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Abstract

Background: Accumulating biological and clinical reports have indicated that imbalance of microbial community is
closely associated with occurrence and development of various complex human diseases. Identifying potential
microbe-disease associations, which could provide better understanding of disease pathology and further boost
disease diagnostic and prognostic, has attracted more and more attention. However, hardly any computational
models have been developed for large scale microbe-disease association prediction.

Results: In this article, based on the assumption that microbes with similar functions tend to share similar association
or non-association patterns with similar diseases and vice versa, we proposed the model of Network Consistency
Projection for Human Microbe-Disease Association prediction (NCPHMDA) by integrating known microbe-disease
associations and Gaussian interaction profile kernel similarity for microbes and diseases. NCPHMDA yielded outstanding
AUCs of 0.9039, 0.7953 and average AUC of 0.8918 in global leave-one-out cross validation, local leave-one-out cross
validation and 5-fold cross validation, respectively. Furthermore, colon cancer, asthma and type 2 diabetes were taken
as independent case studies, where 9, 9 and 8 out of the top 10 predicted microbes were successfully confirmed by
recent published clinical literature.

Conclusion: NCPHMDA is a non-parametric universal network-based method which can simultaneously predict
associated microbes for investigated diseases but does not require negative samples. It is anticipated that NCPHMDA
would become an effective biological resource for clinical experimental guidance.
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Background
In the past few decades, accumulating evidence has
demonstrated that human lives strongly rely on a
diverse, complex and dynamic microbial community,
including bacteria, protozoa, viruses, eukaryotes, archea
and so on [1]. Tremendous microorganisms inhabit a
range of human organs such as skin, gut, mouth, stom-
ach and vagina, where a commensal relationship
between microbe and human host has been established
after a long term adaptive co-evolution. Recently, more

and more reports have confirmed that microbiome
could benefit human health by maintaining normal
homeostasis, strengthening immune system, promoting
host’s metabolism, and modulating development of
gastrointestinal tract [2]. Typically, it is reported that the
number of bacterial cells in an adult intestine reaches
1014, which is approximately 10 times as the number of
total human cells [3]. More than 5,000,000 genes (out-
numbering the human genetic potential by two orders of
magnitude) are contained in the combined genomes of
these bacteria, and tens of trillions of gene products are
involved in a variety of biochemical and metabolic activ-
ities, providing important complement to host physi-
ology [1, 4]. In a sense, it is reasonable to regard gut
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bacteria as an additional ‘organ’ for its equal metabolic
capacity as the liver [5]. Essential gut bacteria could
effectively promote nutrient absorption by assisting de-
composition of indigestible polysaccharides and produc-
tion of indispensable vitamins [3]. Furthermore, they
provide important protection against invasion of food-
borne pathogens by impacting on proliferation and
differentiation of host intestinal epithelium [6, 7].
However, a system understanding of how these bio-
chemical activities achieve still remain largely unknown.
According to recent reviews, microbiota in human bod-

ies could be significantly influenced by both maternal gen-
etics [8, 9] and environment variables including hygiene of
food and residence [3], change of season [10], usage of an-
tibiotics [11] and personal diet of host [12, 13]. These piv-
otal factors interact with each other and build a dynamic
relationship system, modifications of which would lead to
imbalance of microbial community and further impact on
transcriptomic, proteomic and metabolic profiles of related
microorganisms. With the rapid development of high-
throughput sequencing techniques as well as newly devel-
oped computational tools, accumulating evidence has
demonstrated that disorders of host’s microbiota would in-
crease the incidences of various complex human diseases
such as liver diseases [14], diabetes [15], asthma [16], in-
fectious colitis [17] and even cancers [18, 19]. For example,
to identify action of microorganisms in asthmatic airways,
Hilty et al. [20] studied 24 adult subjects composed of 11
patients with asthma, 5 patients with chronic obstructive
pulmonary disease (COPD) and 8 healthy individuals, and
found that adult asthma and COPD was inextricably
related to high abundance of Proteobacteria and
Haemophilus as well as low abundance of Bacteroidetes
and Prevotella. Mondot et al. [21] analyzed DNA
sequences extracted from fecal samples which are
collected from 16 Crohn’s disease (CD) patients and 16
healthy subjects. As a result, they observed decrease of
Faecalibacterium prausnitzii abundance as well as increase
of Escherichia coli abundance in CD-patients’ fecal
samples compared with the controls’. In addition, Chen
et al. [22] discovered a shift in composition of liver
microbiota when comparing healthy and liver
cirrhosis samples. In this study, liver cirrhosis was
observed to be related with increase in the abundance
of Bacilli, Enterobacteriaceae, Fusobacteriaceae,
Pasteurellaceae, Proteobacteria, Streptococcaceae and
Veillonellaceae as well as decrease in the abundance
of Bacteroidaceae and Lachnospiraceae.
As mentioned above, identifying potential associations

between microbes and diseases has a long-term theoretical
and practical significance not only for better understand-
ing of disease formation and development mechanisms
but also for discovery of novel medical solutions for dis-
ease prevention, diagnosis, treatment and prognosis [23].

