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Abstract: Serotonin is an important neurotransmitter that plays a major role in the pathogenesis
of a variety of conditions, including psychiatric disorders. The detection of serotonin typically
relies on high-performance liquid chromatography (HPLC), an expensive technique that requires
sophisticated equipment and trained personnel, and is not suitable for point-of-care applications.
In this contribution, we introduce a novel sensor platform that can measure spiked neurotransmitter
concentrations in whole blood samples in a fast and low-cost manner by combining synthetic receptors
with a thermal readout technique—the heat-transfer method. In addition, the design of a miniaturized
version of the sensing platform is presented that aims to bridge the gap between measurements
in a laboratory setting and point-of-care measurements. This fully automated and integrated,
user-friendly design features a capillary pumping unit that is compatible with point-of-care sampling
techniques such as a blood lancet device (sample volume—between 50 µL and 300 µL). Sample
pre-treatment is limited to the addition of an anti-coagulant. With this fully integrated setup,
it is possible to successfully discriminate serotonin from a competitor neurotransmitter (histamine)
in whole blood samples. This is the first demonstration of a point-of-care ready device based on
synthetic receptors for the screening of neurotransmitters in complex matrices, illustrating the sensor’s
potential application in clinical research and diagnosis of e.g., early stage depression.

Keywords: heat-transfer method; biomimetic sensing; molecularly imprinted polymers; neurotransmitters;
point-of-care diagnostics
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1. Introduction

Mood disorders, in particular depression with a lifetime prevalence of 15–20%, are the most
common form of psychiatric disorders in Europe [1,2]. In 2010, nearly 7% of the European population
had been diagnosed with major depression, and 1–2% with bipolar depression [3]. The financial burden
on the healthcare system mounted up to 113.4 billion Euroes in that year, making it the most important
single contributor to the total EU disease-related healthcare cost [4]. It is known that for many
psychiatric disorders, neurotransmitters and their receptors play a major role in the pathogenesis [5,6].
In particular, the balance between the neurotransmitters dopamine and serotonin is of important
significance when developing novel treatments or medications [7,8]. Although serotonin cannot be
transported across the blood-brain barrier, anomalous whole blood serotonin levels are correlated
with clinical depression [9–11], and timely intervention in a personalized medicine-based setting
can significantly reduce the associated medical and socio-economics burdens [12,13]. Furthermore,
serotonin is involved in steering numerous behavioral and physiological functions and abnormalities
in serotonin levels are also found in patients with e.g., hypertension [14] and gastrointestinal disorders
such as irritable bowel syndrome (IBS) [15].

The most common technique for detecting serotonin in patient samples is based on high-
performance liquid chromatography (HPLC) as, in contrast to other techniques, it can selectively
discriminate between different neurotransmitters [16–18]. However, HPLC suffers from financial
drawbacks, as it requires sophisticated equipment that needs to be used in a lab environment.
In addition, sample handling, device operation, and data analysis are challenging and require trained
personnel, rendering HPLC unsuitable for straightforward routine tests. Measurements have to be
carried out under stringently controlled conditions as serotonin belongs to a class of molecules that are
very sensitive to light, oxygen, and changes in pH [19,20].

In previous research, a thermal sensor platform was developed that could selectively measure
serotonin in buffer solutions in the physiologically relevant regime [21,22]. This concept was based on
combining synthetic receptors, molecularly imprinted polymers (MIPs), with a novel read-out strategy,
the heat-transfer method (HTM). MIPs are able to detect chemical substances in complex matrices and
have the advantages of facile and cheap synthesis, high chemical and thermal stability, re-usability,
and an almost unlimited shelf life [23–25]. When template molecules bind to the MIP receptor layer,
the thermal resistance increases and detection of serotonin in buffer solutions in the low nanomolar
regime was demonstrated [21]. The thermal readout platform could be combined with various other
receptors leading to other biosensing applications, such as DNA mutation analysis, phase changes in
lipids, and detection of cells, but biological samples remained to be evaluated [26–28].

In this contribution, a four chamber HTM sensor platform was used for the detection of serotonin
in spiked whole blood samples. The concept of quantitative serotonin detection in whole blood was
established by exposing the sensor to whole blood samples spiked with increasing concentrations
of serotonin. The results of these experiments show that the sensor is able to detect differences in
serotonin concentrations in the 100 nM range which fit nicely into the physiological regime of 100 nM
to 10 µM with whole blood serotonin levels in patients and non-patients differing on average by
several hundreds of nanomolar [11]. Selectivity and specificity were demonstrated by means of
a cross-selectivity measurement using histamine as an analogue and a reference measurement on
a non-imprinted polymer respectively.

In order to bring the technology one step closer to point-of-care diagnostic applications,
a miniaturized single-shot device was designed and tested. This device features an integrated
capillary pumping system that allows for autonomous, passive administration of blood samples,
thereby overcoming the need for an elaborate active pumping system. This facilitates miniaturization.
Furthermore, the single-shot device is user-friendly because sample pre-treatment is limited to merely
the addition of an anti-coagulant, and the small sampling volume renders the sensor compatible
with standard blood sampling techniques such as a blood lancet device. Quantitative detection and
selectivity are also demonstrated in this single-shot device thereby demonstrating the first hands-on,



Sensors 2017, 17, 2701 3 of 12

disposable device based on synthetic receptors that can be used for the detection of neurotransmitters
in complex matrices. In this way, we illustrate the potential application of the device in clinical research
in general and early stage depression diagnosis in particular.

