Skip to main content
. 2017 Dec 19;17(12):2947. doi: 10.3390/s17122947

Table 2.

Gas sensing performance of TiO2 based porous and tubular structures at the optimal operating conditions.

Shape/Composition TiO2 Crystalline Structure Synthesis Method Operating Temperature (°C) Target Gas, Concentration Response Response/Recovery Times Ref.
Tubular
Au-TiO2
Anatase Anodization 110 SO2F2, 50 ppm (ΔR/R0)·100%, 19.95% - [114]
Tubular
Pd-TiO2
Anatase Anodization 200 Ethanol, 10–3000 ppm (ΔR/R0)·100%, 297–21,253% 10.2/7.1 s [115]
Tubular
Pt-TiO2
Anatase Anodization 150 SO2F2, 30–100 ppm (ΔR/R0)·100%, ~8.65–38% - [116]
Tubular
Ni-TiO2
Anatase Anodization 200 H2, 1000 ppm (ΔR/R0)·100%, 40% - [121]
Tubular
Ni-TiO2
Anatase Anodization 200 H2, 1000 ppm (ΔR/R0)·100%, 13.7% 80/- s [122]
Tubular
Cr-TiO2
Anatase Anodization, soaking, thermal treatment 500 NO2, 10–100 ppm ΔR/R0, ~2–3.5 -/8–24 min [123]
Tubular
Nb-TiO2
Anatase, rutile Anodization 400 Ethanol, 50 ppm ΔG/G0, ~6 120/120 s [20]
Tubular
Nb-TiO2
Anatase Anodization 300 Acetone, 25 ppm ΔG/G0,~7 - [65]
Tubular
TiO2
Anatase Anodization 200 Ethanol, 5000 ppm (ΔG/G0)·100%, ~300% - [124]
Tubular
C-TiO2
Anatase Anodization, thermal treatment 100 H2, 5000 ppm ΔG/G0, ~2 - [125]
Tubular
Al-V-TiO2
Anatase Anodization 300 H2, 1000 ppm (ΔR/R0)·100%, 50% - [126]
Tubular
MoS2-TiO2
Anatase Anodization, hydrothermal growth 150 Ethanol, 100 ppm R/R0, 14.2 - [127]
Porous
Ag-SnO2-TiO2
Anatase TiO2 Chemical approaches, thermal treatment 275 Ethanol, 50 ppm R0/R, ~53 3.5/7 s [128]
Porous
Ti3+-TiO2
Anatase, rutile Chemical approaches, thermal treatment Room temperature CO, 100 ppm R0/R, ~1.6 - [129]
Tubular, polypyrrole based polymer-TiO2 - Anodization, electropolymerization Room temperature CH2O, 1 ppm ΔG/G0, 13% - [57]