However, current amount and quality of known microbe-
disease associations are far from satisfying the require-
ments of medical research. In traditional way, researchers
attempt to obtain new associations between microbes and
diseases by biological or clinical experiments, which de-
mand a large quantity of time and cost. With the rapid de-
velopment of computer technology, more and more
computational models have been developed to predict po-
tential miRNA-disease associations [24, 25], potential
lncRNA-disease associations [26] and potential drug-target
interactions [27], where machine learning-based and simi-
larity measure-based models have shown their outstanding
prediction ability. It is essential to logically extend these
prediction methods into microbe-disease association
prediction field. Recently, Ma et al. [23] manually collected
experimentally verified microbe-disease associations from
published clinical research reports and built the first
Human Microbe-Disease Association Database
(HMDAD). Based on the records from HMDAD, powerful
computational models could be developed to prioritize
candidate microbes for investigated diseases in large-scale.
In this paper, based on the assumption that microbes

with similar functions tend to share similar association
or non-association patterns with similar diseases, we
developed the model of Network Consistency
Projection for Human Microbe-Disease Association
prediction (NCPHMDA) to uncover potential microbe-
disease associations. By taking advantages of known
microbe-disease association network and Gaussian
interaction profile kernel similarity network for
microbes and diseases, NCPHMDA achieved reliable
prediction performance. NCPHMDA could be applied
to new microbes without any known associated diseases
as well as new diseases without any known associated
microbes. As a non-parametric network-based
prediction method, NPCHMDA demonstrated obvious
advantages when the known experimentally verified
microbe-disease associations are insufficient. Three valid-
ation frameworks, global leave-one-out cross validation
(global LOOCV), local leave-one-out cross validation
(local LOOCV) and 5-fold cross validation (5-fold CV),
have been implemented to evaluate the performance of
NCPHMDA. As a result, NCPHMDA achieved AUCs of
0.9093, 0.7953, and 0.8918 in global LOOCV, local
LOOCV, and 5-fold CV, respectively. Moreover, colon
cancer, asthma and type 2 diabetes were taken as three
independent case studies, where 9, 9, 8 out of top 10 pre-
dicted microbes were successfully confirmed by recent
experimental and clinical reports, respectively.

Methods
Human microbe-disease associations
Human Microbe-Disease Association Database
(HMDAD, http://www.cuilab.cn/hmdad) [23] integrated
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483 high-quality microbe-disease entries, which were
mainly collected from 16S RNA sequencing–based
microbial literature. After removing the duplicate associ-
ation records, 450 distinct microbe-disease associations
were finally obtained, including 292 microbes and 39
diseases. Adjacency matrix A was adopted to quantify
the relationship between diseases and microbes, where
binary element A(i,j) denotes the presence or absence of
association between disease d(i) and microbe m(j) (‘0’
represents absence while ‘1’ represents presence).
Furthermore, to represent the number of microbes and
diseases investigated in this article, variables nm and nd
are respectively defined.

Gaussian interaction profile kernel similarity for diseases
Gaussian interaction profile kernel similarity for diseases
was calculated based on the assumption that diseases
with similar phenotypes always share similar association
and non-association pattern with functionally similar
microbes. We defined binary vector IP(d(i)) to denote
the interaction profile of disease d(i), which could be ob-
tained by observing whether d(i) has known association
with each microbe or not (i.e. the ith row of adjacency
matrix A). Then, Gaussian interaction profile kernel
similarity matrix KD could be constructed after calcula-
tion of similarity value between each disease pair.

KD d ið Þ; d jð Þð Þ ¼ exp −γd IP d ið Þð Þ − IP d jð Þð Þk k2� �

ð1Þ

γd ¼ γ 0d=
1
nd

Xnd

i¼1

IP d ið Þð Þk k2
 !

