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Abstract

Cryo-electron tomography (cryo-ET) has rapidly emerged as a powerful tool to investigate the 

internal, three-dimensional spatial organization of the cell. In parallel, the GPU-based technology 

to perform spatially resolved stochastic simulations of whole cells has arisen, allowing the 

simulation of complex biochemical networks over cell cycle timescales using data taken from -

omics, single molecule experiments, and in vitro kinetics. By using real cell geometry derived 

from cryo-ET data, we have the opportunity to imbue these highly detailed structural data—frozen 

in time—with realistic biochemical dynamics and investigate how cell structure affects the 

behavior of the embedded chemical reaction network. Here we present two examples to illustrate 

the challenges and techniques involved in integrating structural data into stochastic simulations. 

First, a tomographic reconstruction of Saccharomyces cerevisiae is used to construct the geometry 

of an entire cell through which a simple stochastic model of an inducible genetic switch is studied. 

Second, a tomogram of the nuclear periphery in a HeLa cell is converted directly to the simulation 

geometry through which we study the effects of cellular substructure on the stochastic dynamics of 

gene repression. These simple chemical models allow us to illustrate how to build whole-cell 

simulations using cryo-ET derived geometry and the challenges involved in such a process.
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Introduction

Over the last three decades, computational biologists have developed the ability to model the 

structure and function of biological systems at the molecular—and more recently—cellular 

levels. Key approaches in this pursuit are bioinformatics, molecular visualization, molecular 

simulation, and most recently, stochastic cell simulations. Computing complements 

experimentation, transforming static atomic force microscopy maps, structures derived from 

X-ray crystallography, super-resolution microscopy data, cryo-electron microscopy (cryo-

EM) maps, and cryo-electron tomography (cryo-ET) 3-D reconstructions into dynamic 

systems through simulations which integrate single molecule fluorescence data, -omics, and 

kinetic data. Increasingly often, computing correctly predicts missing structural information 

and interactions at both the molecular and cellular levels. The work by Klaus Schulten and 

his co-workers to create a model of a photosynthetic chromatophore and analyze its overall 

energy conversion efficiency is perhaps one of the best examples of the power of molecular 

modeling.1–5 This undertaking involved the modeling of vesicles measuring hundreds of 

nanometers, and required many methodological and algorithmic improvements to molecular 

dynamics flexible fitting (MDFF), the molecular dynamics simulation program NAMD, and 

the visualization and analysis program VMD.

During its early phase, computational biology was considered a valuable, but limited tool, 

the limits being mainly due to restrictions in size and timescales. Computational cell biology 

has now matured such that its descriptions of subcellular systems and whole-cell processes 

compare favorably with observations for both bacterial and eukaryotic organisms. A 

revolution in structural biology has taken place with the combination of cryo-EM and cryo-

ET with cryo-focused-ion-beam (cryo-FIB) milling, allowing for the collection of three-

dimensional, high resolution snapshots of complex molecular landscapes in individual 

cells.6–8 To keep pace with this revolution, the development of simulation software that 

extends to the timescales of a cell cycle (measured in minutes) and the length scales of entire 

cells (measured in microns) will be required. While current efforts to build an atomic scale 

model of a minimal cell measuring 0.4 μm in diameter9 are expected to be fruitful within the 

next five to ten years, the dynamical timescales will continue to be a bottleneck.

Whole-cell simulations performed with the Lattice Microbes (LM)10,11 stochastic simulation 

package provide a bridge to describe dynamical processes over several cell cycles and 

generate snapshots of complex cellular states that result in clear, testable predictions for 

further experiments. LM is a GPU-based simulation code that was designed from the ground 

up to be highly computationally efficient10 in order to reach the length and time scales 

necessary to study biological systems across entire cells. Reaction processes within the cell 
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are modeled within the framework of reaction–diffusion master equations (RDME), whose 

specification requires kinetic parameters obtained from many disparate sources including 

super-resolution imaging, fluorescence, and biochemical experiments as well as other 

computational techniques such as molecular dynamics and Brownian dynamics. To date, LM 

has been used to study the lac genetic switch,8 ribosome biogenesis,12,13 and the effect of 

DNA replication on gene expression networks.13,14 The probabilistic description of 

ribosome biogenesis in a replicating cell, requiring 251 species and over 1000 reactions, was 

one of the largest systems modeled with LM. Using a NVIDIA TITAN X graphics card, a 

full 90-minute cell cycle of an Escherichia coli cell could be simulated in approximately 24 

hours.13

The importance of environmental fluctuations and the discrete nature of chemical reactions 

on the fate of individual cells are now well known. While the stochastic dynamics of the 

genetic switches in bacteria have been well studied, the determination of how transcription 

factors find specific DNA binding sites in eukaryotes is a challenging problem. These 

studies are complicated by the increased size of the system, the sequestration of the DNA in 

a spatial compartment separate from the cytoplasm, and the variation in chromatin 

states.15,16 Using 3-D chromatin density inferred from structured illumination imaging of a 

DAPI-stained mammalian nucleus15 and soft X-ray tomography,16 Isaacson et al. performed 

lattice-based simulations of the diffusive search of a hypothetical transcription factor to its 

DNA binding site. These simulations model the search as the 3-D diffusion of a single 

particle with an assumed diffusivity of 10 μm2 s−1 through an external potential, U(r) = 

Cρ(r), where ρ(r) is the density of chromatin, and C is a free parameter of their model. They 

revealed that the search times are exponentially distributed and that there exists a 

proportionality constant C > 0 where the search time is minimized, implying that the 

chromatin structure helps to direct the transcription factor to its binding site.

