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Summary

Metabolism is an emerging stem cell hallmark tied to cell fate, pluripotency and self-renewal, yet 

systems-level understanding of stem cell metabolism has been limited by the lack of genome-scale 

network models. Here we develop a systems approach to integrate time-course metabolomics data 

with a computational model of metabolism to analyze the metabolic state of naïve and primed 

murine pluripotent stem cells. Using this approach, we find that one-carbon metabolism involving 

phosphoglycerate dehydrogenase, folate-synthesis and nucleotide-synthesis is a key pathway that 

differs between the two states, resulting in differential sensitivity to anti-folates. The model also 

predicts that the pluripotency factor Lin28 regulates this one-carbon metabolic pathway, which we 
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validate using metabolomics data from Lin28-deficient cells. Moreover, we identify and validate 

metabolic reactions related to S-adenosyl-methionine production that can differentially impact 

histone methylation in naïve and primed cells. Our network-based approach provides a framework 

for characterizing metabolic changes influencing pluripotency and cell-fate.
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Introduction

Pluripotent stem cells are able to self-renew and have the capacity to regenerate all tissues in 

the human body. Recently, there has been a resurgence of interest in stem cell metabolism 

due to its role in affecting signaling pathways and epigenetic processes, apart from 

synthesizing precursors and generating energy for stem cell renewal. Understanding the 

metabolism of pluripotent stem cells holds promise for understanding early development as 

well as for regenerative medicine.

Two distinct states of pluripotent stem cells that differ in their developmental potential have 

been recently described. Naïve murine embryonic stem (ES) cells that closely mirror the 

inner cell mass of the pre-implantation embryo are maintained in culture with ERK/MEK 

inhibitor and GSK3 inhibitor (2i) (Nichols and Smith, 2009), whereas primed ES cells 

derived from the post-implantation embryo are maintained in the presence of FGF2 and 

Activin (Brons et al., 2007; Tesar et al., 2007). These states also show distinct patterns of 

metabolism. Naïve cells predominantly employ mitochondrial oxidative metabolism (Huang 

et al., 2014; Takashima et al., 2014; Zhou et al., 2012), and utilize more glucose and less 

glutamine to make a-ketoglutarate, which in turn influences histone and DNA methylation 

(Carey et al., 2015). Human naïve-like cells derived with different protocols also 

consistently exhibit high oxidative metabolism (Gafni et al., 2013; Takashima et al., 2014; 

Theunissen et al., 2014; Ware et al., 2014), as well as low S-adenosyl-methionine (SAM) 

levels due to high consumption that presumably leads to histone hypomethylation (Sperber 

et al., 2015), a characteristic of the naïve state (Marks et al., 2012). It has been shown that 

Chandrasekaran et al. Page 2

Cell Rep. Author manuscript; available in PMC 2018 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mouse ES cells in LIF/serum media (a metastable state between naïve and primed) utilize 

threonine to feed the SAM pool for H3K4 methylation (Shyh-Chang et al., 2013), and 

human ES cells require methionine to maintain pluripotency (Shiraki et al., 2014). However, 

the role and activity of enzymes involved in one-carbon metabolism, which impacts 

nucleotide biosynthesis, redox homeostasis and methylation reactions, in two clearly defined 

naïve and primed pluripotency states of mouse ES cells has not been explored from a 

systems perspective.

The enormous size and complexity of the mammalian metabolic networks has so far limited 

systems-level understanding of stem cell metabolism. Expression analysis of metabolic 

genes or metabolomics can provide a snapshot of the metabolic status, but is limited because 

gene or metabolite changes often do not reflect the flux of the metabolic reactions. Isotope 

tracing analysis can determine flux, but only focus on specific metabolic pathways and do 

not give a systems perspective of the entire network. Pathway enrichment analysis is another 

commonly used approach to characterize metabolic changes at the systems level 

(Subramanian et al., 2005; Xia et al., 2015). However, given the highly inter-connected 

nature of the metabolic network, the underlying assumption behind pathway enrichment 

analysis that each pathway is independent of each other does not hold for metabolism 

(Shlomi et al., 2008). Adjacent pathways on the network can influence each other’s activity 

and altered flux activity can arise due to perturbations upstream of a given pathway. Further, 

individual enzymes in a pathway do not change coherently as a whole and can have different 

levels of activity. A systems-level model is thus needed to understand metabolic differences 

between different cell states at both the individual reaction level and the network level.

