR_010821
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detection in animal populations, and Genome STRiP (included
in svtoolkit 2.00.1696) [16], which is the state-of-the-art CNV de-
tector generated by 1000GP. The recommended parameters and
quality controls were used. For Genome STRiP, both the dele-
tion and CNV pipelines were utilized. The unplaced scaffolds
were excluded, and the whole genome was separated by chro-
mosomes as recommended. The standard screening procedures
were applied to select the passing sites and to remove dupli-
cate calls. For CNVnator, a 400-bp window was used, as recom-
mended. The gap regions and calls with P values of less than 0.01
were removed, and the q0 filter was used to remove any predic-
tions with q0 <0.5 (reads with multiple mapping locations), as
recommended. The individual CNVs of all samples weremerged
into the population CNVRs based on the following arbitrary stan-
dards: 2 calls with >50% reciprocal overlap or 1 call with >90%
coverage by another call [23, 43]. Then, the CNVRs were geno-
typed using the built-in function in CNVnator.

Sensitivity validation
Sensitivity was defined as the number of CNVs that existed
in both the CNV predictions and the high-confidence CNVR
database (>50% reciprocal intersection) divided by the total
number of CNVs in the database. Calls with ≤2500 bp and an al-
lele frequency <5% and sex chromosomes were removed from
this study. Two previously published high-confidence CNVR
databases, including the same samples from the test data, were
used. One was the 1000GP CNVR map [44], which included
26 tested samples, and the other was array comparative ge-
nomic hybridization (aCGH)–based CNVR database [1], which in-
cluded 10 tested samples. The CNVRs of the specific samples
were extracted from the database and were then screened by
the same length and frequency as the detected CNVRs (length
> 2500 bp and alternative allele frequency ≥ 0.05). The inter-
sected length of the predicted CNVRs and the high-confidence
CNVR database was calculated using BEDTools v2.25 (BEDTools,
RRID:SCR 006646) [45].

Accuracy validation
The intensity rank-sum (IRS) test (included in the sv-
toolkit 2.00.1696) was performed as in previous studies [16],
based on the Affymetrix SNP 6.0 array intensity data of 26
test samples. Meanwhile, the genotyping accuracy was bench-
marked against the aCGH CNVR database [1]. The predicted
CNVs were subject to validation if the predicted regions had a
>90% reciprocal intersection with 1 CNVR in the database. Only
if the predicted genotyping was in exact agreement with the
aCGH database was this genotype defined as correct. Also, the
Mendelian inconsistencies were calculated from the deleted
and biallelic duplicated CNVRs (maximum copy number ≤ 4) in
the Dutch families and sheep trios.

Sheep genotyping validation by CNVplex assay
A total of 73 sheep, including Merino, Texel, Mongolia, and Ti-
betan sheep, were used for genotyping validation. Genomic DNA
was extracted from peripheral blood using a QIAamp DNA blood
mini kit (Qiagen, Germany). For each sheep, whole-genome se-
quencing (∼×10) was performed, and the CNVRs were detected
by CNVcaller, as described above. The copy numbers of high-
variant CNVRs were validated by CNVplex (Genesky Biotech-
nologies Inc., Shanghai, China), which is based on double lig-
ation and multiplex fluorescence PCR [44]. The sizes of the PCR
fragments and target loci sequences used in each reaction are
listed in Supplementary Table S3.

Absolute copy number validation

Detecting X-origin scaffolds
Unplaced scaffolds with high sequence similarity to the X chro-
mosome were regarded as X-origin scaffolds. All the scaffolds of
OAR v3.1 were mapped to the X chromosome of the sheep refer-
ence genome OAR v4.0, the goat reference genome ARS1 and the
cattle reference genome UMD 3.1 using BLASR [46]. If the best hit
of a scaffold had >50% coverage with >90% identity and >3-kb
length, this scaffold was defined as a putative X-origin scaffold.
In theory, all of these scaffolds were expected to be detected as
high-frequency CNVRs because the RDs of the unplaced scaf-
folds were not corrected by sex. The detection and genotyping
accuracy in the SD regionwere estimated using the sex informa-
tion from 133 sheep.

mrsFAST alignment
The paired-end reads with multiple hits indicated by the “XA”
tag in the BWA alignment were selected for realignment using
mrsFAST v3.3.10 [47], as previously described [48]. Longer reads
were trimmed to 40 bp to reduce the read length heterogene-
ity prior to sequence alignment. After alignment, the reads with
more than 20 hits were excluded to remove the low-complexity
regions.