ð2Þ

where value of parameter γd controls the bandwidth of
Gaussian kernel. As presented in eq. (2), γd could be fur-
ther calculated by dividing a new bandwidth parameter
γ’d by average number of associations with microbes for
all the diseases. Here, we set γ’d = 1 according to previous
studies [28].

Gaussian interaction profile kernel similarity for microbes
Adopting the same approach, Gaussian interaction
profile kernel similarity between microbe m(i) and m(j)
could be obtained as follows.

KM m ið Þ; m jð Þð Þ ¼ exp −γm IP m ið Þð Þ − IP m jð Þð Þk k2� �

ð3Þ

γm ¼ γ 0m=
1
nm

Xnm

i¼1

IP m ið Þð Þk k2
 !

ð4Þ

where IP(m(i)) represents the interaction profile of mi-
crobe m(i) (i.e. the ith column of adjacency matrix A).
Normalized kernel bandwidth parameter γm could be cal-
culated in the similar way as γd, where we select γ

’
m = 1 ac-

cording to Van et al. [28].

NCPHMDA
As shown in Fig. 1, NCPHMDA is a network-based
prediction model which measures the relevance between
microbes and diseases by calculating the nodes’

Fig. 1 Flowchart of NCPHMDA demonstrating the basic ideas of predicting potential microbe-disease associations by integrating known microbe-
disease associations and Gaussian interaction profile kernel similarity for microbes and diseases
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similarity in heterogeneous networks. Here, heteroge-
neous networks consist of microbe-disease association
network constructed based on records from HMDAD
[23] database, Gaussian interaction profile kernel simi-
larity for diseases, and Gaussian interaction profile ker-
nel similarity for microbes.
NCPHMDA first calculates two network consistency

projection scores, disease space projection score and mi-
crobe space projection score, separately. The disease
space projection score is calculated as follows.

NCP d i; jð Þ ¼ KDi
�Aj

Aj

�� �� ð5Þ

where KDi is the ith row of matrix KD and the vector
represents the similarities between disease i and all other
diseases. Aj is the jth column of matrix A and the vector
represents the associations of microbe j and all diseases.
|Aj| is the norm of vector Aj. Matrix NCP_d is the
projection score of disease Gaussian interaction profile
kernel similarity network (represented as matrix KD) on
the known microbe-disease association network (repre-
sented as matrix A), where the element NCP_d(i,j) in
row i and column j is the network projection of KDi and
Aj. Notably, the more similar diseases and disease i are,
the more diseases associated with microbe j, and the
smaller angle between KDi and Aj, the greater network
consistency projection score NCP_d(i,j) is. The microbe
space projection score could be combined and normal-
ized in the similar way as follows.

NCP m i; jð Þ ¼ Ai
�KMj

Aij j ð6Þ

where Ai is the ith row of matrix A, which consists of
associations of disease i and all microbes. KMj is the jth
column of matrix KM, which comprises the similarities
of microbe j and all other microbes. Matrix NCP_m is
the projection score of microbe Gaussian interaction
profile kernel similarity network (represented as matrix
KM) on the known microbe-disease association network
(represented as matrix A), where the element NCP_m(i,j)
in row i and column j is the network projection of KMj

and Ai. Remarkably, the more similar microbes and
microbe j are, the more microbes associated with disease
i, and the smaller angle between KMj and Ai, the greater
network consistency projection score NCP_m(i,j) is.
Finally, we could combine and normalize NCP_d and

NCP_m as follows.

NCP i; jð Þ ¼ NCPd i; jð Þ þ NCPm i; jð Þ
KDij j þ KMj

�� �� ð7Þ

where NCP_d(i,j) and NCP_m(i,j) are the projection scores
in disease space and microbe space of disease i and

microbe j, respectively. KDi is the ith row of matrix KD,
KMj is the jth column of matrix KM, and |·| is the
normalization operation. NCP is the final score matrix of
network consistency projection, which measures the asso-
ciation probability between each microbe-disease pair.