Here we use genome-scale computational modeling to comprehensively characterize the 

metabolism of different pluripotent stem cell states. Genome-scale metabolic network 

models are manually curated and represent the mechanistic relationships among thousands 

of genes, proteins and metabolites within a biological system (Bordbar et al., 2014). 

Recently, genome-scale metabolic models have been integrated with transcriptomics data to 

identify a subset of metabolic genes that are active in a system. Such transcriptomics-

constrained models have been applied successfully to predict metabolic behaviors of human 

tissues and cancer cells at steady state (Frezza et al., 2011; Uhlén et al., 2015).

Since stem cell metabolic rewiring is dynamic (i.e., not at steady state) and has been known 

to be regulated at the post-transcriptional level (Zhang et al., 2016), we developed a genome-

scale modeling approach to directly infer metabolic states based on time-course 

metabolomics data. Similar to pathway enrichment analysis where increased levels of 

metabolites in a pathway suggests increased pathway activity in a condition, we assume that 

the accumulation or depletion of a metabolite over time as evidence for increased or 

decreased overall flux activity of the set of reactions involving the metabolite. By integrating 

data from several metabolites into a unified genome-scale model, we can identify reactions 

whose differential activity will most likely explain the observed pattern of metabolomic 

changes.

We first validate this approach by identifying metabolic vulnerabilities of the NCI-60 cancer 

cell lines. This approach is then applied to characterize murine naïve and primed ES cell 
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metabolic states, and track the metabolic effect of Lin28, a pluripotency factor (Viswanathan 

and Daley, 2010) associated with the primed state (Zhang et al., 2016). We confirm a 

transition of mitochondrial metabolism and uncovered an elevation of one-carbon 

metabolism pathways from naïve to primed state. Using Lin28 knockout pluripotent stem 

cells as a surrogate of the naive state, we demonstrate a pivotal role of Lin28 in conferring 

the unique one-carbon and nucleotide metabolism associated with primed pluripotency.

Results

Construction of a dynamic genome-scale metabolic model

Our proposed approach integrates time-course metabolomics data with a genome-scale 

metabolic network model, and makes use of the flux balance analysis (FBA) framework to 

infer the metabolic state of a condition (Orth et al., 2010). The FBA approach identifies the 

optimal flux through each reaction in the metabolic network that maximizes a specific 

objective such as the growth rate, while satisfying stoichiometric and mass-balance 

constraints.

The integration of metabolite levels with genome-scale metabolic models has been a 

significant challenge due to the lack of thermodynamic and kinetic parameters (Cotten et al., 

2013; Yizhak et al., 2015). In addition, integrating metabolomics measurements from 

mammalian systems poses additional challenges due to noise in the data, the undefined 

nature of serum components in the media, and compartment-specific metabolism. In 

microbial dynamic flux-balance models, time-course metabolomics measurements are used 

to explicitly determine metabolite accumulation/depletion rates (Kleessen et al., 2015; 

Schmidt et al., 2013). In contrast, given the complexity associated with eukaryotic metabolic 

measurements due to cellular heterogeneity and compartmentalization, our approach uses 

time-course metabolomics measurements as cues for likelihood of altered flux activity 

around a metabolite. Our approach tries to identify a metabolic state that best fits the 

metabolomics data while allowing for deviations from observed pattern of accumulation or 

depletion of metabolites. Network integration is then used to combine these cues into a 

global, consistent metabolic state (see Experimental Procedures; Figure 1).