2. Materials and Methods

2.1. Design of the Four Chamber-HTM Platform

To demonstrate the proof-of-principle of measuring neurotransmitters in whole blood samples,
a sensor setup was developed that measured the heat-transfer resistance at the solid-liquid interface
(Figure 1). A similar design has been described before for the detection of histamine with MIPs grafted
onto graphene oxide [29] and consists of a polydimethylsiloxane (PDMS) flow cell with four identical
chambers of 1 µL each, allowing simultaneous measurements on four spots of the sample.
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(Tn with n = 2, 3, 4, 5) with Tn relating to the four different measurement spots in the liquid. The 
difference in temperature between the heat sink and each of the four fluid compartments (T1 − Tn) 
was divided by the power (P) needed to heat up the system to obtain the heat transfer resistance in 

Figure 1. Schematic design of the four-chamber heat-transfer method (HTM) setup: (Left panel)
overview: the sensor chip (1) was placed on a copper lid (2), which was used as a heat sink. The central
cavity in the copper lid is intended to install a thermocouple (3). The assembly is heated by power
resistor (4). (Right panel) top view: the sensor was divided into four triangular shaped identical
sections of 10 mm2 (5) with a height of 1 mm by means of a polydimethylsiloxane (PDMS) flow
cell. Each flow cell connects to two Teflon tubes serving as fluid in- and outlet (6) and thermocouple
holders (7), respectively. An alternative 2D representation of the setup can be found in [22].

Within the proof-of-principle measurements, whole blood samples were exchanged my means
of syringes connected to the tubing system. The device was equipped with five miniaturized
thermocouples (type K, diameter 500 µm, TC Direct, The Netherlands) monitoring the temperature
T1 of the copper backside contact and the liquid temperatures T2,3,4,5 in each PDMS segment at
a height of 0.5 mm above the chip surface. The heat flow was generated by a power resistor (22 Ohm,
MPH 20, Farnell, Bierset, Belgium) applied onto the copper block and soldered in place to improve the
thermal contact. To regulate T1, the thermocouple signal was led to a data acquisition unit (Picolog
TC08, Picotech, Cambridgeshire, UK) and from there processed into a PID controller (parameters:
P = 1, D = 8, I = 0). The calculated output voltage was sent via a second controller (NI USB 9263,
National Instruments, Austin, TX, USA) to a power operational amplifier (LM675, Farnell, Bierset,
Belgium) and fed into the power resistor. Sampling of the T1 and T2,3,4,5 values was done at a rate of
one measurement per second. The sensing concept was based on a temperature gradient, which was
generated by applying a heating power (P) at the copper backside. The thermal resistance (Rth) was
obtained from the temperature difference between the copper backside (T1) and the liquid (Tn with
n = 2, 3, 4, 5) with Tn relating to the four different measurement spots in the liquid. The difference in
temperature between the heat sink and each of the four fluid compartments (T1 − Tn) was divided by
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the power (P) needed to heat up the system to obtain the heat transfer resistance in ◦C/W (Equation (1)).
In previous research, it has been shown that the thermal resistance is highly sensitive to the properties
at the solid-liquid interface [30].

Rth =
T1 − Tn

P
with n = 2, 3, 4, 5 (1)

2.2. Design of a Single-Shot Device

After demonstrating a proof-of-principle for serotonin detection in whole blood using the
four-chamber HTM device, the flow cell needed to be optimized toward point-of-care applications.
Therefore, a user-friendly design was developed that allows measuring neurotransmitters in
a single-shot manner with a fully integrated set up. The flow cell was constructed from PDMS
cast from a Teflon master mold (30 × 30 mm2), with a height of 0.6 mm. The design featured a vertical
capillary pump array and two measurement areas (3 × 3 mm2), making it possible to measure the
MIP and reference channel simultaneously. The 38 vertical capillary pumps, with a diameter of
0.5 mm, allowed a smooth continuous flow over the measurement areas [31] and could hold a large
sample volume combined with a small footprint (Figure 2). The contact angle between untreated
PDMS and aqueous solutions is high (>100◦), therefore, no spontaneous capillary transport can occur.
Common methods to make the polymer more hydrophilic are surface modifications such as plasma
and corona treatment. These methods activate the surface by creating dangling bonds which can
interact with the water molecules. A major drawback is that this activation only lasts for a couple of
hours when stored in air and is therefore not suitable for this application [32]. A surface modification
method with long-term stability was demonstrated by Yao and Fang, who used a block copolymer
of PDMS in which ethylene oxide chains are embedded; Poly(dimethylsiloxane-b-ethylene oxide)
(PDMS-b-PEO) [33]. A similar approach was used in this paper by mixing PDMS-b-PEO with uncured
base polymer in a 1.3 wt % ratio, which lowers the contact angle to 45◦, allowing spontaneous capillary
transport. This PDMS flow cell was held together by a transparent Perspex casing that clamps the
set up on top of the aluminum sensor substrate, which in turn was pressed onto the heat-spreader
and heater. The modified PDMS continued to be self-sealing, so no permanent bonding of layers was
required. One main inlet was provided, able to deposit up to 300 µL of the sample liquid. Two type-K
thermocouples were permanently installed, 0.2 mm above the measurement area instead of 0.5 mm
above the surface area as in the four-chamber set up, making it possible to determine the properties at
the solid-liquid interface more precisely. Furthermore, the principle and electronic readout equipment
was identical to the four-chamber design. The temperature gradient between the liquid and the heat
provider is divided by the applied power, to calculate the Rth for the active MIP-functionalized channel
and the reference channel containing non-imprinted polymer (NIP) particles.
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Figure 2. Single-shot measurement setup (a) Front view: consists of: a heater module, a selective
deposited molecularly imprinted polymer (MIP) layer on an aluminum substrate, a PDMS flow cell
and 3 temperature sensors which is here shown as a cross section of the finished flow cell. (b) The flow
cell occupies a total area of 30 × 30 mm2 and contains one centralized inlet (1), two parallel sensing
areas of 9 mm2 each (2) with integrated thermocouples (3) and a pumping area (4). The volumetric
flow rate of the sample fluid can be controlled by changing the width of the channel in position (5).
(c) The height of the flow cell is 0.6 mm, and the vertical pump is 8 mm high. Whole blood samples can
be added to the inlet. The measurements can be carried out as single-shot, without a stabilization step
in buffer solution.

