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Abstract

Alzheimer's disease (AD) is the most common cause of adult dementia. Yet the complete set of 

molecular changes accompanying this inexorable, neurodegenerative disease remains elusive. Here 

we adopted an unbiased lipidomics and metabolomics approach to surveying frozen frontal cortex 

samples from clinically characterized AD patients (n=21) and age-matched controls (n=19), 

revealing marked molecular differences between them. Then, by means of metabolomic pathway 

analysis, we incorporated the novel molecular information into the known biochemical pathways 

and compared it with the results of a metabolomics meta-analysis of previously published AD 

research. We found six metabolic pathways of the central metabolism as well as 

glycerophospholipid metabolism predominantly altered in AD brains. Using targeted 

metabolomics approaches and MS imaging, we confirmed a marked dysregulation of the 

mitochondrial aspartate metabolism. The altered metabolic pathways were further integrated with 

clinical data, showing various degrees of correlation with parameters of dementia and AD 

pathology. Our study highlights specific, altered biochemical pathways in the brains of individuals 

with AD compared with those of control subjects, emphasizing a dysregulation of the 

mitochondrial aspartate metabolism and supporting future venues of investigation.
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Introduction

Alzheimer’s disease (AD) is the most common cause of adult-onset dementia. Rising life 

expectancy is associated with increased prevalence and incidence of dementia. A recent 

report estimates that one in every three people born in the UK in 2015 will suffer from this 

debilitating mental illness during their lifetime1. The need to identify novel molecular 

targets for AD to use in diagnostics and therapeutics is acute. Although a growing number of 

clinical research laboratories use mass spectrometry (MS) applications to investigate 

proteomic changes in AD2–6, insufficient effort has been dedicated to studying alterations in 

levels of small molecules, metabolites, and lipids2, 7–9. To effectively address any 

therapeutic challenge in AD, however, requires detailed information about its underlining 

molecular pathology.

Previous studies by our group and others have examined the profound biochemical 

alterations in the AD brain2, 10–18. Most of those studies adopted targeted analytical 

approaches that, based on prior hypotheses, focused on a particular group of lipids or 

metabolites, belonging, for example, to a specific metabolic pathway. Changes in selected 

lipids or metabolites in AD brains, it is speculated, result from a cascade of cellular events 

involving abnormal beta-amyloid protein metabolism, tau phosphorylation, oxidative stress, 

mitochondrial or peroxisomal dysfunctions, inflammation, neurotransmitter changes, 

membrane lipid dysregulation, apoptosis, or changes in other proteins/chemicals19, 20. 

According to a targeted analytical approach, however, the specific lipids or metabolites that 

undergo analysis are selected according to the questions asked, which might hinder the 

discovery of unexpected metabolic dysregulations in AD brains.

The use of untargeted metabolomics and lipidomics approaches, on the other hand, can offer 

an unbiased view of the molecular changes occurring in AD brains21, 22. Untargeted 

approaches are hypothesis-generating and exploratory in nature, their purpose being to 

obtain profiles of as many metabolites and lipids as possible in biological samples. By 

comparing metabolite and lipid profiles, we can thus determine patterns of variations 

between control and AD subjects, and we can generate novel hypotheses or support old 

venues of investigations. According to an untargeted analytical approach, features of interest 

are selected on the basis of statistical analyses and are then identified and eventually 

quantified using more targeted approaches. Yet, most untargeted studies are focused on 

biomarker discovery and usually provide only a list of individual molecular species that are 

altered, while missing to highlight the functional connectivity among different biochemical 

pathways in AD brains.

Recent technological advances in the field of MS and bioinformatics allows us to combine 

untargeted and targeted analytical approaches in a single analysis to provide simultaneously 

a bird's-eye view of the interconnected metabolic changes, as well as a magnified view on 

selected biochemical pathways of interest, providing novel opportunities to investigate AD 

brains. Furthermore, while traditional approaches generally involve processing and 

extracting the samples before MS analysis, which may alter the chemical composition of the 

molecules under study, novel analytical approaches such as MS imaging allows to determine 

the spatial localization of lipids or metabolites in their natural environment. By scanning 
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through tissues, MS imaging allows us to generate topographical maps of molecular 

distribution in the AD brain23, 24.

In this study, we used a combination of state-of-the-art untargeted and targeted lipidomics 

and metabolomics, as well as MS imaging, to profile postmortem brains from AD subjects 

and non-demented controls. Using innovative biostatistical and bioinformatical approaches 

we highlighted specific biochemical pathways altered in AD, which were then correlated 

with clinical records such as degrees of dementia and pathology. Finally, we compared our 

results with a meta-analysis of previously published research on AD, supporting venues of 

investigations in AD research.