Using our approach, we can infer the impact of the observed differential metabolite levels on 

the corresponding reaction, the encompassing metabolic pathway, and the entire network of 

thousands of metabolic reactions. Further, the input data can be either intracellular or 

extracellular. In the metabolic model, metabolites in each compartment (i.e., extracellular, 

cytosol, mitochondria, nucleus or other organelles) are distinct from each other. Transport 

reactions are used to connect metabolites in different compartments. Since the network is 

unified, the impact of changes in metabolites in any compartment can be predicted on the 

network. For example, changes in extracellular metabolite levels will impact the uptake or 

secretion flux of these metabolites, which in turn will impact reactions upstream of these 

transport reactions. Hence, data from extracellular measurements can be directly utilized to 

constrain the model using the same mathematical framework used for intracellular 

metabolites. This approach goes beyond traditional pathway enrichment analysis by creating 

a genome-scale model of the metabolic state of a system. The in silico model can be 

Chandrasekaran et al. Page 4

Cell Rep. Author manuscript; available in PMC 2018 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subsequently used to simulate deletion of metabolic genes or inhibition of enzymes, in 

addition to identifying differentially active reactions and pathways.

As a validation of our method in complex mammalian systems, we applied it to predict the 

metabolic vulnerabilities of the NCI-60 cancer cell lines. The metabolic properties of these 

cell lines have been characterized using metabolomics collected at two different time points 

(Jain et al., 2012). Using our approach, we integrated these time-course metabolomics data 

with a genome-scale model of human metabolism (Duarte et al., 2007) consisting of 1487 

genes and 3744 metabolic reactions to map the metabolic state of each of the NCI-60 cell 

lines.

We simulated deletion of all metabolic genes in the model and predicted the effect of 

deletion on the growth of the cell. Some genes affected the growth of all the cell lines, while 

others were more selective for specific cell and tissue type (Figure 2A). We first identified 

common metabolic vulnerabilities across all 60 cell lines. This was done by identifying 

genes that when deleted impact growth by at least 5% of the wildtype (Figure 2A; 

Supplemental Experimental Procedures). Comparing the predicted metabolic vulnerabilities 

with data from siRNA and CRISPR Cas9 gene knockdown screens (Cheung et al., 2011; 

Marcotte et al., 2012;,Aguirre et al., 2016) revealed that cell lines were significantly more 

sensitive to siRNAs targeting these genes compared to other metabolic genes, suggesting 

that the genes identified by our approach were more likely to be essential to the growth of 

these cell lines (p-value = 8 × 10−3, 2 × 10−15 and 3 × 10−3 respectively for siRNA (Cheung 

et al., 2011; Marcotte et al., 2012) and CRISPR data (Aguirre et al., 2016), one-sided KS-

test). As a negative control, prediction using the metabolic model without metabolomics 

constraint resulted in no significant enrichment.

We next used the integrated model to determine metabolic differences between the cell lines. 

We identified metabolic genes that were differentially vulnerable in a cell line relative to the 

remaining cell lines (Figure 2A). These genes were also more likely to be predicted as 

selectively vulnerable in these cell lines based on both siRNA and CRISPR-Cas9 screens (p-

value = 3 × 10−3, 1 × 10−6, and1 × 10−3, respectively for siRNA (Cheung et al., 2011; 

Marcotte et al., 2012) and CRISPR data (Aguirre et al., 2016), one-sided KS-test) (Figure 

2B, 2C and 2D). These results are notable given the variable nature of high-throughput 

siRNA screens and metabolomics data across different studies. These findings suggest that 

our approach can accurately capture metabolic differences between cell states using time-

course metabolomics data.

