Input: A reasonable candidate set for Gaussian kernel parameter, , the training set
, the number of retained eigenvectors . |
1. Get the internal sample set and the edge sample set from the training set using Algorithm 1. |
2. For each parameter
Calculate the kernel matrix using Equation (7).
Reduce dimension of the using the Gaussian KDA algorithm.
Calculate and using Equation (8).
Calculate the value of objective function using Equation (12).
|
3. Select the optimum parameter
|
Output: the optimum Gaussian kernel parameter . |