The implication is that there can be features of the spatial environment which affect the 

reaction–diffusion dynamics in unexpected ways. Attempts to construct generic, ideal 

geometry in whole-cell simulations can overlook these details. For instance, it would be 

difficult to construct an idealized endoplasmic reticulum due to its convoluted structure. 

Getting the details wrong means that the search times of mRNA to find ER-bound ribosomes 

and export times of their products, such as membrane-bound proteins, would be inaccurate. 

Thus, it is prudent to construct the simulation volume using experimental data when 

available.

Here, we present two examples illustrating the integration of cryo-ET data into whole-cell 

simulations. First, using a tomographic reconstruction of a ~1 μm3 volume of an individual 

Saccharomyces cerevisiae cell, we extrapolate the remaining geometry to build the 

simulation environment. Second, we translated the pre-segmented EM density acquired 

about the nuclear periphery of a HeLa cell6 directly to the simulation lattice, leading to non-

idealized cellular geometries. In both cases, we investigate how the geometry affects the 

behavior of idealized genetic switch models. We are able to break down the induction of 

these genetic switches into several steps: (i) diffusion of an inducer molecule from its 

transporter in the plasma membrane through the cytoplasm and into the nucleus through a 

nuclear pore complex (NPC) and its binding to a specific gene triggering transcription; (ii) 
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diffusion of the mRNA through the nucleus into the cytoplasm where it is translated by one 

of the ribosomes surrounding the nucleus; and (iii) transport of the resulting permease into 

the cell membrane. Since there was insufficient information available in the tomogram to 

reconstruct a realistic ER, only transport of the permease through cytoplasm is considered. 

In the case of the HeLa cell, since our simulation volume is restricted to the nuclear 

periphery, we study the local dynamics of a repressor protein and its mRNA in the nucleus 

and cytoplasm (ii). The simple form of these reaction networks allows us to demonstrate the 

challenges and possible simplifications that can be made in modeling chemical reactions in 

eukaryotic cells. The results should be viewed as a basis for introducing further complexity 

into the dynamics as more structural details become available from the analysis of the cryo-

electron tomography data.

Methods

Cryo-electron tomography

Haploid Saccharomyces cerevisiae cells (W303a) were cultured in YPD (20 g/L peptone, 10 

g/L yeast extract, 20 g/L glucose) at 30 °C to a density of 107 cells/ml. 7 μl of this culture 

were deposited onto glow-discharged holey carbon grids (QUANTIFOIL R 2/1 200 mesh, 

copper; Electron Microscopy Sciences), blotted and rapidly vitrified in a liquid ethane and 

propane mixture (50:50) using a custom-built plunger (Max Planck Institute of 

Biochemistry, Germany). The lamellas (250 to 300 nm thickness) containing several sliced 

yeast cells were prepared using cryo-FIB milling as previously described.6 Cryo-electron 

tomography was obtained using a Titan Krios transmission electron microscope (FEI) 

equipped with a Quantum energy filter (Gatan) and a K2 Summit direct detection device 

(Gatan). Imaging was performed at 300 kV under low-dose conditions with 5.31 Å 

sampling. Tilt series (±62°) for tomography were collected around a single axis with a 2° 

sampling increment using SerialEM software17 (~100 e/Å2 cumulative dose). Tomographic 

reconstructions were calculated using the IMOD tomography package.18

Subtomograms containing ribosomes are picked using EMAN219 and subsequently 

averaged, classified, and placed in their location in the original tomogram using Dynamo.20 

In order to segment individual organelles, the tomogram data was filtered using nonlinear 

anisotropic diffusion using the IMOD tomography package.18 The membranes (cell wall, 

plasma membrane, nuclear envelope, mitochondrial and ER membranes) were automatically 

segmented using TomoSegMemTV.21 Segmentation of tomography volumes for the 

representation of various organelles and nuclear density were performed with Amira 

software (FEI Visualization Sciences Group).

The HeLa tomography data were previously reported.6

Simulations

Spatially resolved stochastic chemical reaction trajectories were simulated using Lattice 

Microbes v2.3.0.10,22,23 Lattice Microbes (LM) efficiently samples particle number 

trajectories from the solution to the underlying RDME describing the chemical system 

embedded in a lattice-based representation of the system geometry. The RDME is
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(1)

where P (x, t) is the probability distribution to find a configuration x at time t, and the 

configuration vector x contains the number of species present of each type at each 

subvolume. The first term in Equation 1 describes the flow of probability between different 

copy number states at each lattice site. The reaction propensities ar(xν) give the transition 

probabilities due to reaction r firing at site ν. The r row of the stoichiometry matrix S is the 

change in species counts when reaction r occurs. The second term describes the flow of 

probability due to diffusion between neighboring lattice sites, indexed by ξ. The diffusive 

propensity  for a particle of species α to leave subvolume ν is computed from the 

diffusion constant  and lattice spacing λ as . The notation  represents a 

single molecule of species α in volume ν, i.e. . All simulations were 

performed on a local cluster consisting of three Cirrascale GB5600 Multi-GPU nodes, two 

equipped with eight NVIDIA GeForce GTX TITAN X GPUs, and one equipped with four 

NVIDIA Tesla K80 GPUs. The multi-GPU capabilities of LM were used to share the 

simulation workload for the S. cerevisiae simulation over eight GPUs, and for the HeLa 

simulation over four GPUs.