2.3. Receptor Layer

The polymerization of the MIP for serotonin has been described in [34]. In brief, a mixture
of 2.84 mmol methacrylic acid (MAA), 8.5 mmol acrylamide (AM), 22.72 mmol ethylene glycol
dimethacrylate (EGDMA), and 0.61 mmol azobisisobutyronitrile (AIBN) was dissolved into 7 mL
of porogen dimethylsulfoxide (DMSO for HPLC, ≥99.7%) together with the template molecule
serotonin hydrochloride (5.67 mmol). All chemicals were ordered at Sigma Aldrich (Gillingham,
UK). This solution was purged with N2 and thermal polymerization was achieved by placing the
mixture in an oven at 65 ◦C for 12 h. After polymerization, the bulk polymer was ground to obtain the
microparticles. Serotonin was removed from the MIP powders by Soxhlet extraction with methanol
(48 h), a mixture of acetic acid / acetonitrile (1/1) (48 h) and again methanol (12 h). All solvents
were obtained from Sigma Aldrich (Gillingham, UK) and had a purity of at least 99%. The resulting
powders were then dried in vacuum for 12 h. The reference NIP was synthesized accordingly but
without the presence of the target molecule and could therefore serve as a reference. Aluminum chips
were cleaned in acetone, isopropanol, and MilliQ before they were functionalized with an adhesive
polyvinyl chloride layer by spin coating at 5000 rpm at an acceleration of 1650 rpms/s to yield a layer of
400 nm. The adhesive layer was heated to 120 ◦C, well above its glass transition temperature, for 120 s
in order to enable stamping of MIP and NIP particles. Different measuring chambers were stamped by
means of a home-made stamping device; residual unbound particles were removed by rinsing with
Milli Q and blow drying using compressed N2. For more details on the procedure, we refer to [34].

2.4. Proof-of-Principle Experiments in Whole Blood Samples

An aluminum chip (10 × 10 mm2) was coupled to the four chamber-flow cell dividing the surface
into four equal triangular parts. The four channels were coated with serotonin MIPs. Whole blood
samples were obtained from a healthy volunteer and transferred to a Vacuette blood collection tube
(Greiner Bio-One B.V., Alphen a/d Rijn) containing sodium citrate as an anti-coagulant. The samples
were divided into different aliquots and spiked with increasing concentrations (100, 200, 300, 500, 750
and 1000 nM) of the target, serotonin, and an analogue histamine. Measurements were initiated after
the signal was left to stabilize for ±20 min by adding 80 µL of the spiked blood samples sequentially
to each fluid compartment using the Teflon tubing (20 µL/chamber). Between each addition step the
signal was allowed to stabilize for 10–20 min until a constant value was reached. The heat-transfer
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resistance was derived in each step using Equation (1). Reference measurements were done using
a NIP reference and a dose-response curve for each of the experiments.

2.5. Single-Shot Serotonin Measurement in Whole Blood Samples

The fully integrated single-shot device consisted out of two identical sections; one was used as
an active MIP-functionalized channel, while the other served as a reference (Figure 2). Blood samples
were obtained in a manner similar as described in the previous section, and spiked with serotonin and
histamine (1000 nM) to assess selectivity. To apply the sample, two droplets of blood (~80 µL) were
added to the central cavity of the set up. The droplets reached the receptor layer in less than 15 s due
to the capillary force effect, after which serotonin rebinding to the MIP receptor layer was registered
by the setup. In addition, quantitative determination of serotonin was assessed in a similar manner
exposing the sensor to increasing concentrations of serotonin (100, 200, 300, 500, 750, and 1000 nM).

2.6. Optical Characterization

The morphology of the synthesized MIP particles and their surface coverage on the measurement
chips were analyzed using a FEI Quanta 200 FEG, Scanning Electron Microscope (SEM).

3. Results and Discussion

3.1. Proof-of-Principle: Thermal MIP-Based Detection of Serotonin in Whole Blood

The SEM analysis shown in Figure 3 illustrates the typical heterogeneous morphology of MIPs
made by bulk imprinting polymerization and indicates that the size selection by the sieving process was
successful. The surface coverage on the measurement chips is evenly distributed and the cross-section
analysis illustrates that the particles are indeed embedded into the adhesive layer.
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Figure 3. Scanning electron microscope (SEM) analysis of a MIP-coated aluminum chip (left) and
a cross-section analysis of the same sample (right).