Simulations of the SD
The putative SDs were modified from a randomly selected 50-
Mb single-copy region of Chr1 from the sheep reference (OAR
v3.1). One hundred nonoverlapping regions of 5000 bp were ran-
domly selected and artificially inserted as tandem duplications
into the 50-Mb source sequence. The modified sequence with
known SDs was used as the reference genome in the following
study. In these putative SD regions, 2–6 copies were randomly
assigned to 100 individuals, and all other regions are treated as
normal copy regions. The wgsim [49] read simulator was used to
sample the paired-end reads with default parameters. The cov-
erage of the normal regions was set to ×20.

Results and Discussion
Computational cost in complex genomes from large
population-based studies

As the computational cost is one of the greatest challenges
for large populations, the computational efficiency of CNVcaller
was evaluated on the real sequencing data of the different
genomes. The individual RD processing stepwas comparedwith
CNVnator, which detects CNVs individually and has been used
in yak, chicken, and fish populations [43, 50, 51]. The process-
ing time of CNVcaller was linearly related to the genome size
and sequencing coverage: 20–40 minutes for a 3-Gb genome
with ×10 coverage (Supplementary Table S3). However, the pro-
cessing time of CNVnator exponentially increased with scaf-
fold number, which was the only time-consuming index when
the scaffold number exceeded 1000 (Fig. 2A). Consequently, CN-
Vcaller achieved a 145-fold increase in speed over CNVnator for
goat CNV detection. Notably, the goat reference genome ARS1,
which contains 29 907 scaffolds, was newly assembled by single-
molecule sequencing [35]. The robustness of CNVcaller reduces
the quality restrictions of the reference genome, which pro-
motes CNV research in species with a draft assembly at the
scaffold level. This feature also enables comprehensive varia-
tion discoveries based on pan-genomes, which reveal numerous

https://scicrunch.org/resolver/RRID:SCR_006646
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Figure 2: Computational performance of CNVcaller, CNVnator, and Genome STRiP. All the programs were executed on a single node with 2 2.40-GHz Intel Xeon E5–
2620 v3 processors. (A, B) Log plots of the processing time (A) and the max memory (B) for 1 individual. The numbers of unplaced scaffolds of the reference genome
are indicated in brackets. The processing time was normalized by the genome size and sequencing coverage to simulate a 3-Gb genome with ×5 or ×10 sequencing
coverage. (C, D) Log plots of the total running time (C) and the max memory (D) of the population CNVR detection. The test cohorts are as follows: 8 sheep, 30 humans,

and 232 goats with ×19, ×16, and ×12 average sequencing coverage, respectively. In Genome STRiP, the unplaced scaffolds were excluded.

functionally important genes not localized on a single reference
genome [52–54].

The memory requirement of CNVcaller is mainly related
to the genome size: only approximately 500 MB of memory
for a mammalian genome, which is less than 1/20th of the
memory required by CNVnator (Fig. 2B). Therefore, in multi-
sample CNV detection, the individual RD processing step can
be run in parallel on 1 node to further reduce the running
time. The population-level performance of CNVcaller was eval-
uated and benchmarked against Genome STRiP, which also
detects CNVRs at the population level and is a main contribu-
tor of the 1000GP. After removing the unplaced scaffolds, CN-
Vcaller was still 3.5–7.8 times faster than Genome STRiP (Fig. 2C),
with a 70%∼86% reduced memory requirement (Fig. 2D). For
232 goats with a mean coverage of ×12, CNVcaller can com-
plete CNV detection in 1.4 days using a single node. The high
efficiency of CNVcaller can facilitate CNV detection in large
populations.