Simulation design, visualization, and analysis of simulation results were performed using 

Python 3.5.3 in the Jupyter environment24 with the SciPy Stack.25 EM data was injected into 

the Python workflow by converting density files from the MRC format to NumPy26 native 

data files using EMAN2,19 which currently does not support Python 3.

Visual Molecular Dynamics (VMD)27 was used for interactive visualization of experimental 

tomography volumes and LM simulation trajectories, enabling several different data 

modalities to be inspected and superimposed for comparison. The VMD MRC plugin was 

extended to support several IMOD-specific variants of the MRC file format, allowing it to 

read the experimental tomogram volumes produced as described above. The volume 

visualization and ray tracing capabilities of VMD were enhanced to permit visualization of 

volumes containing more than 2 billion voxels. The large size and geometric complexity of 

the graphical representations for the experimental tomograms and the LM simulation 

trajectories presented a significant performance challenge for interactive display in VMD 

using conventional OpenGL rasterization. The GPU-accelerated interactive ray tracing 

capabilities of VMD were used to overcome the performance challenge posed by complex 

scenes.4 For the complex structures studied herein, ray tracing acceleration algorithms avoid 

consideration of occluded geometry, and the use of progressive refinement ray tracing 

permits very high interactivity, even for visualizations using rendering techniques such as 
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ambient occlusion lighting or depth-of-field focal blur that require large numbers of 

stochastic lighting samples to be computed.28

Results and Discussion

Inferring the architecture of a yeast cell from cryo-ET

Using cryo-FIB with cryo-ET, we have acquired the 3-D structure of a 2.04×1.91×0.242 μm3 

volume of an individual S. cerevisiae cell with a sampling rate (pixel size) of 0.53 nm 

(Figure 1). The structure clearly shows a portion of the nuclear envelope with 12 nuclear 

pores, 750 ribosomes in the cytoplasm, a section of the plasma membrane, and portions of 

the ER and a mitochondrion. Using the data available to us through this tomogram, we have 

constructed the internal geometry of an entire cell, filling in any missing data using 

measurements published in the literature as well as numerical optimization.

The simulation geometry consists of ten distinct spatial regions: extracellular, cell wall, 

plasma membrane, cytoplasm, vacuole, mitochondria, ribosomes, nuclear pores, nuclear 

envelope, and nucleoplasm (Figure 2). Each region can have its own set of species-specific 

diffusion constants and set of reactions allowing for spatially heterogeneous reaction–

diffusion behavior. The starting point to reconstruct a realistic yeast cell from the 

tomography data is the 3-D binary mask resulting from the segmentation of the nuclear 

envelope and plasma membrane surfaces (Figure 1a), which we resample to the dimensions 

of the simulation lattice. A 3–D representation of this mask is shown in Figure 1b–c. The 

original tomogram data was resampled from a sampling rate of 0.53 nm to a simulation 

lattice spacing of 28.7 nm—a 54-fold reduction.

To extrapolate the geometry of the nucleus and cell volume outside of the tomographic 

volume, we fit ellipsoids to the mask coordinates using local optimization. To ensure that the 

result is both biologically reasonable and faithfully reflects the data, we augment the squared 

error with terms penalizing deviations from an expected volume and aspect ratio.29,30 These 

penalizing terms are small compared to the squared error, ensuring that only perturbations to 

the parameters which do not affect the fit to the mask coordinates significantly are allowed.

To construct the nucleus, we started with initial ellipsoid parameters computed from the 

mask coordinates: the center from the mean of the mask coordinates and the ellipsoid axes 

from the maximum distance between two mask coordinates. Assuming that the volume of 

the cell in the tomogram is ~40 μm3 29 and that the volume percentage of the nucleus is 

7%,30 we use an expected volume of 2.8 μm3 and an aspect ratio of 1.0 in our fitness 

function. This results in a nucleus of volume 3.17 μm3 and aspect ratio 1.2. For the cell 

volume, we used an expected volume of 33.6 μm3, which is assuming that the cell wall 

occupies 15.9% of the cell volume,30 and an expected aspect ratio of 1.5. Since only a small 

portion of the plasma membrane is present in the tomogram, we used the center of the 

nucleus as the initial position and the radius of a sphere of volume 33.6 μm3 as the initial 

ellipsoid axes. The resulting ellipsoid spanned a volume of 33.9 μm3 and had an aspect ratio 

of 1.50. Figure 2a compares the cryo-ET-derived masks to the extrapolated geometry.
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A natural way to work with the RDME site-type lattice is in terms of set operations. We 

define the set of lattice sites to be

(2)

Then an ellipsoid embedded in the lattice is the set,

(3)

where A = diag(1/a, 1/b, 1/c), a matrix with the inverse of the ellipsoidal semi-axes on the 

diagonal,  is an Euler rotation matrix, and n0 is the centroid of 

the ellipse. By representing the site type lattice in this way, we can easily describe the 

construction of more complicated structures in the language of set operations and binary 

morphology.