Experimental Section

Chemicals

All chemicals and polar metabolites used as standards were purchased from Sigma-Aldrich® 

(Seelze, Germany) and were of analytical-grade purity or higher. Lipid standards were 

purchased from Avanti® Polar Lipids (Alabaster, Alabama USA) and Cayman Chemicals 

(Ann Arbor, MI, USA).

Tissue Procurement

From a cohort of 19 control subjects (12:7, males to females) and 21 subjects with AD 

(9:12, males to females) frozen, human samples were obtained from the Banner Sun Health 

Research Institute (Sun City, AZ, USA) (Table 1). The samples were matched for age: 83.5 

±6.4 years for the control subjects and 82.4 ± 6.7 years for subjects with AD (mean ± SD). 

The samples were also matched for postmortem interval: 3.6 ± 1.7 hours for control subjects 

and 3.6 ± 1.4 hours for subjects with AD (mean ± SD) (Table 1). AD cases met the criteria 

of the National Institute on Aging–Reagan Institute for intermediate or high likelihood of 

Alzheimer's disease. All subjects or, where appropriate, their caregivers provided written, 

informed consent for both the clinical examination as well as for brain donation to the 

Banner Sun Health Research Institute Brain and Body Donation Program. The protocols and 

informed consent are approved by the Banner Health Institutional Review Board.

Sample preparation

Frozen brain samples were rapidly weighed (20 mg) and homogenized in ice-cold methanol 

(1 vol) containing the following internal standards: d8 arachidonic acid, cholesterol-d7, 

C19:0-cholesteryl ester, trinonadecenoin, 1,2-dimyristoyl-sn-glycero-3-

phosphoethanolamine, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1-heptadecenoyl-2-

hydroxy-sn-glycero-3-phosphocholine, phenylalanine d2, succinate d4, glucose 13C6, 

carnitine d9, glutamic acid d5, lysine d4, alanine d4, AMP 13C10
15N5. Metabolites were 

extracted by adding chloroform and water (2:1, vol/vol) and centrifuged at 10,000 xg for 10 

min at 4°C. The bottom phases (mostly lipids) were dried under nitrogen, reconstituted in 

isopropanol/acetonitrile/water (4:3:1, vol:vol:vol; 0.1 mL) and subjected to LC/MS analysis. 

The upper phases (polar metabolites) were dried under vacuum, reconstituted in water/

acetonitrile (1:1, vol:vol; 0.2 mL) and subjected to LC/MS analysis. A small amount (10 μL) 

from each sample was pooled, for use as quality controls for LC/MS analyses.
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Metabolomic analyses

Chromatographic separation was achieved using an ACQUITY UPLC system (Waters® 

Corporation, Milford, Massachusetts USA) and hydrophilic-interaction liquid 

chromatography (HILIC) using a 1.7 µm (2.1 × 150 mm) ACQUITY amide column 

(Waters)25–27. A Synapt G2 mass spectrometer (Waters) was coupled with the UPLC 

system and operated in data-independent mode (MSE) 28. Pooled samples were analyzed in 

high definition MSE mode (HDMSE)23, 29. In positive electrospray mode, the capillary and 

cone voltage were 1.5 kV and 30 V, respectively. The source temperature and desolvation 

temperature were 120 °C and 500°C, respectively, and the flow rate of desolvation gas was 

800 L/hr. During MSE experiments, the collision energy in the trap cell was 4 eV (Function 

1), and in the transfer cell, it ranged from 15 eV to 30 eV (Function 2).

Samples were analyzed three times using UPLC-HILIC-MSE, once in positive ionization 

mode and twice in negative ionization mode, using acidic and basic chromatographic 

conditions, respectively25, 30. In positive mode and in negative acidic conditions, mobile 

phase A was 100% acetonitrile, and B was 100% H2O, with both containing 0.1% formic 

acid. The following elution gradient was used: 0 min, 99% A; 6 min, 40% A; 8 min, 99% A; 

10 min, 99% A. In negative-mode basic conditions, mobile-phase A contained acetonitrile/

sodium bicarbonate, 10 mM (95:5), and mobile-phase B contained acetonitrile/sodium 

bicarbonate, 10 mM (5:95). The following elution gradient was used: 0 min, 99% A; 5 min, 

42% A; 6 min, 70% A; 7 min, 99%; 10 min, 99 % A. In all conditions, the flow rate was 0.4 

mL/min, the column temperature 45°C, and the injection volume 3.5 µL.