Results and discussion
Performance evaluation
We implemented LOOCV and 5-fold CV on the experi-
mentally verified microbe-disease associations recorded
in HMDAD database to evaluate the prediction perform-
ance of NCPHMDA. In validation frameworks of
LOOCV, we left out each known microbe-disease associ-
ation in turn for model testing while adopted other
known microbe-disease associations as training samples.
According to whether all the diseases were investigated
simultaneously or not, LOOCV could be further split
into global LOOCV and local LOOCV. When global
LOOCV was implemented, all the microbe-disease pairs
without known supporting evidence in HMDAD were
adopted as candidate samples, while when local LOOCV
was implemented, we only took microbes without
known confirmed relevance with investigated disease as
candidate samples. In the framework of 5-fold CV, we
randomly divided all the known microbe-disease associa-
tions into 5 average groups, 4 of which were used as
training samples for model learning and the remaining
one was used as testing samples for model evaluation. It
needs to be emphasized that we repeated 5-fold CV for
100 times to reduce the potential deviations caused by
random sample divisions. Each testing sample was
ranked with all candidate samples, where the model was
considered to achieve a successful prediction if the rank
of the testing sample exceeds the given threshold. After
setting a series of thresholds, corresponding true positive
rates (TPR, sensitivity) were calculated by counting per-
centages of the test samples with higher ranks than in-
vestigated thresholds. Meanwhile, false positive rates
(FPR, 1-specificity), which denote the percentages of the
negative samples exceeding the given thresholds, were
also obtained. To visualize the prediction ability, receiver-
operating characteristics (ROC) curves were then drawn
by plotting TPR against FPR at different thresholds. Area
under ROC curve (AUC) was finally calculated as an
essential performance evaluation criterion.
In this paper, we compared NCPHMDA with

KATZHMDA [29], which has achieved excellent per-
formance in potential microbe-disease association pre-
diction. Two other previously proposed prediction
methods (i.e. Regularized Least Squares [30] and
Random Walk with Restart (RWR) [31]) were also
applied to evaluate the prediction ability of NCPHMDA.
To be clear, RWR algorithm only could predict associ-
ated microbes for given diseases and could not infer all
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the missing associations for all the diseases simultan-
eously. Therefore, global LOOCV couldn’t be imple-
mented for RWR. In global LOOCV framework,
NCPHMDA reached AUC of 0.9039 which had 0.0657,
0.3455 increase compared with KATZHMDA and Regu-
larized Least Squares (See Fig. 2). In addition,
NCPHMDA achieved AUC of 0.7953, which had 0.0977,
0.1141 and 0.1413 increase compared with Regularized
Least Squares, KATZHMDA and Random Walk with
Restart. Furthermore, 5-fold CV was also implemented.
As a result, NCPHMDA yielded a reliable performance
of 0.8918 +/− 0.0105. In conclusion, NCPHMDA has re-
liable performance in the framework of cross validations.

Case studies
NCPHMDA was implemented to prioritize candidate
microbes of all investigated diseases in this study. For
further prediction ability evaluation, three kinds of com-
plex human diseases (i.e. colon cancer, asthma and type
2 diabetes) were taken as three independent case studies.
Based on recent published clinical and biological reports,
predicted microbes ranked in top 10 of these three com-
plex diseases were validated respectively. Importantly, it
should be noted that only microbe-disease pairs without
known evidence collected in HMDAD database were
classed into validation datasets, which guaranteed the
absolute independence between validation candidates
and known associations used for model training.
According to the well-known global cancer statistics

report [32], colon cancer occupied the third leading
cause of cancers in males and the second leading cause

of cancers in females in the past few decades. With the
improved treatment and increased awareness, death
rates of colon cancer patients have been decreasing in
several developed countries. However, survival rates in
developing countries are still far from meeting require-
ments because of the low detection rates in early stage.
Recently, accumulating evidence have demonstrated that
imbalance of microbial community has a close connec-
tion with occurrence and development of colon cancer.
For example, Moore et al. [33] compared fecal floras of
polyp patients (at high risk of colon cancer), Japanese-
Hawaiians (at high risk), rural native Japanese (at low
risk), rural native Africans (at low risk) and North
American Caucasians (have a flora composition
intermediate between two groups) and identified 15 colon
cancer-related bacterial taxa. Surprisingly, they found that
concentrations of Bacteroides and Bifidobacterium were
positively related with colon cancer risks while concentra-
tions of Lactobacillus and Eubacterium aerofaciens were
negatively correlated with colon cancer risks. We imple-
mented NCPHMDA on colon cancer for potential
microbe-disease association prediction, and 9 out of the
top 10 predicted microbes were successfully confirmed by
biological literature (See Table 1). Typically, it is reported
that colon cancer patients who have undergone preopera-
tive insertion of a metallic stent and are aged sixty and
older years are identified as risk factors for Clostridium
difficile (1st in the prediction list) infection [34].
Helicobacter pylori (2nd in the prediction list) infection
was found to be associated with risk increase of left-sided
colorectal cancer [35]. By sequencing of 16S rRNA gene