These ellipsoids are used to form the nucleoplasm and cytoplasm, as well as the nuclear 

envelope, plasma membrane, and cell wall. The membrane regions are constructed as,

(4)

where Ellipsoid⊕Smem denotes the dilation of Ellipsoid with a structuring element 

Smem. The resulting mask, Membrane is a shell one subvolume thick surrounding 

Membrane. The structuring element, Smem, is a cube with edge length 3 with all elements set 

to 1, which matches all 26 neighbors. This choice ensures that all subvolumes within 

Membrane have at least one neighbor along the principal axes. This is critical for membrane-

bound particles since diffusion in Lattice Microbes is modeled as transitions between the 6 

nearest neighbor subvolumes. Otherwise, there would be regions of the membrane 

compartment which would be topologically separated to diffusing particles. The resulting 

membranes are 28.7 nm thick which is reasonable for the nuclear envelope (typically ~30 

nm thick in S. cerevisiae31). However, this is considerably larger than the thickness of the 

plasma membrane (9.2 nm32). Lattice-based simulations such as this limit the smallest 

features to the lattice spacing, however we must choose a coarser lattice resolution in order 

to accelerate the simulation. Fortunately, the plasma membrane thickness does not affect the 

outcome of the simulation since the chemical species which pass through the membrane are 

represented by separate external and internal species types, allowing for particles to be on 

different sides of the membrane within a single lattice site. The cell wall is formed from an 

ellipsoid with the same shape, orientation, and location as the cell volume ellipsoid. The 

axes are scaled such that the resulting ellipsoid has the expected volume of the cell (40 μm3). 

From this ellipsoid region, we subtract the union of the cell volume and plasma membrane 

regions to arrive at the cell wall. The resulting shell is 129 nm thick, which compares well 

with measurements performed with single-molecule AFM.33
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By observing the number of pores in the nuclear envelope (12) and its surface area (0.91 

μm2) from the tomogram, we computed the expected number of pores on the full nucleus to 

be 139. This quantity is consistent with the value of 119 ± 39 pores per nucleus reported in 

the literature34 for haploid yeast cells grown in similar conditions. Since the pores visible in 

the tomogram do not include the full nuclear pore complex, we used a pore diameter of 40 

nm,35 instead of measuring the diameter from the segmentation. The pores are initially 

represented as the union of 139 cylinders i.e.,

(5)

where r is the nuclear pore radius, ℓ is one half the nuclear radius, and the transformation 

parameters Ri and n0,i are chosen as follows. Each cylinder is placed at the center of the 

nucleus, rotated to a random polar and azimuthal angle, and translated to place the centroid 

of the cylinder in the nuclear envelope. The random position is checked against all previous 

placements to ensure that the new pore does not merge with the remaining pores. The 

nuclear pore lattice is then the intersection, Membranenuc∩ PoreCylinders, and the the 

nuclear envelope is the difference, Membranenuc\ PoreCylinders.

Using volume percentages measured from cryo-FIB-milled scanning electron microscopy 

data of entire budding yeast cells,30 we add ellipsoids representing the mitochondria and 

vacuole. The ER, which can occupy 2.2% of the cell volume,30 is not included. The presence 

of the ER would affect diffusion throughout the cell due to its folded morphology, however 

there is not enough information from the tomogram to infer the geometry outside of the 

imaged volume. Finally, 180,000 ribosome sites36 are placed uniformly throughout the 

cytoplasm. The resulting geometry requires a lattice size of 192 × 192 × 192, which 

represents a cube of edge length 5.5 μm.

To explore the effects of the cell geometry on a behavior of a biochemical network, we 

simulated a model of a simple inducible genetic switch (introduced in Table 1) in the 

extrapolated yeast lattice. A concentration of 4 μM of inducer is placed in the extracellular 

space, where it may enter the cell via passive diffusion across the plasma membrane. Inducer 

molecules diffuse through the cytoplasm into the nucleus through a nuclear pore, where it 

may interact with a gene species located in a single subvolume of the nucleus, activating the 

transcription of mRNA coding for a transporter protein. The mRNA diffuses out of the 

nucleus through the nuclear pores into the cytoplasm. Since dwell times of exported 

molecules in the pore are reported to be on the order of milliseconds,37 we approximated the 

mRNA export process as simple diffusion out of the nucleus. The actual process is certainly 

more complicated than this,37,38 however it is an appropriate approximation for the level of 

detail in this model. After leaving the nucleus, the mRNA binds to a ribosome in the 

cytoplasm to begin translation The translated protein, being a membrane-bound transporter, 

normally would be translated by ribosomes associated with the ER and exported to the 
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plasma membrane through the Golgi apparatus. However without a large volume of 

tomographic structures of these organelles, it is difficult to incorporate their geometry in our 

model realistically. Furthermore, the development of a plausible RDME-based protein 

targeting model is beyond the scope of this work. Instead, we allow the transporter protein to 

diffuse through the cytoplasm and into the plasma membrane. Once installed in the 

membrane, the protein transports more inducer into the cell through active transport.