Lipidomic analyses

Lipidomic analyses of the brain samples were performed using an ionKey/MS system 

comprised of the ACQUITY UPLC M-Class, ionKey source, and an iKey CSH C18 130 Å 

(1.7µm particle size) 150 μm × 100 mm column (Waters) coupled to a Synapt G2-Si 

(Waters). Analyses were conducted in both positive and negative electrospray in MSE mode. 

Pooled samples were analyzed in high definition MSE mode (HDMSE)23, 24, 31. The 

capillary voltage was 2.8 kV and the source temperature 110 ºC. Injections were 0.5 μL, in 

the partial-loop mode, with a column temperature of 55 ºC and flow rate of 3 µL/min. 

Mobile phase A consisted of acetonitrile/water (60:40) with 10 mM ammonium formate 

+ 0.1% formic acid. Mobile phase B consisted of isopropanol/acetonitrile (90:10) with 10 

mM ammonium formate + 0.1% formic acid. The gradient was programmed as follows: 0.0–

2.0 min, from 40% B to 43% B; 2.0-2.1 min, to 50% B; 2.1–12.0 min, to 99% B; 12.0–12.1 

min, to 40% B; and 12.1-14.0 min, at 40% B.

Laser Ablation Electrospray Ionization MS (LAESI-MS) imaging

Frozen, human brain samples were serially sectioned in a cryostat, to allow alternate 

microscopic and MS-imaging analyses. Sections were placed on standard microscope slides 

and kept frozen at -15°C throughout the analysis using the Peltier cooling stage of laser 

ablation electrospray ionization (LAESI®). Sections were analyzed using the LAESI 

DP-1000 Direct Ionization System (Protea® Bioscience, Morgantown, West Virginia, USA) 

coupled with a Synapt G2-S mass spectrometer operated in HDMS mode. The electrospray 

solution for LAESI was methanol/water (50:50, v:v) with 0.1% acetic acid. LAESI 
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parameters consisted of 10 laser pulses per pixel, at 5 Hz and 800 uJ of laser energy. Data 

were collected in both negative- and positive-ion mode using a mass range of m/z 50 to 1500 

for MS scans as well as for ion-mobility-MS scans. Identifications were made according to 

accurate-mass and collision cross sections (CCS) values29. Selected drift-time regions were 

extracted using DriftScope™ software (Waters). Ion distribution maps were created for mass 

values of interest using ProteaPlot v2.0.3.8 (Protea Bioscience).

Data Processing and Analysis

Data processing and analysis was conducted using Progenesis QI Informatics (Nonlinear 

Dynamics®, Newcastle, UK)29. Each UPLC-MS run was imported as an ion-intensity map, 

including m/z and retention time. These ion maps were then aligned in the retention-time 

direction. From the aligned runs, an aggregate run representing the compounds in all 

samples was used for peak picking. This aggregate was then compared with all runs, to 

ensure that the same ions are detected in every run. Isotope and adduct deconvolution was 

applied, to reduce the number of features detected. Data were normalized according to total 

ion intensity. A combination of analysis of the variance (ANOVA) and multivariate statistics, 

including principal-component analysis (PCA) and orthogonal partial least-squares 

discriminant analysis (OPLS-DA), identified features most responsible for differences 

between sample groups. Before multivariate analysis data was scaled using pareto and log 

trasformed. PCA and OPLS-DA were performed by using SIMCA-P (Umetrics, Umea, 

Sweden), Metabolites were identified by database searches against their accurate masses 

using publicly available databases, including the LIPID MAPS32 database and the Human 

Metabolome database (HMDB)33 as well as by fragmentation patterns, retention times and 

CCSs, when available. Pathway analysis, which consisted of enrichment analysis and 

pathway topological analysis, were conducted using Metabolomics Pathway Analysis 

(MetPA) feature within MetaboAnalyst34. TargetLynx™ software (Waters) was used for 

targeted analysis of selected features using internal standards for each class as previously 

reported25, 30. Correlation analysis was performed by using MetaboAnalyst34. Pearson test 

(r) was used to measure the correlation.

Metabolite cluster enrichment analysis

Enrichment analysis of changed metabolite classes, subclasses and LIPID MAPS®35 

subclasses was performed according to the methods previously used by Watschinger et al.,36 

with some modifications. Briefly, a distance matrix between metabolite profiles was 

generated by hierarchical clustering of normalized profiles (Z-scores) and then used to 

separate the metabolites into six clusters, according to their similarities. For each cluster 

HMDB33 class, HMDB subclass and LIPID MAPS35 subclass enrichment analysis was 

performed separately. Depending on the level on which the enrichment analysis was 

performed, all annotated IDs from the respective databases were used. For each individual 

HMDB class, HMDB subclass and LIPID MAPS subclass, a hypergeometric test based on 

the counts of significantly altered compounds versus all possible identifications was 

performed. We selected an ANOVA p-value of 0.01 and a minimum number of 3 or more 

compounds per category as significance criteria. Every enrichment analysis was performed 

separately for the complete data set as well as for all six clusters identified on the basis of 

profile similarity (as described above).
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Metabolomics Pathway Meta-Analysis

The PubMed® database was cross searched (in March 2015) for the term “Alzheimer” and 

each metabolite present in the HMDB in all fields (i.e., title, abstract, keywords). 