Fig. 2 Performance comparisons between NCPHMDA and three state-of-art prediction models (KATZHMDA, Regularized Least Squares and Random
Walk with Reastart) in terms of ROC curve and AUC. As a result, NCPHMDA achieved AUCs of 0.9039 and 0.7953 based on global and local LOOCV,
significantly outperforming previous classification models
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V3 region, abundance of Proteobacteria (3rd in the predic-
tion list) was discovered under-represented in sporadic
colorectal carcinoma patients [36].
Asthma is a common chronic inflammatory disease of

the airways of the lungs, which is generally believed to be
caused by a combination of genetic and environmental
factors [37]. Recent statistics indicated that incidence of
asthma has been in the increasing trend in the past few
decades, and the number of asthma patients grew from
183 million in 1990 to 242 million in 2013 [38]. Infection
of pathogenic microorganisms (especially virus,
chlamydia, mycoplasma and mold) is one of the leading
causes of severe asthma. For example, Huang et al. [39]
have discovered that differences in the bronchial airway
microbial composition were correlated with the manifest-
ation of clinical asthma features. They pointed out the
direct link between abundance of Sphingomonadaceae,
Comamonadaceae, Oxalobacteraceae and degree of bron-
chial hyperresponsiveness among asthmatic patients. By
implementing NCPHMDA to prioritize candidate mi-
crobes, 9 out of the top 10 predicted microbes were
successfully verified by recent clinical evidence (See
Table 2). As for top 5 confirmed asthma-related microbes,
concentrations of Clostridium difficile and Staphylococcus
aureus (1st, 5th in the prediction list) were discovered
increased in asthma patients’ airways, while concentra-
tions of Firmicutes and Actinobacteria were found
decreased [40–42]. Importantly, Clostridium coccoides
(3rd in the prediction list) subcluster XIVa species were
proved serving as early indicators of possible asthma later
in life, which could help prevent and diagnose asthma and
provide guidance for clinical treatment [43].
According to recent disease statistic reports [44],

diabetes mellitus represents 8.3% of the adult population
and occupies the eighth leading cause of deaths annually.
Type 2 Diabetes Mellitus (T2DM) makes up

approximate 90% of all diabetes mellitus cases and can
lead to chronic complications including cardiovascular
diseases, stroke and diabetic retinopathy. Increasing
evidences have shown that formation and development
of T2DM are closely related to low-grade inflammation
and microbial infection [45]. Compositional changes in
intestinal microbiota such as Bacilli, Bacteroidetes,
Betaproteobacteria, Clostridia, Clostridium, Firmicutes,
Lactobacillus and Proteobacteria were discovered in
T2DM patient feces [46]. We took T2DM as a case
study for potential T2DM-related microbe prediction, 8
out of the top 10 predicted microbes were confirmed by
experimental reports (See Table 3). Helicobacter pylori
(1st in the prediction list) infection was found to be
involved in pathogenesis of insulin resistance in T2DM
patients, which could be regarded as important
biomarker for early detection of high blood glucose and
prevention of high-risk T2DM communities [47]. Zhou

Table 1 For further prediction performance evaluation, NCPHMDA
was implemented on colon cancer to identify potential associated
microbes. As a result, 9 out of the top 10 predicted microbes have
been verified based on recent experimental literature

Rank Microbe Evidence

1 Clostridium difficile PMID:21152135

2 Helicobacter pylori PMID:22294430

3 Proteobacteria PMID:25699023

4 Prevotella PMID:25699024

5 Staphylococcus aureus unconfirmed

6 Clostridium coccoides PMID:18237311

7 Firmicutes PMID:25699024

8 Bacteroidetes PMID:25699024

9 Actinobacteria PMID:26811603

10 Clostridia PMID:19807912

Table 2 We implemented NCPHMDA on asthma to prioritize
candidate microbes. As a result, 9 out of the top 10 predicted
microbes have been confirmed based on recent experimental
literature

Rank Microbe Evidence

1 Clostridium difficile PMID:25974301

2 Firmicutes PMID:23265859

3 Clostridium coccoides PMID:21477358

4 Actinobacteria PMID:23265859

5 Staphylococcus aureus PMID:12743582

6 Lactobacillus PMID:20592920

7 Clostridia PMID:21477358

8 Burkholderia PMID:24451910

9 Lachnospiraceae PMID:17433177

10 Enterococcus unconfirmed

Table 3 NCPHMDA was implemented on type 2 diabetes to
identify potential related microbes. As a result, 8 out of the top
10 predicted microbes have been confirmed based on recent
experimental literature