Absolute copy number correction in putative SDs of the
sheep genome

Previous studies have shown that a high proportion of SDs in
animal genomes are misassembled single-copy regions [27, 29].
Therefore, we detected the ratios of false SDs on the human
(hg19) and sheep (OAR v3.1) reference genome assemblies by
the sequencing the copy number of a human (NA12878) and a
Tan sheep sample (Fig. 3A). If the SDs were correctly assembled,
the sequencing diploid copy number should be twice the copy
number of the SDs. For example, the average sequencing copy
number of the 2-copy SDs was 4 in NA12878. However, the corre-
sponding sequencing copy number in sheep was only 2.4. These
results indicated that most 2-copy SDs of hg19 were truly dupli-
cated in NA12878, while approximately 80% of the 2-copy SDs
in OAR v3.1 were single-copy regions in the Tan sheep sample.
Thus, the SDs in the sheep genome were called “putative SDs”
before validation.
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Figure 3: Absolute copy number correction in the sheep genome. (A) The copy numbers of all the windows with nomore than 6 repeats were plotted against the repeat
numbers in the reference genome. Compared with humans, the sheep sample hadmuch lower copy numbers in the putative duplicated regions than expected. (B) The

distribution of copy numbers of the putative 2-copy regions in the sheep genome before and after absolute copy number correction. After correction, the main peak of
the copy number shifted to 2 (normal diploid copy number). The smaller peaks at 4, after correction, indicated the 20% real SDs. (C) The number and FDR (Mendelian
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the SD regions were defined if more than 50% of a given CNVR overlapped with the SD regions. (D) The raw and corrected copy numbers of all the X-linked scaffolds

of 133 sheep.

CNV detection can be confounded by the presence of false
SDs. Due to the random placement of multiple mapped reads,
the RD signal in these regions is effectively smeared over all
copies; thus, the raw copy number is underestimated. For ex-
ample, in the putative 2-copy SDs, the main peak of the copy
numbers was 1, the same as heterozygous deletions (Fig. 3B).
CNVcaller incorporates absolute copy number correction by sim-
ply adding the RD of the putative SDs to deduce the absolute
copy number independent of the copy number of the genome as-
sembly (Fig. 1). This target can also be achieved using mrsFAST;
however, more than 10 core hours were required to realign the
multihit reads by mrsFAST for a mammalian genome with ×10
sequencing coverage. The equivalent result was achieved by CN-
Vcaller within only 0.06 core hours (Supplementary Figure S2).

In the simulated sheep sequencing data, this correction de-
duced the correct genotyping in SD regions (Supplementary Fig-
ure S3) and reduced the STDEV within each genotyping (Sup-
plementary Table S4). In the real individual sheep data, the
corrected putative 2-copy SDs clearly fell in to 2 categories: nor-
mal copy (the major peak, with a diploid copy number of 2) and
the true duplicated regions (the minor peak, with a diploid copy
number of 4) (Fig. 3B). The accuracy of the CNVRs in putative SDs
was validated by the Mendelian inconsistency of 3 Tan sheep

trios. CNVcaller detected more duplications in the putative SDs,
with only 3% Mendelian inconsistency (Fig. 3C).

The sensitivity of sheep CNVRs was estimated indirectly due
to the lack of a validated database. Based on our integrated
analysis (see the Methods section), there were 138 sheep X
chromosome–origin scaffolds that were not anchored onto chro-
mosomes of OAR v3.1. Therefore, all of these scaffolds should be
detected as CNVs because the rams had half the copy numbers
of the ewes. As a result, CNVcaller detected 101 of these 138 X-
origin scaffolds, with a sensitivity of 73%. In contrast, CNVnator
and Genome STRiP did not report these regions. Furthermore,
the copy numbers of single-copy and duplicated X-origin scaf-
folds were centred at integers, namely 1 and 2 in rams and dou-
bled in ewes, whereas the peaks of the raw copy numbers were
ambiguous (Fig. 3D). Further examination of the duplicated re-
gions showed that this result was caused by splitting the raw
RDs among the putative SDs (Supplementary Figure S4).

Performance evaluations on sheep data

To evaluate the robustness and false discovery rate (FDR) in
sheep, we used CNVcaller, CNVnator, and Genome STRiP to de-
tect CNVRs from 3 sheep trios. CNVnator detected less than
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Figure 4: Performance evaluations on the sheep data. (A) CNVR number and FDR (Mendelian inconsistency) of 3 sheep trios. (B) The number of calls and FDR partitioned

by CNV length. (C) The number of calls and FDR partitioned by allele frequency. The frequencywas shown by the alternative allele number. (D) The length of overlapping
CNVRs (in Mb) detected by CNVcaller and 2 other large-scale sheep studies with different approaches and platforms.