The transcription and translation rates were estimated from steady-state mRNA and protein 

abundance, protein lifetime,36 and mRNA lifetime39 using the gene expression model

(6a)

(6b)

(6c)

(6d)

where the mean number of mRNA, m, is given by the ratio of transcription to mRNA decay 

rates,

(7)

and the mean number of protein, P, is given by the ratio of the total translation rate  to 

the protein decay rate,

(8)

To represent this hypothetical transporter, we chose values describing the high-affinity 

glucose transporter HXT6. These parameters result in a steady state mRNA abundance of 

7.86 and protein abundance of 42,600 per cell. In the interest of computational efficiency, 

the passive and active transport parameters as well as the rate of gene activation were 

adapted from a previous model of the lac genetic switch in E. coli.8 Since competitive 

binding to ribosomes between different mRNA species can have a significant effect on the 

copy number statistics,13 we added a second series of transcription, translation, and mRNA 

degradation reactions. The rates were chosen to yield 12,200 mRNA36 and 5 × 107 protein40 
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at steady state. Through we do not track these “background” proteins in our simulation, their 

translation rate impacts the simulation through their effect on the average ribosome 

occupancy.

We ensured the proper localization of molecules to their respective compartments by 

choosing the transition rates between the ten different regions explicitly. In Lattice 

Microbes, the diffusion rate between two subvolumes is specified by the type of chemical 

species, the type of the site the particle currently occupies, and the type of the site that the 

particle may diffuse to. This allows for the specification of one-way transitions between 

compartments by setting the reverse diffusion rate to zero. We will use this technique 

extensively in both models presented in this work. The gene species is fixed in place in the 

nucleus by setting its diffusion constant to zero. mRNA can diffuse freely in the 

nucleoplasm, cytoplasm, nuclear pores, and ribosome regions with a diffusion rate of 0.5 

μm2 s−1. To prevent mRNA from reentering the nucleus, we define the site-dependent 

diffusion rate for mRNA from cytoplasm to nuclear pores to be zero. Transporter proteins 

diffuse through the cytoplasm in three dimensions (1 μm2 s−1) and in the plasma membrane 

in two dimensions. (0.01 μm2 s−1). To allow for the proper progression of transporter 

diffusion from the ribosome, through the cytoplasm, to the membrane, we set all transitions 

into the nuclear pore and ribosome regions to zero. Since transporters are created at 

ribosome site types, they are allowed to diffuse in these regions. However their reentry is 

forbidden, in order to allow for the ribosome sites to act as crowding agents in the 

cytoplasm. Finally, the transporters can diffuse from the cytoplasm to the membrane, 

however the reverse rate is set to zero to prevent their detachment.

The inducer is represented by two separate species types: internal and external. External 

inducer can diffuse freely through the extracellular, cell wall, and plasma membrane regions 

with a diffusion constant of 2 μm2 s−1. This rate is significantly lower than what would be 

expected for a small molecule (100–1000 μm2 s−1), however in this model it is necessary to 

slow the diffusion of inducer since the maximum acceptable time step in an RDME 

simulation scales with 1/D. It has been shown previously that this approximation has a 

limited effect on the outcome of the simulation,8 so long as the correct ordering of diffusion 

constants, DmRNA < Dprot. < Dind., is maintained. However, validity of the approximation 

notwithstanding, it is not necessary to treat a species found in such a high concentration (2 

μM) using a stochastic representation. The solution to this problem is to use multiple 

coupled simulation methods each for different concentration and diffusivity regimes, e.g. a 

deterministic, well-mixed representation using ODEs for small molecules in large 

concentrations or a deterministic, spatially resolved representation using PDEs for slowly 

diffusing molecules in high concentrations. Work on Lattice Microbes is underway to enable 

this ability. The external inducer species is transformed to internal through passive diffusion, 

represented as the first order reactions

(9)
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which occurs only in the plasma membrane site type, and active transport, represented by the 

Michaelis-Menten scheme

(10)

The internal species is free to diffuse through the plasma membrane, cytoplasm, and 

nucleoplasm regions. By dividing the inducer into internal and external species, we are able 

to model transport into the cell simply by using the plasma membrane compartment as a 

staging area.

Using the multi-GPU capabilities of Lattice Microbes,10 we complete a 60-minute 

simulation in 28 hours using eight NVIDIA TITAN X GPUs, taking 67-μs time steps. A 

summary of the simulation parameters and diffusion rates is provided in Table 2. 

