Skip to main content
. 2017 Dec 15;18(12):2718. doi: 10.3390/ijms18122718

Table 5.

The Method for Selecting the Gaussian KDA Parameter.

Input: A reasonable candidate set S={s1,s2,,sm} for Gaussian kernel parameter, X={X1,X2,,XC}, the training set Xi={x1,x2,,xNi} (1iC), the number of retained eigenvectors d.
1. Get the internal sample set Ωin and the edge sample set Ωed from the training set Xi using Algorithm 1.
2. For each parameter siS,i=1,2,,m
  • Calculate the kernel matrix K using Equation (7).

  • Reduce dimension of the K using the Gaussian KDA algorithm.

  • Calculate RE(Ωed) and RE(Ωin) using Equation (8).

  • Calculate the value of objective function f(si) using Equation (12).

3. Select the optimum parameter s=argmaxsiSf(si)
Output: the optimum Gaussian kernel parameter S.