Information about the human metabolome was downloaded from the HMDB at the web 

address www.hmdb.ca/download. Each metabolite entry was saved as an extensible markup 

language (XML®) file called MetaboCard. Each MetaboCard entry contains more than 110 

data fields with two thirds of the information devoted to chemical and physical data and the 

remaining third to enzymatic or biochemical data. Many data fields are linked to other 

databases (KEGG®, PubChem®, MetaCyc, ChEBI, PDB, UniProt®, and GENBANK)33, 37, 

38. R software,39 running on scripts developed in-house, was used to gain access to the 

MetaboCard entries, to obtain information about each metabolite, its synonyms, and to query 

the PubMed database in all fields (i.e., title, abstract, keywords). Because in the literature the 

same metabolite can be present under different names, each query to PubMed was parsed as 

follows: “Alzheimer AND (synonym#1 OR synonym#2 OR synonym#3 OR synonym#4)”. 

The function xmlTreeParse and xmlValue of the R-package XML were used to analyze the 

output from PubMed and to count the numbers of papers for each query. A metabolite-set 

enrichment analysis (MSEA®) was performed using over-representation analysis (ORA) 

using the Web tool freely available at the Internet address http://www.msea.ca/MSEA/.

Results

Table 1 shows the demographic and neuropathological characteristics of the subjects with 

AD and the control subjects used in this study. Notably, in order to limit artifacts due to 

aging or tissue degradation, the groups were closely matched for age and postmortem 

interval, which in average was kept under 4 hours.

Unbiased metabolomic and lipidomic analyses

To extract metabolites and lipids from the same brain tissue samples, we used a biphasic 

liquid/liquid extraction method. The procedure permitted the extraction of selectively polar 

metabolites in the aqueous phase while lipids were isolated in the organic phase. We then 

applied, separately, our untargeted metabolomic and lipidomic workflows to these samples. 

Additional brain samples were also prepared for MS imaging analyses (Figure 1).

To determine whether the disease induced molecular differences in the AD brains, we first 

used multivariate statistical approaches as an initial step for data visualization. PCA and 

OPLS-DA showed a clear clustering of the control and AD brains for both lipidomic (Figure 

S1a, supporting information) and metabolomic (Figure S1b, supporting information) 

analyses. Integration of lipidomic and metabolomic information showed that 82% of 

metabolite alterations presented a joint variation with lipids, whereas 20% of the lipids 

evidence a unique variation (Figure S1c, supporting information). These observations 

indicate that AD brains sustained profound molecular changes that affected both lipids and 

other metabolic pathways in an interconnected fashion.
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Enrichment analyses

To determine the chemical classes of lipids and metabolites altered in AD brains, we 

performed a hierarchical clustering analysis of all the potential molecular identifications 

(Figure 2a). Metabolites could be divided into six clusters, according to the distance between 

their individual profiles (Figure 2). Three of the clusters (Figure 2, clusters 1, 3, and 4) were 

characterized by a significant increase in metabolite levels in AD samples, compared with 

non-demented (ND) controls (Figure 2a). The remaining 3 clusters (Figure 2, clusters 2, 5, 

and 6) revealed the opposite effect: higher levels of metabolites in the controls (Figure 2a).

Although the apparent differences between the clusters with similar profile changes are 

small, our enrichment analysis revealed that the clusters have a distinct metabolic 

composition (Figure 2b and c). The HMDB classification system allowed differentiating 

metabolites according to their kingdom, super class, class, and subclass (Figure 2b). The 

LIPID MAPS classification system provided additional information. Located one layer 

below the HMDB subclass information, the LIPID MAPS subclass information, with an 

associated LIPID MAPS ID, was also included in the analysis for metabolites (Figure 2c). 

This analysis indicated that the lipid class of glycerophospholipids—in particular, 

phosphatydilcholines and phosphatidylethanolamines—appeared to be mostly altered in AD 

brains, compared with control brains, a finding cited in previous reports10, 20, 40–48. It is 

important to note that the same class of metabolites, such as glycerophospholipids, showed 

an increase in AD in clusters 1-3, whereas a decrease in clusters 4 and 5 (Figure 2b), which 

indicate a differential regulation of lipid species within the same subclass (Figure 2c). 