3.2. Proof-of-Principle: Thermal MIP-Based Detection of Serotonin in Whole Blood

The measurements were conducted as described in the Section 2.4 and the resulting
time-dependent thermal analysis is summarized in Figure 4. After stabilization of the signal, blood
samples spiked with increasing concentrations were added to the measuring chambers, leading to
a concentration-dependent decrease in the non-regulated temperatures (Figure 4a). The resulting
thermal resistance analysis indicates that Rth increases in function of the concentration of target
molecule present in the measuring chamber (Figure 4b). These results are in line with previous
findings, binding of the target will partially block the heat transport through the solid-liquid interface,
which causes the temperature inside the flow cell to drop.
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Figure 4. Results obtained in a proof-of-principle experiment using the four-chamber HTM device
(a) shows the temperatures T1,2,3,4,5 as function of time, (b) shows the corresponding time-dependent
heat-transfer resistance. A concentration dependent effect on both the temperature and thermal
resistance signal can clearly be observed.

To assess specificity of the synthetic receptor layer, NIP-coated chips were also exposed to
increasing concentrations of serotonin in a similar experiment. Selectivity was analyzed by studying
the response of a MIP-coated chip to an increasing concentration of an analogue neurotransmitter,
histamine. The results of these experiments were summarized and compared to the specific response
derived from Figure 4 in Figure 5. The dose-response curve indicates that there is not specific effect
observed in both of the reference measurements, while significant increases in the thermal resistance
effect already become apparent at concentrations of ±400 nM for the MIP-coated samples after which
a stepwise increase can be observed spanning the higher nanomolar and low micromolar range.
These results indicate that the sensor could potentially be used in the future to study serotonin-related
diseases by differentiating between patients and non-patients were the whole blood serotonin levels
often vary by several tens to several hundreds of nanomolar [11]. Improving the surface coverage and
imprinting procedure by using more controllable polymerization strategies [29] could further improve
the detection limit, resolution, and dynamic range of the current platform.
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Figure 5. Dose-response curve obtained from the experiment described in Figure 4 (black curve),
reference experiments on NIP-coated chips (red curve), and selectivity (blue curve).

3.3. Single-Shot Detection of Serotonin in Whole Blood Samples

The single-shot setup was left to stabilize in air without any fluid being added to the central
cavity. When two droplets of whole blood (80 µL) spiked up to a concentration of 1.0 µM of serotonin
were added to the central cavity, an increase in the non-regulated temperatures for both the NIP and
the MIP were observed. The temperature of the NIP side of the sensor increased from 33.91 ± 0.11
to 35.32 ± 0.04 ◦C, the temperature of the MIP side of the sensor increased from 34.01 ± 0.05 to
34.85 ± 0.06 ◦C (Figure 6a). The simultaneous increase in the temperature of both flow chambers can
be accounted by the slightly better thermal conductivity of blood in comparison to air. However, due to
the serotonin binding to the nanocavities of the MIP, the effect is less pronounced in comparison to the
signal in the NIP channel which is translated in a steep decrease in the differential signal (blue curve).

The selectivity test, exposing both channels to blood samples spiked with 1.0 µM of the analogue
neurotransmitter histamine, is shown in Figure 6b. Addition of the whole blood samples leads to an
increase in the non-regulated temperature in the NIP channel from 33.39 ± 0.05 to 34.64 ± 0.03 ◦C,
which is comparable to the experiment with the target. The signal inside the MIP channel increases
in a similar manner from 33.37 ± 0.04 to 34.79 ± 0.05 ◦C which can be explained by the fact that the
additionally present histamine does not significantly bind to the MIP.

Sensors 2017, 17, 2701  8 of 12 

 

 

Figure 5. Dose-response curve obtained from the experiment described in Figure 4 (black curve), 
reference experiments on NIP-coated chips (red curve), and selectivity (blue curve). 

3.3. Single-Shot Detection of Serotonin in Whole Blood Samples 

The single-shot setup was left to stabilize in air without any fluid being added to the central 
cavity. When two droplets of whole blood (80 µL) spiked up to a concentration of 1.0 µM of 
serotonin were added to the central cavity, an increase in the non-regulated temperatures for both 
the NIP and the MIP were observed. The temperature of the NIP side of the sensor increased from 
33.91 ± 0.11 to 35.32 ± 0.04 °C, the temperature of the MIP side of the sensor increased from  
34.01 ± 0.05 to 34.85 ± 0.06 °C (Figure 6a). The simultaneous increase in the temperature of both flow 
chambers can be accounted by the slightly better thermal conductivity of blood in comparison to air. 
However, due to the serotonin binding to the nanocavities of the MIP, the effect is less pronounced 
in comparison to the signal in the NIP channel which is translated in a steep decrease in the 
differential signal (blue curve).  

The selectivity test, exposing both channels to blood samples spiked with 1.0 µM of the 
analogue neurotransmitter histamine, is shown in Figure 6b. Addition of the whole blood samples 
leads to an increase in the non-regulated temperature in the NIP channel from 33.39 ± 0.05 to  
34.64 ± 0.03 °C, which is comparable to the experiment with the target. The signal inside the MIP 
channel increases in a similar manner from 33.37 ± 0.04 to 34.79 ± 0.05 °C which can be explained by 
the fact that the additionally present histamine does not significantly bind to the MIP.  

 

0 500 1000 1500 2000 2500 3000

-5

0

5

10

15

20

 

 MIP (serotonin)
 NIP (serotonin)
 MIP (histamine)

Ef
fe

ct
si

ze
 (%

) 

Concentration (nM)

0 100 200 300 400 500 600 700 800 900

28

30

32

34

36

38

 

Blood + serotonin

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

 NIP
 MIP

Air

-0.8

-0.4

0.0

0.4

0.8

Te
m

pe
ra

tu
re

 d
iff

er
en

ce
 (°

C
)

 Differential

a

Figure 6. Cont.