1/10th the number of CNVRs of the other methods, with only
260 CNVRs reported. One main reason was that assembly gaps
without reads were detected as homozygous deletions by CN-
Vnator in the initial calls. Thus, more than 90% of the initial
calls were removed in the recommended gap filtering step be-
cause the sheep reference genome OAR v3.1 has ∼125 000 gaps.
By comparison, the human reference genome hg19 has only 354
gaps. To address the gap problem in nonhuman genomes, CN-
Vcaller removed the sliding windows with gaps at the first step,
and adjacent CNVRs were merged into 1 call if their RDs were
ultimately highly correlated. These optimizations avoided the
artefacts caused by assembly errors and retained the adjacent
CNVRs as well.

The accuracy was evaluated by the Mendelian inconsistency
of all the CNVRs on autosomes against the length and alter-
native allele frequency (Fig. 4). CNVcaller achieved higher ac-
curacy than Genome STRiP in both deletion (1% vs 2%) and
duplication (4% vs 7%) (Fig. 4A). Whereas Genome STRiP had
greater capability to detected short (<2.5 kb) deletions (Fig. 4B),

indicating that the RPmethods integrated in Genome STRiP per-
formed well on small deletions. Concerning the alternative al-
lele frequency, both methods showed an increased FDR in rare
duplications (Fig. 4C). However, CNVcaller is primarily used to
detect CNVRs related to economic traits in livestock and crops.
In these studies, the target CNVRs usually have a high frequency
after long-duration breeding selection.

To investigate the reproducibility of CNVcaller, the CNVRs
identified by CNVcaller from 133 sheep of 44 worldwide breeds
were compared with 2 other recently released large-scale sheep
CNVR data sets. One data set was derived from allied breeds us-
ing multiple platforms, including aCGH, SNP chip, and whole-
genome sequencing [55], and the other data set was based on 3
Chinese sheep breeds using a 600-K SNP array [56]. The samples
and platformshadmajor influences on the results; therefore, the
overall intersection ratio was low. However, CNVcaller covered
51% of the cross-validated regions of the other data set (Fig. 4D).

The genotyping accuracy of 73 sheep was validated by a re-
cently developed molecular biology technique, CNVplex. This
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Figure 5: Evaluation of the sheep CNV genotypes by CNVplex. Two duplicated (A, B) and 2 deleted (C, D) CNVRs with a high variation frequency were typed in CNVplex
using 73 sheep samples. The copy number genotypes predicted by CNVcaller from the sequencing data were plotted against the CNVplex measurements of the same

animal.

method reports the copy number of a genomic sequence based
on themultiplex ligation-dependent probe amplification (MLPA)
method [44]. When the copy numbers of sequencing data pre-
dicted by CNVcaller and CNVplex were compared, the Pearson’s
product–moment correlation coefficientswere greater than 0.95,
and the genotyping concordance was 98% (Fig. 5).

Performance evaluations on 1000 Genomes Project data

Although CNVcaller wasmainly designed for complex genomes,
the performance was also evaluated on 30 human BAM files
from 1000GP. The SNP array data and high-confidence CNVR
databases were only available in human data, which can be used
to evaluate the accuracy for population level (IRS test) and sensi-
tivity. CNVcaller demonstrated the highest overall accuracy for
detecting duplications and performed consistently across the
length and frequency categories, whereas Genome STRiP and
CNVnator had high FDRs on the short or singleton duplications
(Fig. 6A, B). Genome STRiP showed the greatest ability to de-
tect deletions, indicating the advantage of combining RD and
RP methods for deletion detection. The genotyping accuracy of
the human data set was further benchmarked against the high-
confidence aCGH array-based database. The discordance rates of

CNVcaller, CNVnator, and Genome STRiP were 2.6%, 5.5%, and
2.2%, respectively. This genotyping accuracy ranking was the
samewith theMendelian consistency of the 10 Dutch trios (Sup-
plementary Figure S5).

The sensitivity was estimated as the proportion of the high-
confidence CNVR database that overlapped with the predicted
CNVRs. Two previously published high-confidence databases
that include our test samples are the aCGH-based CNVR
database [1] and the 1000GP CNVR map [2]. For the aCGH
database, CNVcaller demonstrated the highest sensitivity (57%)
in duplications, whereas Genome STRiP achieved the highest
sensitivity (74%) in deletions (Fig. 6C). Both Genome STRiP and
CNVnator were the core contributors to the 1000GP CNV maps.
However, the sensitivity rates of CNVcaller were 68% and 67%
for deletions and duplications according to this database, only
4–10% lower than Genome STRiP and CNVnator.