Changes in lipid composition may profoundly affect membrane structure, transmembrane 

signaling, and cell-to-cell communication in the brain, and they may thus underlie an 

important aspect of AD pathology. Further studies will aim to validate such lipid variations 

and their relation to AD.

Alterations in Metabolic Pathways

To determine the biochemical pathways mostly affected in AD brains, we identified and 

monitored with a targeted approach25 a subset of polar metabolite that was shown to 

discriminate between brains from AD patients and those from non-demented (ND) controls 

(Figure 3a and b). Metabolites were identified based on an in-house database24, 25, 29 and, 

where standards were not available, by comparing exact mass, and fragmentation spectra 

information with online databases. Metabolomics pathway analysis indicated six metabolic 

pathways affected during AD (Figure 3c, d and Table 2). In particular, the alanine, aspartate 

and glutamate metabolism proved one of the most affected pathways in the frontal cortices 

of subjects with AD, compared with those of non-demented control subjects (Figure 3c,d 

and Table 2). A significant dysregulation of the aspartate and glutamate metabolism was also 

confirmed by the MS-imaging experiment (Figure 4b). The alterations of metabolites such 

as aspartate, glutamate, citrate, and malate (Figure 4a) as well as the accumulation of N-

acetyl aspartate (NAA) (Figure 4b), pyruvate, serine, and lactate (Figure S2, supporting 

information), in the frontal cortex samples of the AD subjects suggest that the transport 

mechanism between mitochondria and cytosol might be impaired in AD brains (Figure 4c).
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To determine the clinical significance of these metabolomic findings, we created scores 

indicative of the levels of metabolites belonging to the six metabolic pathways (Table 2) and 

correlated them with parameters of dementia and AD pathology (Figure 3b and d). For each 

pathway a PLS model was built considering the metabolite concentrations as X and the 

metadata as y. Permutation test on y and stability test based on Monte-Carlo sampling and 

PLS VIP-based were performed to check over-fitting. The set of metabolites detected by 

stability test was used to calculate Q2
CV 7-fold (i.e., R2 calculated by 7-fold, full, cross-

validation). Robust models for all pathways were found for AD, with the alanine, aspartate 

and glutamate pathway having the strongest correlation. No association with age, post-

mortem interval (PMI), body mass index (BMI) and gender (Figure 3 b and d), with the only 

exception being a minor association between pathway 5 and gender (Figure 3 d). All the 

pathways were strongly associated with pathological hallmarks of AD, such tangles, while a 

smaller association was found with plaques. One of the most promising model for explaining 

cognitive status as measured by mini-mental state examination (MMSE) was found using 

metabolites of the alanine, aspartate and glutamate pathway.

An in-depth analysis of the alanine, aspartate and glutamate pathway revealed that the levels 

of aspartic acid and succinic acid positively correlated with the MMSE, whereas the levels 

of pyruvic acid, glutamine, and NAA negatively correlated with MMSE (Figure S3, 

supporting information). Levels of alanine, asparagine, and glutamic acid showed only a 

weak correlation with the clinical data (Figure S3, supporting information).

Literature comparison—To compare our results with the literature, we performed a 

metabolomics meta-analysis of the previously published AD literature in PubMed. We cross-

searched the terms “Alzheimer” and the complete list of the metabolites and their synonyms, 

as reported in HMDB (41,514 entries)33. We then used the number of publications as an 

index of correlation between AD and the metabolite. A metabolite-set enrichment analysis38 

helped identify patterns of metabolites most studied in AD research. It showed the aspartate 

and glutamate pathway as historically one of the most studied, agreeing with the outcome of 

our metabolomics investigation (Figure S4, supporting information).

Discussion

In this study we used a combination of innovative analytical approaches to conduct an 

unbiased metabolomics and lipidomics investigation of the biochemical pathways that are 

affected in AD brains.