Sensors 2017, 17, 2701 9 of 12
Sensors 2017, 17, 2701  9 of 12 

 

 

Figure 6. Results obtained using the single-shot device (a) 300 µL blood, spiked to a concentration of 
1 µM of serotonin is added to the central cavity. An increase in temperature can be observed in both 
the NIP (red curve) and MIP (black curve) channel due to the medium change. The increase in the 
MIP is less pronounced as serotonin binds to the MIP, blocking the heat flow in the process, which is 
translated as a decrease in the differential signal (blue curve), (b) a similar experiment using an 
analogue—histamine—demonstrates a different behavior. Histamine does not bind to the MIP, and a 
small increase rather than a decrease in the differential signal can be observed. 

In order to verify whether the single shot device is able to register fluctuations in serotonin 
concentration in a quantitative manner, the single shot experiment was repeated with blood samples 
spiked with increasing concentrations of serotonin, as described in Section 2.5. The results of  
these measurements are summarized in the dose-response curve shown in Figure 7, where the 
absolute differential effect size is presented in function of the spiking concentration. The data were 
analyzed using OriginPro and follow an allometric dose-response fit (R2 = 0.996), indicating that the 
single shot device is able to pick up clinically relevant differences in serotonin concentration in 
whole blood. 

 

Figure 7. Dose-response curve obtained by analyzing the response of single shot devices to whole 
blood samples spike with increasing concentrations of serotonin. The absolute change in the 
differential signal is presented in function of the spiking concentration. The red curve represents an 
allometric dose-response curve (R2 = 0.996). These data indicate that it is possible to qualitatively 
detect fluctuations in the concentration of serotonin in whole blood samples. 

4. Conclusions 

0 200 400 600 800 1000 1200

28

30

32

34

36

38

 

Blood + histamine

 MIP
 NIP

Air

-0.8

-0.4

0.0

0.4

0.8b

Te
m

pe
ra

tu
re

 d
iff

er
en

ce
 (°

C
)

Te
m

pe
ra

tu
re

 (°
C

)

Time (s)

 Differential

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

ef
fe

ct
 s

iz
e 

(°
C

)

Concentration (nM)

Figure 6. Results obtained using the single-shot device (a) 300 µL blood, spiked to a concentration
of 1 µM of serotonin is added to the central cavity. An increase in temperature can be observed in
both the NIP (red curve) and MIP (black curve) channel due to the medium change. The increase
in the MIP is less pronounced as serotonin binds to the MIP, blocking the heat flow in the process,
which is translated as a decrease in the differential signal (blue curve), (b) a similar experiment using
an analogue—histamine—demonstrates a different behavior. Histamine does not bind to the MIP,
and a small increase rather than a decrease in the differential signal can be observed.

In order to verify whether the single shot device is able to register fluctuations in serotonin
concentration in a quantitative manner, the single shot experiment was repeated with blood samples
spiked with increasing concentrations of serotonin, as described in Section 2.5. The results of these
measurements are summarized in the dose-response curve shown in Figure 7, where the absolute
differential effect size is presented in function of the spiking concentration. The data were analyzed
using OriginPro and follow an allometric dose-response fit (R2 = 0.996), indicating that the single shot
device is able to pick up clinically relevant differences in serotonin concentration in whole blood.
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Figure 7. Dose-response curve obtained by analyzing the response of single shot devices to whole
blood samples spike with increasing concentrations of serotonin. The absolute change in the differential
signal is presented in function of the spiking concentration. The red curve represents an allometric
dose-response curve (R2 = 0.996). These data indicate that it is possible to qualitatively detect
fluctuations in the concentration of serotonin in whole blood samples.
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4. Conclusions

The data presented in this article demonstrate that the proposed sensor platform is able
to detect clinically relevant fluctuations in the serotonin concentration of whole blood samples.
The setup, based on combining synthetic MIP receptors with the novel heat-transfer method (HTM),
was previously demonstrated in buffer solutions. However, the effect in biological samples remained
to be evaluated. In this contribution, a first proof-of-principle experiment was performed with
a four-chamber MIP-based sensor platform that could successfully detect serotonin qualitatively and
quantitatively in spiked whole blood samples while being able to selectively distinguish between
histamine and serotonin. The ultimate goal was to use these measurements for routine tests and
therefore, a disposable single shot device was developed. The novel device featured a capillary
pumping unit, making it fully integrated as the use of syringes was no longer required and the setup
was miniaturized, requiring only 80 µL of sample, corresponding to two drops of blood, making the
setup compatible with standard blood sampling techniques such as a blood lancet. With this design,
the MIP and its reference NIP can be measured simultaneously in a “single-shot” measurement. Since
there is no need for a stabilization step, the measurement time can be reduced to the order of minutes.
The sensor platform was demonstrated to be both specific, as only the MIP reacted towards serotonin,
and selective, proven by means of a selectivity experiment with its competitor neurotransmitter
histamine. Additionally, the sensor was able to quantitatively measure fluctuations in the clinically
relevant concentration regime. In summary, this work introduces the first hands-on device for the
thermal detection of neurotransmitters with MIP-type receptors. The proposed sensor platform has
great potential to be used in clinical research and diagnosis of e.g., early stage depression as recent
evidence has shown that although serotonin cannot penetrate the blood-brain barrier and therefore has
to be synthesized locally. Whole blood levels of serotonin can be used to be study and diagnose clinical
depression. In order to truly use the technique for point-of-care sensing the readout equipment needs
to be scaled down further, and improvements can be made to the synthetic receptor layer in order to
improve the inter-sample variability as well as the sensitivity and dynamic range of the sensor.