Representative particle abundance time series are presented in Figure 3a–c. The 

concentration of inducer in the nucleus rises slowly, leading to the gene switching on at 4.2 

minutes. The first transporter protein reaches the membrane 9.3 minutes after the gene is 

activated (Figure 3d). At about 21.7 minutes, the nuclear inducer concentration dynamics 

becomes dominated by active transport with the appearance of 1900 transporter proteins in 

the membrane. Due to the finite size of the simulation volume and closed boundary 

conditions, the extracellular inducer is depleted to 1% of its original concentration after 46.7 

minutes of simulated time.

Exploring the nuclear periphery in a HeLa cell

Starting from an EM map of the periphery of a HeLa cell nucleus obtained through cryo-ET/

cryo-FIB,6 we constructed a discrete environment to explore a simple gene expression 

system. The density has been pre-segmented into six regions corresponding to actin 

filaments, microtubules, ER, large and small ribosomal subunits, and the nuclear pore 

complexes (Figure 4). Instead of using measurements derived from the EM density, the 

problem one is now posed with is how to directly map a 3D density represented on a grid 

sampled at 0.35 nm to a coarse-grained lattice which is faithful to the dimensions of the 

original tomogram. Solving this problem entails choosing a suitable threshold to 

discriminate cellular substructures from the background density, and determining an optimal 

lattice spacing for the RDME simulations.

To minimize the computational time necessary to perform the simulations, the lattice 

spacing must be large as possible while accurately reproducing the cellular substructure. In 

order to resolve the actin filaments we have chosen a lattice spacing of 8 nm, larger than 

their actual diameter (~6 nm), to ensure that the voxelized actin filaments remain contiguous 

while not excessively overestimating their impact on the excluded volume. To begin 

constructing the system geometry, the EM map was resampled to the dimensions of the 

RDME lattice using trilinear interpolation. A unique threshold is determined for each of the 

six segmented maps, which is used to compute a binary lattice such that lattice elements for 

which their density is below the threshold are interpreted as background. These thresholds 

were chosen such that the dimensions of the identified cellular substructures are correctly 
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recovered. Figure 4 shows a comparison between the segmented tomogram and the derived 

site type lattice.

Our simulation domain consists of four active regions, cytoplasm, nuclear pore, 

nucleoplasm, and ribosomal small subunit. The nuclear pore region allows the transport of 

particles between the cytoplasm and nucleus to be monitored, and the small subunit region 

contains the reaction sites for translation. The obstructions include the NPC, actin, 

microtubules, large subunit, and ER, as well as the nuclear envelope. Due to the orientation 

of the sample, the nuclear envelope was not resolved in the tomogram. To include this 

region, we will approximate its position and shape from the context of the tomogram.

To begin the construction of the RDME geometry, first two auxiliary binary lattices are 

constructed to aid in the construction of the simulation volume: the convex hull of all of the 

cryo-ET derived site type lattices,

(11)

and the neighborhood around the nuclear pores, NpcDomain, which is constructed by 

thresholding a Gaussian-filtered version of the NPC density. The nuclear envelope is 

constructed starting with a spherical shell,

(12)

where rn and rne are the radius of the nucleus and thickness of the nuclear envelope 

respectively, and xn is the position of the center of the nucleus, necessarily outside of the 

lattice space. The nuclear envelope region is then,

(13)

where • denotes the morphological closing operation and Snpc is a structuring element 

sufficient to fill the interior of the pores without joining adjacent NPCs. This allows us to 

construct the obstruction lattice as the union,

(14)

The nucleoplasm is constructed starting with the sphere,

(15)

then cropping to fit the simulation volume and subtracting the NPCs,
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(16)

The interior of the nuclear pores is simply,

(17)

Finally, the cytoplasm is the convex hull excluding all other regions,

(18)

The resulting simulation volume (Figure 5) is 1.554 × 0.296 × 1.496 μm3 (194 × 37 × 187 

lattice sites).

To explore this lattice geometry, we will use a simple model of gene expression (Table 3). 

mRNA diffuses from gene sites in the nucleoplasm, through the nuclear pores, to find 

ribosome species positioned in the small subunit site type. The mRNA and ribosome species 

react to form a translating ribosome, which then decays yielding the original mRNA and 

ribosome species as well as a transcription factor. Finally, the protein is able to diffuse back 

through the nuclear pores and repress its originating gene. The same diffusion constants 

were used for mRNA (0.5 μm2 s−1) and protein (1.0 μm2 s−1) in the HeLa model as in yeast, 

and the same deterministic rate constants were used as well. The numerical difference 

between the values in Table 1 and Table 3 arises from a factor of (λyeast/λHeLa)3 converting 

between lattice site volumes. We would not expect either the reaction rates or the diffusion 

constants to be identical between the two organisms, however going to slower, more realistic 

values will require tens of hours of simulated time to observe the same repression behavior. 

Since only the broad effects of the cell geometry on the reaction model are of interest, this is 

an acceptable approximation. We use a similar scheme as the S. cerevisiae model to keep 

particles in their proper compartments. The gene has a diffusion rate of zero in order to fix it 

in place inside the nucleus. The protein and mRNA species are forbidden from entering the 

obstruction regions. mRNA is prevented from reentering the nucleus by setting its transition 

from the cytoplasm into the nuclear pore to zero, however protein is not restricted from the 

nucleus. A summary of the simulation parameters and diffusion rates is provided in Table 2 

in comparison to the S. cerevisiae model.