As for all metabolomics and lipidomics analyses, study design, such as sample size, post-

mortem interval and genotype (e.g., ApoE), as well as standard operating procedures, such 

as sample preparation, can affect results. Our study had multiple key features in terms of the 

analytical and analyses aspects that should be taken into consideration. First, our cohort size 

was of 21 AD subjects and 19 non-demented controls; groups were matched by age and 

post-mortem interval; frontal cortices were selected as region of the brain. Second, in order 

to limit artifacts due to sample degradation our criteria for subject selection required a post-

mortem interval average of less than 4 hours, which is remarkably short for post-mortem 

brains. Third, to further limit artifacts due to enzymatic reactions and oxidation, brain 
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samples were weighted while still frozen; next they were quenched with ice cold methanol; a 

liquid/liquid extraction allowed to separate hydrophilic from hydrophobic compounds in a 

single procedure; MS imaging was also used to support and confirm traditional analyses, 

while avoiding the process of extracting the samples. Finally, using data-independent 

acquisition mode, we obviated the need to analyze the sample in untargeted MS mode and 

then rerun the same sample in targeted MS/MS mode, but instead we automatically acquired 

the fragmentation data from each precursor ion49. The simultaneous generation of high-

resolution, full scan, and fragmentation spectra served as a repository of biological 

information that was reused after statistical analyses to semi-quantify selected biochemical 

pathways. This approach allowed us to combine untargeted and targeted analysis, 

maximizing the identification of compounds and biochemical pathways in a single analytical 

run.

Our study uncovered significant alterations in key mitochondrial metabolites, which 

correlated with symptoms of dementia and AD pathology. Notably, as highlighted from our 

literature meta-analysis, previous research on AD largely focused on targeted metabolites of 

the alanine, aspartate and glutamate metabolism, often missing a bird's-eye view of the 

underlying biochemical alterations and their functional metabolic connectivity. Our 

metabolomic approach provided a comprehensive view of key metabolites of this pathway, 

pointing to a specific mitochondrial dysfunction in AD brains, which affects processes 

involved in the transport of metabolites between mitochondria and cytosol.

Acetyl-CoA can be transported into mitochondria by means of two main shuttles after 

conversion into either NAA or citrate (Figure 4c). In the first mitochondria shuttle, NAA is 

transported in the mitochondria and then converted to acetate by aspartoylacylase and, 

finally, converted back to acetyl-CoA by acetyl-CoA synthetase (Figure 4c). The observation 

that the levels of key metabolites in this process (i.e., NAA, aspartate and glutamate) are 

altered in AD and correlated with dementia and pathology, suggest that this transport 

mechanism is affected in AD (Figure 4). In the second mitochondria shuttle, citrate is 

transported in the mitochondria and then converted back into acetyl-CoA by the acetyl-CoA 

by ATP-citrate lyase. The observation that the levels of key metabolites in this process (i.e., 

citrate, malate, glutamate and aspartate) were significantly changed in AD, supports an 

impairment in the transport mechanism. The fact that key metabolites in both mitochondria 

shuttles are altered could reflect a more general mitochondrial dysfunction in AD brains.

The role of mitochondria as regulators of brain energy metabolism makes it crucial to 

neuronal cell survival or death. Growing evidence indicates that mitochondrial dysfunction 

is an early event during the progression of AD and one of the key intracellular mechanisms 

associated with the pathogenesis of this disease50–53. Recent findings demonstrated that α-

ketoglutarate dehydrogenase complex regulates mitochondrial metabolism through post-

translational modification of other enzymes in mitochondria54 and that AD patients have 

decreased activity of this enzyme55.

Our observations agree with a recent report using 1HNMR-based 56. Altered concentrations 

of brain NAA, as measured by magnetic resonance (MR), have been commonly associated 

with neurotoxicity and its levels have been used to assess in vivo neuronal loss and 
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neurodegeneration in AD57–59. However, NAA concentration in the brain varies according 

to the brain region investigated. Indeed it has been shown that the concentration of NAA 

selectively decreases in specific brain areas such as hippocampus and the amygdala but not 

in the frontal cortex60.

We cannot exclude that the levels of NAA and other metabolites are consequence of dietary 

regimens or pharmacological treatments of the AD subjects. Previous evidence indicates, for 

example, that the levels of NAA increase during cholinergic treatment in AD61, 62 and 

could be reversed after other therapeutic interventions63, 64. Further investigations are 

needed to better understand the role of the mitochondrial aspartate metabolism in AD.

Conclusions

AD is a neurodegenerative disorder that is characterized by the loss of cognitive abilities and 

the appearance of pathological hallmarks in the brain, such as extra neuronal plaques and 

neurofibrillary tangles. In this study, we used an innovative analytical approach based on a 

combination of untargeted and targeted lipidomic and metabolomics, as well as MS imaging 

to investigate the metabolic alterations occurring in the AD brain. We explored the 

biochemical significance of the observed metabolic alterations according to known 

metabolic pathways. We then used novel bioinformatics and biostatistical approaches to 

integrate the novel acquired metabolic knowledge of AD brains with clinical records and 

literature meta-data. Most notably, we uncovered a significant dysregulation in the 

mitochondrial aspartate metabolism in the AD brain, which correlated with dementia and 