Acknowledgments: The authors would like to thank J. Soogen and J. Baccus for their technical support. This work
was supported by the Research Foundation Flanders FWO via the Project G.0791.16N and the Province of Limburg
(The Netherlands) within the framework of the LIME project.

Author Contributions: T.V. designed the sensor units in close co-operation with R.T. and W.D.C. B.v.G. designed
the heat-transfer method setup with P.W. and performed all measurements and data analysis with T.V., M.P and
K.E. The readout software was developed and programmed by P.C. All MIPs were made by M.P. and S.K. with
feedback on synthesis, extraction, and immobilization provided by T.J.C. and P.W. Whole blood samples were
prepared by M.P., P.C. and K.E. The manuscript was jointly written by K.E., T.V., M.P. and B.v.G.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Vaswani, M.; Linda, F.K.; Ramesh, S. Role of Selective Serotonin Reuptake Inhibitors in Psychiatric Disorders:
A Comprehensive Review. Prog. Neuropsychopharmacol. Biol. Psychiatry 2003, 27, 85–102. [CrossRef]

2. Ayuso-Mateos, J.L.; Vázquez-Barquero, J.L.; Dowrick, C.; Lehtinen, V.; Dalgard, O.S.; Casey, P.; Wilkinson, C.;
Lasa, L.; Page, H.; Dunn, G.; et al. Depressive Disorders in Europe: Prevalence Figures from the ODIN Study.
Br. J. Psychiatry 2001, 179, 308–316. [CrossRef] [PubMed]

3. Wittchen, H.U.; Jacobi, F.; Rehm, J.; Gustavsson, A.; Svensson, M.; Jönsson, B.; Olesen, J.; Allgulander, C.;
Alonso, J.; Faravelli, C.; et al. The Size and Burden of Mental Disorders and Other Disorders of the Brain in
Europe 2010. Eur. Neuropsychopharmacol. 2011, 21, 655–679. [CrossRef] [PubMed]

4. Gustavsson, A.; Svensson, M.; Jacobi, F.; Allgulander, C.; Alonso, J.; Beghi, E.; Dodel, R.; Ekman, M.;
Faravelli, C.; Fratiglioni, L.; et al. Cost of Disorders of the Brain in Europe 2010. Eur. Neuropsychopharmacol.
2011, 21, 718–779. [CrossRef] [PubMed]

5. Kema, I.P.; De Vries, E.G.E.; Muskiet, F.A.J. Clinical Chemistry of Serotonin and Metabolites. J. Chromatogr. B
Biomed. Sci. Appl. 2000, 747, 33–48. [CrossRef]

http://dx.doi.org/10.1016/S0278-5846(02)00338-X
http://dx.doi.org/10.1192/bjp.179.4.308
http://www.ncbi.nlm.nih.gov/pubmed/11581110
http://dx.doi.org/10.1016/j.euroneuro.2011.07.018
http://www.ncbi.nlm.nih.gov/pubmed/21896369
http://dx.doi.org/10.1016/j.euroneuro.2011.08.008
http://www.ncbi.nlm.nih.gov/pubmed/21924589
http://dx.doi.org/10.1016/S0378-4347(00)00341-8


Sensors 2017, 17, 2701 11 of 12

6. Amara, S.G.; Sonders, M.S. Neurotransmitter Transporters as Molecular Targets for Addictive Drugs.
Drug Alcohol Depend. 1998, 51, 87–96. [CrossRef]

7. Rothman, R.B.; Blough, B.E.; Baumann, M.H. Dual Dopamine/serotonin Releasers as Potential Medications
for Stimulant and Alcohol Addictions. AAPS J. 2007, 9, E1–E10. [CrossRef] [PubMed]

8. Ansorge, M.S.; Zhou, M.; Lira, A.; Hen, R.; Gingrich, J.A. Early-Life Blockade of the 5-HT Transporter Alters
Emotional Behavior in Adult Mice. Science 2004, 306, 879–881. [CrossRef] [PubMed]

9. Cleare, A.J. Reduced whole blood serotonin in major depression. Depress. Anxiety 1997, 5, 108–111. [CrossRef]
10. Maurer-Spurej, E.; Pittendreigh, C.; Misri, S. Platelet serotonin levels support depression scores for women

with postpartum depression. J. Psychiatry Neurosci. 2007, 32, 23–29. [PubMed]
11. Wulsin, L.R.; Musselman, D.; Otte, C.; Bruce, E.; Ali, S.; Whooley, A. Depression and Whole Blood Serotonin

in Patients with Coronary Heart Disease from the Heart and Soul Study. Psychosom. Med. 2009, 71, 260–265.
[CrossRef] [PubMed]

12. Hibbeln, J.R.; Linnoila, M.; Umhau, J.C.; Rawlings, R.; George, D.T.; Salem, N. Essential Fatty Acids Predict
Metabolites of Serotonin and Dopamine in Cerebrospinal Fluid among Healthy Control Subjects, and Early-
and Late-Onset Alcoholics. Biol. Psychiatry 1998, 44, 235–242. [CrossRef]

13. Wilhelm, K.; Mitchell, P.B.; Niven, H.; Finch, A.; Wedgwood, L.; Scimone, A.; Blair, I.P.; Parker, G.;
Schofield, P.R. Life Events, First Depression Onset and the Serotonin Transporter Gene. Br. J. Psychiatry 2006,
188, 210–215. [CrossRef] [PubMed]

14. Anderson, G.M. Signal-to-Noise Optimization of HPLC-Fluorometric Systems and Their Application to the
Analysis of Indoles. Adv. Exp. Med. Biol. 1991, 294, 51–61. [PubMed]