As shown in Figure 6a the dynamics begins with the formation of mRNA from a gene 

located in the nucleoplasm. Within 0.85 seconds, it escapes through the nuclear pore into the 

cytoplasm and diffuses to one of the ribosome sites where it is translated into a repressor 

protein. The repressor protein appears on average 0.60 seconds after formation of the 

translating complex. Finally the newly translated protein diffuses back through the nuclear 

pore and represses the originating gene, taking an average time of 75.6 seconds measured 

from the birth of the mRNA. Since the mean translation time is 0.498 seconds and the gene/

repressor and ribosome/mRNA binding rates are fast, the first passage time (FPT) 
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distribution of gene repression events is dominated by the return of protein into the nucleus

—a consequence of the geometry of the simulation domain. There are many ribosome sites 

near the nuclear pores, allowing a newly exported mRNA to immediately begin translation, 

however a newly translated protein has no preferred direction to diffuse, so it will typically 

diffuse far from the pore before returning.

To study how obstructions such as the nuclear membrane and microtubules affect the time 

for a particle to diffuse between compartments and reaction sites, a second set of simulations 

were performed where all reactions were instantaneous, using both the previously defined 

geometry (Figure 5) and a version where the obstacles were removed. By requiring that the 

ribosome make a single protein, only a single particle is present at any time in the 

simulation. This allows the FPTs to be measured without ambiguity (Figure 6b–e).

We find that the transition times between gene to nuclear pore, nuclear pore to ribosome, and 

ribosome to nuclear pore are greater in the presence of obstacles. The transition from the 

gene site to the nuclear pore is 9.7 times greater, simply due to the fact that the particle must 

find one of the four nuclear pores to exit. The transition from nuclear pore to ribosome is 

only 2.2 times greater with obstacles. Here, the structures impeding the search are the large 

subunits, microtubules, actin filaments, and ER. With little opportunity to become trapped 

away from the ribosomes, it is not surprising that the difference in transition time is not as 

profound. The transition from the ribosome to a pore is 20.5 times greater with obstacles, 

which arises for the same reason as the gene to pore transition. However the mean time 

between encounters with the nuclear envelope or nuclear pores must be smaller for a particle 

in the nucleus versus a particle in the cytoplasm due to the fact that the volume of the 

cytoplasm is 3.5 times that of the nucleus. Interestingly, the time for the repressor to find the 

gene site after entering the nucleus is 1.18 times faster when obstacles are present. This is 

because the repressor is less likely to escape the nucleoplasm with the nuclear envelope 

intact.

Conclusions

Acquiring the capacity to simulate stochastic biochemistry in whole cells at a spatially 

resolved level over cell-cycle-long timescales, is a crucial step in the development of the 

field of computational biology. Through the availability of massively parallel computational 

hardware, such as GPUs, and the development of methods to measure the 3-D structure of 

cells in their native environment at high resolution, such as cryo-ET, it is now possible to 

build integrative computational models of whole cells. We have presented two vignettes of 

the integration of structural data into RDME models of gene expression. Though limited in 

realism, they provide an illustration of the techniques necessary for this sort of data 

integration and hint at the challenges faced in undertaking such a task.

Using the 3-D structure of a fraction of a yeast cell, we have shown a way to infer the 

remaining cell geometry from the tomogram supplemented with data from the literature, and 

simulated a multi-compartment model of an inducible genetic switch in this environment. 

From a previously published cryo-ET structure of the HeLa nuclear periphery, we have 

shown how to use the EM map data directly to construct a spatial model and simulate a gene 
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repression model, which was used to study the effect of the cellular substructure on the 

molecular search times. Models built using these techniques, compiling experimental data 

from many disparate sources into a single cohesive whole, will form a computational 

framework capable of making testable predictions of the effects of perturbations to both the 

underlying biochemical network and the architecture of the cell.
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Figure 1. 
(a) Tomographic slice of a S. cerevisiae cell (16 nm thickness). The nucleus (1), separated 

by the nuclear envelope (2) from the cytoplasm (3), occupies the majority of the tomogram. 

Ribosomes are visible in the cytoplasm (3) as dark spots (arrow). A portion of the cell wall 

(4) appears in the upper right corner. Nuclear pores (5) are present in the nuclear envelope. 

A mitochondrion (6) is present on the right edge of the tomogram, as well as a portion of the 

ER (7). (b, c) Annotated view of the tomographic data (240 nm thickness). Nuclear 

envelope, yellow; ribosome, cyan; cell wall, magenta; mitochondrion, green; ER, orange.
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Figure 2. 
(a) Construction of the simulation geometry of a S. cerevisiae cell derived from cryo-ET 

data and other literature sources. Regions marked “CET” are the segmentation surfaces from 

the tomogram, regions marked “fit” are derived from fitting ellipsoids to the cryo-ET 

segmentation data, and the regions marked “ext” are simulation compartments which were 

not derived from tomography. The nuclear envelope from the tomogram volume (cyan) is 

used to fit an ellipsoid (blue). A small segment of plasma membrane identified in the 

tomogram (magenta) is used to fit an ellipsoid (orange) along with constraints on its centroid 

and volume. Ribosomes (yellow) are distributed uniformly throughout the cytoplasm and act 

as molecular crowders to cytoplasmic protein and inducer. The mitochondria (green) and ER 