AD pathology. As such, our study provides a solid rationale for future pharmacological or 

metabolic interventions and other functional experiments aimed to better understand the role 

played by the mitochondrial aspartate metabolism in the etiology and progression of the 

cognitive impairment and pathological hallmarks associated with AD. Our study also 

suggests novel venues of investigation for biomarker discovery in peripheral tissues, such as 

blood, related to the metabolic changes that we observed in AD brains.
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Figure 1. Experimental Workflow.
Frontal cortex samples from AD subjects (n = 21) and non demented controls (n = 19) were 

extracted using a biphasic system (CHCl3/CH3OH/H2O, 2:1:1; vol:vol:vol). Top layer was 

analyzed using a metabolomics approach for polar metabolites; bottom layer was analyzed 

using a lipidomics approach for lipid. Initial discovery data were further investigated using 

targeted metabolic-profiling approaches and MS imaging. The results were then fused and 

integrated with clinical parameters.
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Figure 2. Metabolite cluster and enrichment analysis. of molecular species affected by AD.
a) Unsupervised hierarchical clustering analysis of all the potential molecular identifications 

according to their co-regulation in AD brains. The clustered profiles were divided into six 

different groups with distinctive behavior. Metabolite and lipid concentration changes are 

shown in the respective groups. Each box is calculated from all lipids belonging to the 

respective group, each with peak-area data from five biological replicates. Z scores were 

determined according to the mean and SD of all data for the respective metabolite. b) 

Enrichment analysis obtained by using the HMDB classification system. c) Lipid subclass 

enrichment analysis obtained by using the LIPID MAPS classification system. Only 

significantly enriched subclasses for AGMO modulation are shown (P value of enrichment 
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<0.001). Circle size represents the number of lipid species matching the respective subclass. 

Enrichment P values are indicated by the intensity of red filling of the circles.
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Figure 3. Integration of metabolomics and clinical information.
a) Heat map of selected polar metabolites. b) Principal component analysis performed on 

clinical information. c) Pathway analysis performed on metabolomics results. d) Integration 

of pathway analysis results with clinical information. The heat map shows the relationships 

between clinical data and pathways; pathways and metadata are ordered according to 

hierarchical cluster analysis, to simplify the interpretation of the map; metadata closed each 

other have a similar profile with respect to the relationships with the pathways while 

pathways closed each other shows similar relationships with respect to the metadata; for 

“relationships” one means linear relationships between the concentrations of the metabolites 

included in the pathway and the metadata on the basis of PLS regression. The heat map was 

colored according to Q2
CV 7-fold. “NS” means no significant PLS regression model 

(Q2
CV 7-fold p-value> 0.05).
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Figure 4. Mitochondrial shuttles.
a) Bar charts of aspartate, malate, citrate and glutamate obtained using normalized signals in 

AD (red) and non-demented (ND) control subjects (green). b) Bar chart of N-acetylaspartate 

(NAA) obtained using normalized signals in AD (red) and control subjects (green) and MS 

imaging of AD and control subjects brain sections. c) Mitochondrial shuttles and metabolites 

quantified in this experiment (blue dots). * = p < 0.05 (t-test). Targeted data used for bar 

charts were normalized by mean centering, scaled using unit variance and log transformed.
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Table 1

Demographic and neuropathological features of the subjects used in this study.

AD subjects Control subjects

Total number 21 19

Sex (male/female) 9/12 12/7

Age (years) 82.4±6.7 83.5±6.4

Post-mortem interval (hours) 3.6±1.4; 3.6±1.7

Tangle score (Braak and Braak) V (n=11); VI (n=10); I (n=2); II (n=4); III (n=7); IV (n=6);

Plaque Density Frequent (20); Moderate (1) Zero (7); Sparse (2); Moderate (4); Frequent (6)

MMSE score 13.4±7.9 28.0±1.7

BMI 24.7±3.8 25.0±3.9

Plus and minus values are means ± SD. BMI, body-mass index; MMSE, Mini-Mental Status Examination
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Table 2

List of the most affected pathways and their metabolites in human frontal cortex of AD subjects compared to 

non-demented (ND) control subjects. Values are expressed as means ± SD of normalized MS intensity. 

HMDB, Human Metabolome Database.