The 3 methods had a high degree of intersection with
each other. The numbers of overlapping (>50%) calls were 429
(CNVcaller vs CNVnator), 502 (CNVcaller vs Genome STRiP), and
513 (CNVnator vs Genome STRiP). CNVcaller covered 40% of the
CNVRs detected by CNVnator, 45% of the CNVRs detected by
Genome STRiP, and 65% of their intersecting CNVRs by length
(Fig. 6D).
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Conclusion

CNVcaller was designed to detect CNVRs from large-scale rese-
quencing data from all types of genomes. The generalized detec-
tion and correction algorithms employed in CNVcaller greatly
increase the computational efficiency of analysing complex
genomes. The validation performed using sheep data showed
that the absolute copy number correction increased the detec-
tion efficiency of the misassembled SDs, greatly reduced the
running time, and deduced more reasonable copy numbers.
Both the evaluations using sheep andhumandata indicated that
CNVcaller achieved the best accuracy and sensitivity for detect-
ing duplications. Therefore, this rapid and reliable population-
level CNV detection method can promote the discovery of the
missing heritability of complex traits and the accurate determi-
nation of causative mutations in more species.

Availability and requirements

Project name: CNVcaller
RRID: SCR 015752
Project home page: http://animal.nwsuaf.edu.cn/software
https://github.com/JiangYuLab/CNVcaller
Operating system(s): platform independent
Programming language: Perl, Python
Other requirements: SAMtools 1.3 (using htslib 1.3), scikit-learn
v0.19.0
License: GNU General Public License, version 3.0 (GPL-3.0)

Availability of data

Snapshots of the supporting code and materials are hosted in
the GigaScience repository, GigaDB [58].

https://scicrunch.org/resolver/RRID: SRC_015752
http://animal.nwsuaf.edu.cn/software
https://github.com/JiangYuLab/CNVcaller
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Additional files

Additional file: Figure S1: Number of CNVRs (A) and correspond-
ing IRS FDR (B) were plotted against window size; 30 human BAM
files of 1000GP Phase 3 were used as input.

Additional file: Figure S2: The haploid copy number distribu-
tions of a sheep sample at ASIP and MOGAT gene loci. The hap-
loid copy number from top to bottom was counted from: raw
BWA alignment, mrsFAST alignment, BWA alignment corrected
by CNVcaller. The signal of each window was normalized to 1
using the global mean read depth of the sequencing data. The
gray regions indicate the gaps in the reference genome.

Additional file: Figure S3: The absolute copy number of SD re-
gions deduced by CNVcaller against the simulated copy number:
2, 3, 4, 5, 6. The red points indicate the mean values.

Additional file: Figure S4: The raw and corrected copy num-
ber of 36 duplicated X-origin scaffolds grouped by the number of
repeats on reference genome. Noteworthy, the raw copy num-
bers were split among the putative SDs.

Additional file: Figure S5: FDR via the rate of Mendelian in-
consistency and the number of detected CNVRs in the 10 Dutch
families using CNVcaller, CNVnator, and Genome STRiP.

Additional file: Table S1: Validation sequencing data informa-
tion.

Additional file: Table S2: PCR fragments sizes and target loci
sequences in CNVplex.

Additional file: Table S3: Individual processing time and
memory footprint of genomes with different genome sizes and
unplaced scaffold numbers.

Additional file: Table S4: RD and STDEV of the simulated data
before and after absolute copy number correction.

Additional file: Table S5: Detailed information of the CNVRs
detected from 1000GP Phase 3 data.

Abbreviations

aCGH: array comparative genomic hybridization; CNV: copy
number variation; CNVR: copy number variation region; EM: ex-
pectationmaximization; FDR: false discovery rate; Gb: giga base;
GWAS: genome-wide association study; IRS: intensity rank-sum;
Mb: megabase pairs; PCR: ploymerase chain reaction; RD: read
depth; RP: read pair; SD: segmental duplication; SNP: single nu-
cleotide polymorphism; SR: split read.
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