15. Camilleri, M.; Katzka, D.A. Irritable Bowel Syndrome: Methods, Mechanisms, and Pathophysiology. Genetic
Epidemiology and Pharmacogenetics in Irritable Bowel Syndrome. Am. J. Physiol. Gastrointest. Liver Physiol.
2012, 302, G1075–G1084. [CrossRef] [PubMed]

16. Tonelli, D.; Gattavecchia, E.; Gandolfi, M. Thin-Layer Chromatographic Determination of Indolic Tryptophan
Metabolites in Human Urine Using Sep-Pak C18 Extraction. J. Chromatogr. B Biomed. Sci. Appl. 1982, 231,
283–289. [CrossRef]

17. Patel, B.A.; Arundell, M.; Parker, K.H.; Yeoman, M.S.; O’Hare, D. Simple and Rapid Determination of
Serotonin and Catecholamines in Biological Tissue Using High-Performance Liquid Chromatography with
Electrochemical Detection. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2005, 818, 269–276. [CrossRef]
[PubMed]

18. Auerbach, S.B.; Minzenberg, M.J.; Wilkinson, L.O. Extracellular Serotonin and 5-Hydroxyindoleacetic Acid
in Hypothalamus of the Unanesthetized Rat Measured by In Vivo Dialysis Coupled to High-Performance
Liquid Chromatography with Electrochemical Detection: Dialysate Serotonin Reflects Neuronal Release.
Brain Res. 1989, 499, 281–290. [CrossRef]

19. Wagner, J.; Vitali, P.; Palfreyman, M.G.; Zraika, M.; Huot, S. Simultaneous Determination of 3,4-
Dihydroxyphenylalanine, 5-Hydroxytryptophan, Dopamine, 4-Hydroxy-3-Methoxyphenylalanine,
Norepinephrine, 3,4-Dihydroxyphenylacetic Acid, Homovanillic Acid, Serotonin, and 5-Hydroxyindoleacetic
Acid in Rat Cerebrospinal Fl. J. Neurochem. 1982, 38, 1241–1254. [CrossRef] [PubMed]

20. Morgadinho, M.T.; Fontes Ribeiro, C.A.; Macedo, T.R.A. Influence of the Sample Preparation Method on
the Serotonin Determination in Plasma and Platelets. Biomed. Chromatogr. 2004, 18, 739–744. [CrossRef]
[PubMed]

21. Peeters, M.; Csipai, P.; Geerets, B.; Weustenraed, A.; van Grinsven, B.; Thoelen, R.; Gruber, J.; De Ceuninck, W.;
Cleij, T.J.; Troost, F.J.; et al. Heat-Transfer-Based Detection of L-Nicotine, Histamine, and Serotonin Using
Molecularly Imprinted Polymers as Biomimetic Receptors. Anal. Bioanal. Chem. 2013, 405, 6453–6460.
[CrossRef] [PubMed]

22. Wackers, G.; Vandenryt, T.; Cornelis, P.; Kellens, E.; Thoelen, R.; De Ceuninck, W.; Losada-Pérez, P.;
van Grinsven, B.; Peeters, M.; Wagner, P. Array Formatting of the Heat-Transfer Method (HTM) for the
Detection of Small Organic Molecules by Molecularly Imprinted Polymers. Sensors 2014, 14, 11016–11030.
[CrossRef] [PubMed]

23. Haupt, K. Peer Reviewed: Molecularly Imprinted Polymers: The Next Generation. Anal. Chem. 2003, 75,
376 A–383 A. [CrossRef]

24. Wulff, G. The Role of Binding-Site Interactions in the Molecular Imprinting of Polymers. Trends Biotechnol.
1993, 11, 85–87. [CrossRef]

http://dx.doi.org/10.1016/S0376-8716(98)00068-4
http://dx.doi.org/10.1208/aapsj0901001
http://www.ncbi.nlm.nih.gov/pubmed/17408232
http://dx.doi.org/10.1126/science.1101678
http://www.ncbi.nlm.nih.gov/pubmed/15514160
http://dx.doi.org/10.1002/(SICI)1520-6394(1997)5:2&lt;108::AID-DA8&gt;3.0.CO;2-B
http://www.ncbi.nlm.nih.gov/pubmed/17245471
http://dx.doi.org/10.1097/PSY.0b013e31819cc761
http://www.ncbi.nlm.nih.gov/pubmed/19297311
http://dx.doi.org/10.1016/S0006-3223(98)00141-3
http://dx.doi.org/10.1192/bjp.bp.105.009522
http://www.ncbi.nlm.nih.gov/pubmed/16507960
http://www.ncbi.nlm.nih.gov/pubmed/1772083
http://dx.doi.org/10.1152/ajpgi.00537.2011
http://www.ncbi.nlm.nih.gov/pubmed/22403795
http://dx.doi.org/10.1016/S0378-4347(00)81853-8
http://dx.doi.org/10.1016/j.jchromb.2005.01.008
http://www.ncbi.nlm.nih.gov/pubmed/15734169
http://dx.doi.org/10.1016/0006-8993(89)90776-2
http://dx.doi.org/10.1111/j.1471-4159.1982.tb07897.x
http://www.ncbi.nlm.nih.gov/pubmed/6174695
http://dx.doi.org/10.1002/bmc.387
http://www.ncbi.nlm.nih.gov/pubmed/15386580
http://dx.doi.org/10.1007/s00216-013-7024-9
http://www.ncbi.nlm.nih.gov/pubmed/23685906
http://dx.doi.org/10.3390/s140611016
http://www.ncbi.nlm.nih.gov/pubmed/24955945
http://dx.doi.org/10.1021/ac031385h
http://dx.doi.org/10.1016/0167-7799(93)90056-F