Metabolic Pathways HMDB ID Metabolite AD ND T test
p value

Path 1: Alanine, aspartate and glutamate metabolism
(p=7.19E-09)

HMDB00812 Acetylaspartic acid 1.01±0.44 0.57±0.21 2.47E-04

HMDB00191 Aspartic acid 1.50±0.78 3.37±1.33 2.67E-06

HMDB00161 Alanine 5.95±1.68 5.28±1.07 1.45E-01

HMDB00168 Asparagine 0.15±0.07 0.20±0.09 1.07E-01

HMDB00243 Pyruvate 0.09±0.03 0.05±0.03 6.11E-05

HMDB00148 Glutamic acid 24.43±8.58 18.31±7.06 1.92E-02

HMDB00641 Glutamine 43.09±24.72 16.92±10.70 1.28E-04

HMDB00254 Succinic acid 0.20±0.07 0.21±0.10 5.47E-01

Path 2: Arginine and proline metabolism
(p=1.58E-08)

HMDB00191 Aspartic acid 1.50±0.78 3.37±1.33 2.67E-06

HMDB00641 Glutamine 43.09±24.72 16.92±10.70 1.28E-04

HMDB00148 Glutamic acid 24.43±8.58 18.31±7.06 1.92E-02

HMDB00517 Arginine 12.92±6.00 10.34±3.81 1.17E-01

HMDB00162 Proline 0.17±0.08 0.13±0.06 6.69E-02

HMDB01185 SAMe 2.03±0.80 1.38±0.83 1.69E-02

HMDB00725 Hydroxyproline 3.21±2.02 1.42±0.85 9.91E-04

HMDB00243 Pyruvate 0.09±0.03 0.05±0.03 6.11E-05

HMDB01138 Acetylglutamic acid 17.77±8.12 9.81±3.66 3.52E-04

Path 3: Cysteine and methionine metabolism
(p=1.81E-07)

HMDB00191 Aspartic acid 1.50±0.78 3.37±1.33 2.67E-06

HMDB00187 Serine 2.67±1.61 1.54±0.66 7.31E-03

HMDB00192 Cystine 0.197±0.200 0.20±0.20 9.64E-01

HMDB00161 Alanine 5.95±1.68 5.28±1.07 1.45E-01

HMDB00696 Methionine 0.69±0.24 0.58±0.26 1.59E-01

HMDB00939 SAH 0.82±0.29 0.62±0.22 2.26E-02

HMDB01185 SAMe 2.03±0.80 1.38±0.83 1.69E-02

HMDB00243 Pyruvate 0.09±0.03 0.05±0.03 6.11E-05

Path 4: Glycine, serine and threonine metabolism
(p=1.01E-08)

HMDB00191 Aspartic acid 1.50±0.78 3.37±1.33 2.67E-06

HMDB00167 Threonine 1.52±1.70 0.31±0.21 3.86E-03

HMDB00187 Serine 2.67±1.61 1.54±0.66 7.31E-03

HMDB00097 Choline 0.59±0.26 0.41±0.24 2.73E-02

HMDB00929 Tryptophan 0.12±0.06 0.10±0.04 3.29E-01

HMDB00243 Pyruvate 0.09±0.03 0.05±0.03 6.11E-05

Path 5: Purine metabolism
(p=3.13E-06)

HMDB00618 Pentose 5-phosphate 0.011±0.005 0.009±0.005 2.87E-01

HMDB01178 ADP-ribose 0.09±0.07 0.06±0.06 1.52E-01

HMDB00641 Glutamine 43.09±24.72 16.92±10.70 1.28E-04
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Metabolic Pathways HMDB ID Metabolite AD ND T test
p value

HMDB01341 ADP 0.016±0.013 0.010±0.010 1.45E-01

HMDB00045 AMP 0.32±0.26 0.19±0.22 8.95E-02

HMDB01397 GMP 0.07±0.04 0.06±0.05 2.97E-01

HMDB00133 Guanosine 2.35±1.84 2.35±2.04 9.99E-01

HMDB00175 IMP 0.02±0.01 0.01±0.01 2.70E-02

HMDB00289 Uric acid 0.80±0.43 1.10±0.65 8.90E-02

HMDB00292 Xanthine 1.09±0.47 2.29±1.08 4.10E-05

HMDB00299 Xanthosine 0.09±0.04 0.20±0.13 9.03E-04

HMDB00157 Hypoxanthine 25.91±9.08 22.68±9.34 2.74E-01

HMDB00195 Inosine 23.76±11.38 36.80±17.68 7.95E-03

Path 6: Pantothenate and CoA biosynthesis
(p=1.49E-08)

HMDB00191 Aspartic acid 1.50±0.78 3.37±1.33 2.67E-06

HMDB00243 Pyruvate 0.09±0.03 0.05±0.03 6.11E-05

HMDB00883 Valine 0.09±0.03 0.08±0.03 5.21E-01

HMDB00210 Pantothenic acid 2.19±2.18 1.82±0.61 4.77E-01
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