Rank Microbe Evidence

1 Helicobacter pylori PMID:24782613

2 Clostridium difficile PMID:23734349

3 Prevotella PMID:23613868

4 Actinobacteria PMID:23613868

5 Staphylococcus aureus PMID:16495627

6 Lachnospiraceae unconfirmed

7 Staphylococcus PMID:24385898

8 Haemophilus unconfirmed

9 Bacteroides PMID:20140211

10 Enterobacteriaceae PMID:25759592
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et al. [48] attempted to investigate the potential effect of
T2DM on subgingival plaque of periodontal patients,
and the results indicated that the abundance of
Prevotella (3rd in the prediction list) was significantly
different between diabetics and non-diabetics in subjects
with healthy periodontium while populations of
Actinobacteria (4rd in the prediction list) were signifi-
cantly different between diabetics and their non-diabetic
counterparts in subjects with periodontitis. Evidence of
dysregulation of Clostridium difficile and Staphylococcus
aureus (2nd and 5th in the prediction list) could be
concluded from these clinical reports [49, 50].
Case studies on above three complex human diseases

have confirmed the outstanding prediction ability of
NCPHMDA. For further biological and clinical experi-
ment validation, we prioritized and publicly released the
prediction of all the unknown microbe-disease pairs (See
Additional file 1). It is anticipated that the candidate
microbe-disease pairs with higher ranks could offer
valuable clues and would be confirmed by experimental
observation in the near future.

Conclusions
With the rapid development of high-throughput sequen-
cing techniques, increasing literature have demonstrated
that imbalance of microbial community has critical im-
pacts on host’s health and disease. Identifying potential
microbes associated with investigated disease for better
understanding of disease pathology and novel discovery
of drugs has attracted more and more attention in
recent years. However, few computational models have
been developed for potential microbe-disease association
prediction, which could significantly reduce experimen-
tal time and cost that traditional clinical researches
suffer. In this study, based on the assumption that
microbes with similar functions tend to share similar
association or non-association patterns with similar
diseases, we presented a novel computational model
named NCPHMDA to prioritize candidate microbe-
disease pairs for further experiment validation.
NCPHMDA achieved outstanding AUCs of 0.9039,
0.7953 and average AUC of 0.8918 in global LOOCV,
local LOOCV and 5-fold CV, respectively. In addition,
case studies of colon cancer, asthma and type 2 diabetes
mellitus were implemented for further prediction ability
evaluation. As a result, 9, 9 and 8 out of the top 10 pre-
dicted microbes of these three complex diseases were
confirmed by recent literature evidence. It is anticipated
that NCPHMDA could serve as an important resource
providing essential supports for further clinical or bio-
logical researches.
In conclusion, the following factors drove the excellent

prediction performance of NCPHMDA. First of all,
known microbe-disease associations collected in

HMDAD database are reliable as a basic information re-
source. Furthermore, Gaussian interaction profile kernel
similarity for microbe and disease were integrated in
NCPHMDA, which effectively improved the data com-
pleteness and further reduced model prediction bias.
NCPHMDA could be implemented on new microbes
without any known associated diseases as well as new
diseases without any known associated microbes. In
addition, NCPHMDA is a global ranking computational
method and could prioritize all the candidate microbe-
disease pairs for all investigated diseases in a large-scale.
It should be noted that some limitations still exist in

the model design of NCPHMDA. Firstly, microbe-
disease association network is sparse, which would limit
the prediction accuracy of proposed model. This prob-
lem could be solved with collection of high-quality ex-
perimental microbe-disease associations in the future.
Moreover, since calculation of Gaussian interaction pro-
file kernel similarity was strongly relied on the known
microbe-disease associations, the diseases with more
known associated microbes are possibly predicted to be
related with more potential microbes. Integrating more
biological heterogeneous networks, such as disease
phenotypic similarity network, disease semantic similar-
ity network and microbe functional similarity network,
could help improved the quality of existing networks
and prediction performance of NCPHMDA. Establishing
new similarity measures without dependence on the
topological features of known microbe-disease associ-
ation network is another improving direction which
should never be ignored.

Additional file

Additional file 1: Table S1. Prediction of all the unknown microbe-
disease pairs. (XLSX 232 kb)
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