(gray) surfaces are included from the tomogram for context, however are not incorporated 

into the simulation. (b) Another view of the model yeast cell showing the placement of 

mitochondria (green), the vacuole (pink), the 129 nm thick cell wall (gold), and nuclear 

pores (silver).
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Figure 3. 
Species abundance time series for (a) inducer, (b) transporter protein, and (c) transporter 

mRNA for a single replicate. The vertical dotted line denotes the time at which the gene is 

activated. The extracellular inducer concentration decreases slowly due to passive transport 

into the cell until 21.7 minutes, after which transporter proteins begin to appear in the 

membrane and active transport of inducer begins. The distribution of transporter arrival 

times at the membrane (d) shows that the first membrane transporters appear at 10 minutes 

(5 minutes after gene induction).
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Figure 4. 
Adaptation of a segmented cryo-electron tomogram of the nuclear periphery of a HeLa cell6 

to RDME simulations using an 8-nm lattice spacing. The upper panel shows both the 

processed tomography data (upper left) and the discretized RDME lattice (lower right). The 

inset shows detail of the vicinity of a nuclear pore for both the original data (top), and the 

RDME lattice (bottom).
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Figure 5. 
RDME simulation volume for the HeLa nucleus periphery. The nucleoplasm and cytoplasm 

are shown in light blue and tan respectively. The cytoplasm is created from the convex hull 

of the cryo-ET derived site type lattices, where as the nucleoplasm is created from the 

neighborhood surrounding the nuclear pore complexes. The total accessible simulation 

volume is 0.329 μm3. The nucleoplasm and cytoplasm are connected by channels through 

the nuclear pore complexes.
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Figure 6. 
Abundance and escape dynamics for a simple genetic switch simulated in the intracellular 

environment of a HeLa cell. (a) Mean particle abundance (solid line) and standard deviation 

(shaded area) were computed over 37 simulation replicates. The time for a mRNA to diffuse 

out of the nucleus and find a ribosome is two orders of magnitude larger than the time for a 

newly translated protein to return and bind to its originating gene. The mRNA abundance in 

the cytoplasm is the sum of free mRNA and mRNA bound to ribosomes. (b–e) First passage 

time distributions of diffusion between compartments and reaction sites for the complete 

HeLa cell geometry (blue) and with all obstructions removed (green). These simulations 

were performed with instantaneous reaction rates in order to measure the time for diffusion 

alone over 222 simulation replicates. mRNA diffuses from the gene site into the cytoplasm 

(b), from the cytoplasm to the ribosome (c), the protein diffuses back into the nucleus (d), 

and the protein binds to the gene (e).
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Table 1

Reactions and rate parameters used in the S. cerevisiae gene expression model.

Description Reaction Stochastic rate [s−1] Defined regions

Inducer/TF binding 1.599 Nucleoplasm

Transcription 6.202 × 10−3 Nucleoplasm

SSU/mRNA association 7.043 × 103 Ribosome

Translation elongation 1.393 Ribosome

mRNA degradation 7.889 × 10−4 Nucleoplasm, Ribosome, NPC, 
Cytoplasm

mRNA degradation 7.889 × 10−4 Ribosome

Transcription (other) 5.895 × 10−5 Nucleoplasm

SSU/mRNA association (other)
7.043 × 103 Ribosome

Translation elongation (other)
1.101 Ribosome

mRNA degradation (other) 5.776 × 10−4 Nucleoplasm, Ribosome, NPC, 
Cytoplasm

mRNA degradation (other)
5.776 × 10−4 Ribosome

Passive diffusional transport
2.33 × 10−3 Membrane

Passive diffusional transport
2.33 × 10−3 Membrane

Transporter/inducer association
2.134 Membrane

Active inducer transport 12.000 Membrane

Transporter/inducer dissociation
0.120 Membrane

Transporter degradation 2.567 × 10−4 Cytoplasm, Membrane

Transporter degradation 2.567 × 10−4 Cytoplasm, Membrane
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Table 2

Model parameters and diffusion rates used in the S. cerevisiae and HeLa models.

Parameter

Model

S. cerevisiae HeLa

Time step [μs] 67.0 10.7

Lattice dimensions 192 × 192 × 192 224 × 128 × 224

Lattice spacing [nm] 28.7 8.0

Inducer diffusion rate [μm2 s−1] 2.045 –

mRNA diffusion rate [μm2 s−1] 0.5 0.5

Protein diffusion rate [μm2 s−1] 1.0 1.0

Protein diffusion rate (membrane) [μm2 s−1] 0.01 –

Maximum diffusion rate [μm2 s−1] 2.045 1.0
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Table 3

Simple model of a self repressing gene used in the HeLa model.

Description Reaction Stochastic rate [s−1] Defined regions

Repressor/gene association 73.622 Nucleoplasm

Translation initiation 3.243 × 105 SSU

Translation termination 1.393 SSU
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