Table 2.
Layer Type | Number of Filters | Size of Feature Map (Height × Width × Channel) |
Kernel (Filter) Size (Height × Width × Channel) |
Number of Stride (Height × Width) |
Number of Padding (Height × Width) |
---|---|---|---|---|---|
Image input layer | 8 × 256 × 3 | ||||
1st convolutional layer | 64 | 8 × 244 × 64 | 1 × 13 × 3 | 1 × 1 | 0 × 0 |
Batch normalization | 8 × 244 × 64 | ||||
ReLU layer | 8 × 244 × 64 | ||||
2nd convolutional layer | 64 | 8 × 232 × 64 | 1 × 13 × 64 | 1 × 1 | 0 × 0 |
Batch normalization | 8 × 232 × 64 | ||||
ReLU layer | 8 × 232 × 64 | ||||
Max pooling layer | 1 | 8 × 116 × 64 | 1 × 2 × 64 | 1 × 2 | 0 × 0 |
3rd convolutional layer | 128 | 8 × 104 × 128 | 1 × 13 × 64 | 1 × 1 | 0 × 0 |
Batch normalization | 8 × 104 × 128 | ||||
ReLU layer | 8 × 104 × 128 | ||||
4th convolutional layer | 128 | 8 × 92 × 128 | 1 × 13 × 128 | 1 × 1 | 0 × 0 |
Batch normalization | 8 × 92 × 128 | ||||
ReLU layer | 8 × 92 × 128 | ||||
Max pooling layer | 1 | 8 × 46 × 128 | 1 × 2 × 128 | 1 × 2 | 0 × 0 |
5th convolutional layer | 256 | 8 × 36 × 256 | 1 × 11 × 128 | 1 × 1 | 0 × 0 |
Batch normalization | 8 × 36 × 256 | ||||
ReLU layer | 8 × 36 × 256 | ||||
6th convolutional layer | 256 | 8 × 26 ×256 | 1 × 11 × 256 | 1 × 1 | 0 × 0 |
Batch normalization | 8 × 26 × 256 | ||||
ReLU layer | 8 × 26 × 256 | ||||
Max pooling layer | 1 | 8 × 13 × 256 | 1 × 2 × 256 | 1 × 2 | 0 × 0 |
7th convolutional layer | 512 | 6 × 11 × 512 | 3 × 3 × 256 | 1 × 1 | 0 × 0 |
Batch normalization | 6 × 11 × 512 | ||||
ReLU layer | 6 × 11 × 512 | ||||
8th convolutional layer | 512 | 4 × 9 × 512 | 3 × 3 × 512 | 1 × 1 | 0 × 0 |
Batch normalization | 4 × 9 × 512 | ||||
ReLU layer | 4 × 9 × 512 | ||||
Max pooling layer | 1 | 4 × 5 × 512 | 1 × 2 × 512 | 1 × 2 | 0 × 1 |
1st fully connected layer | 4096 | ||||
Batch normalization | 4096 | ||||
ReLU layer | 4096 | ||||
2nd fully connected layer | 4096 | ||||
Batch normalization | 4096 | ||||
ReLU layer | 4096 | ||||
3rd fully connected layer | # of classes | ||||
Softmax layer | # of classes | ||||
Classification layer (output layer) | # of classes |