Sensors 2017, 17, 2701 12 of 12

25. Mosbach, K.; Ramström, O. The Emerging Technique of Molecular Imprinting and Its Future Impact on
Biotechnology. Nat. Biotechnol. 1996, 14, 163–170. [CrossRef]

26. Van Grinsven, B.; Eersels, K.; Peeters, M.; Losada-Pérez, P.; Vandenryt, T.; Cleij, T.J.; Wagner, P.
The Heat-Transfer Method: A Versatile Low-Cost, Label-Free, Fast, and User-Friendly Readout Platform for
Biosensor Applications. ACS Appl. Mater. Interfaces 2014, 6, 13309–13318. [CrossRef] [PubMed]

27. Eersels, K.; van Grinsven, B.; Khorshid, M.; Somers, V.; Püttmann, C.; Stein, C.; Barth, S.; Diliën, H.;
Bos, G.M.J.; Germeraad, W.T.V.; et al. Heat-Transfer-Method-Based Cell Culture Quality Assay through Cell
Detection by Surface Imprinted Polymers. Langmuir 2015, 31, 2043–2050. [CrossRef] [PubMed]

28. Diliën, H.; Peeters, M.; Royakkers, J.; Harings, J.; Cornelis, P.; Wagner, P.; Steen Redeker, E.; Banks, C.E.;
Eersels, K.; van Grinsven, B.; et al. Label-Free Detection of Small Organic Molecules by Molecularly
Imprinted Polymer Functionalized Thermocouples: Toward In Vivo Applications. ACS Sens. 2017, 2,
583–589. [CrossRef] [PubMed]

29. Peeters, M.; Kobben, S.; Jiménez-Monroy, K.L.; Modesto, L.; Kraus, M.; Vandenryt, T.; Gaulke, A.;
van Grinsven, B.; Ingebrandt, S.; Junkers, T.; et al. Thermal Detection of Histamine with a Graphene
Oxide Based Molecularly Imprinted Polymer Platform Prepared by Reversible Addition–fragmentation
Chain Transfer Polymerization. Sens. Actuators B Chem. 2014, 203, 527–535. [CrossRef]

30. Van Grinsven, B.; Vanden Bon, N.; Strauven, H.; Grieten, L.; Murib, M.; Monroy, K.L.J.; Janssens, S.D.;
Haenen, K.; Schöning, M.J.; Vermeeren, V.; et al. Heat-Transfer Resistance at Solid-Liquid Interfaces: A Tool
for the Detection of Single-Nucleotide Polymorphisms in DNA. ACS Nano 2012, 6, 2712–2721. [CrossRef]
[PubMed]

31. Horiuchi, T.; Hayashi, K.; Seyama, M.; Inoue, S.; Tamechika, E. Cooperative Suction by Vertical Capillary
Array Pump for Controlling Flow Profiles of Microfluidic Sensor Chips. Sensors 2012, 12, 14053–14067.
[CrossRef] [PubMed]

32. Bodas, D.; Khan-Malek, C. Hydrophilization and Hydrophobic Recovery of PDMS by Oxygen Plasma and
Chemical treatment—An SEM Investigation. Sens. Actuators B Chem. 2007, 123, 368–373. [CrossRef]

33. Yao, M.; Fang, J. Hydrophilic PEO-PDMS for Microfluidic Applications. J. Micromech. Microeng. 2012, 22, 025012.
[CrossRef]

34. Peeters, M.; Troost, F.J.; van Grinsven, B.; Horemans, F.; Alenus, J.; Murib, M.S.; Keszthelyi, D.; Ethirajan, A.;
Thoelen, R.; Cleij, T.J.; et al. MIP-Based Biomimetic Sensor for the Electronic Detection of Serotonin in Human
Blood Plasma. Sens. Actuators B Chem. 2012, 171, 602–610. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nbt0296-163
http://dx.doi.org/10.1021/am503667s
http://www.ncbi.nlm.nih.gov/pubmed/25105260
http://dx.doi.org/10.1021/la5046173
http://www.ncbi.nlm.nih.gov/pubmed/25654744
http://dx.doi.org/10.1021/acssensors.7b00104
http://www.ncbi.nlm.nih.gov/pubmed/28480332
http://dx.doi.org/10.1016/j.snb.2014.07.013
http://dx.doi.org/10.1021/nn300147e
http://www.ncbi.nlm.nih.gov/pubmed/22356595
http://dx.doi.org/10.3390/s121014053
http://www.ncbi.nlm.nih.gov/pubmed/23202035
http://dx.doi.org/10.1016/j.snb.2006.08.037
http://dx.doi.org/10.1088/0960-1317/22/2/025012
http://dx.doi.org/10.1016/j.snb.2012.05.040
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Design of the Four Chamber-HTM Platform 
	Design of a Single-Shot Device 
	Receptor Layer 
	Proof-of-Principle Experiments in Whole Blood Samples 
	Single-Shot Serotonin Measurement in Whole Blood Samples 
	Optical Characterization 

	Results and Discussion 
	Proof-of-Principle: Thermal MIP-Based Detection of Serotonin in Whole Blood 
	Proof-of-Principle: Thermal MIP-Based Detection of Serotonin in Whole Blood 
	Single-Shot Detection of Serotonin in Whole Blood Samples 

	Conclusions 