Modeling murine naïve and primed ESC metabolism

To characterize the metabolic state of mouse ESCs in naïve and primed states, we measured 

levels for over 200 metabolites at three time points (Figure 3A). The metabolomics data 

revealed changes in several metabolites, but these were not specifically related to any one 

pathway. Pathway enrichment analysis of metabolomics data mirrored this complexity and 

only two pathways – purine metabolism and urea cycle – were predicted to be differentially 

active at FDR < 0.05 (Table S1A, S1B). Enrichment analysis of gene expression data of 

these two states also did not reveal any significant differential activity for a metabolic 
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pathway over the background (FDR < 0.1). Changes in metabolic pathways were masked by 

strong changes in other pathways such as signaling pathways (Table S1E).

Given the limited insight from enrichment analysis, we applied our dynamic genome-scale 

modeling approach to tease out the underlying metabolic differences between the two cell 

fates. The metabolomics data were then used to create a dynamic genome-scale metabolic 

model of the naïve and primed state (Figure 3A). We performed deletion analysis of all the 

metabolic reactions to discover differences between the two metabolic networks (Figure 3B). 

In addition to reaction deletion analysis, which identified the dominant metabolic differences 

between the two states, we used flux variability analysis (FVA) to determine the range of 

feasible fluxes for each reaction based on thermodynamic, stoichiometric and metabolomics 

constraints (Mahadevan and Schilling, 2003). FVA can capture flux differences in essential 

reactions, which cannot be inferred through deletion analysis as they are lethal to both states. 

The combination of reaction deletion analysis and FVA was used to prioritize reactions that 

showed differential sensitivity and flux activity.

The majority of the 3744 reactions (96%) did not show selectivity between the two states, 

i.e., their knockout affected both states to the same extent. Among the reactions that were 

selective, the primed state network was more sensitive to knockout of reactions in 

folate/SAM/one-carbon metabolism, cysteine-methionine synthesis and purine synthesis, 

while the naïve state was more sensitive to reactions in oxidative phosphorylation, TCA 

cycle and pyrimidine synthesis (Figure 3B, 3C). We also observed that reactions in 

mitochondria were more sensitive in the naïve state. For example, reactions involving folate 

in the cytoplasm were more active in the primed state, whereas folate reactions in 

mitochondria were more active in the naïve state (Table S2A, S3A).

Validating predicted metabolic differences between naïve and primed mouse ESCs

Consistent with the in silico predictions, we found using 13C-glucose and 13C-glutamine 

tracing that in the naïve state, glucose had increased incorporation into the mitochondrial 

TCA cycle metabolites such as citrate, a-ketoglutarate/glutamate, fumarate and malate, and 

decreased incorporation into one-carbon metabolism metabolites such as serine, 3-

phosphoserine, and methionine; glutamine had decreased incorporation into nucleotides 

(Figure 3D, 3E and Figure S1A, S1B). Overall, metabolites associated with differentially 

sensitive reactions were also more likely to be differentially labeled between the two states 

(p-value = 0.005, hypergeometric test; Figure S1F) confirming the strong concordance 

between two data sets.

To further assess the importance of folate and one-carbon metabolism predicted by the 

model, we tested our predictions by using the anti-folate compound methotrexate. 

Methotrexate is a well-established inhibitor of nucleotide synthesis and folate synthesis that 

is used by many previous studies (Singh et al., 2006). It inhibits dihydofolate reductase 

(DHFR), which participates in tetrahydrofolate synthesis and thus impacts de novo synthesis 

of purines and thymidine. As predicted by the model, primed cells were more sensitive to 

inhibition by methotrexate (Figure 3F). In contrast, naïve cells were more sensitive to 

mitochondrial folate metabolism inhibition by the drug MTH-1459 that blocks MTHFD2 

activity, also confirming the in silico predictions (Figure 3F).
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Decreased one-carbon metabolism in the naïve state might not be caused by reduced 

glycolysis because 13C incorporation to lactate was not lower in the naïve state (Figure 

S2D). Furthermore, even though 13C incorporation from glucose to the ribose moiety of 

nucleotide and nucleoside was lower in naïve cells (Figure 3D and Figure S2C), it was not 

caused by the pentose phosphate pathway, as metabolites in this pathway were not 

differentially measured in either state (Figure S2D). On the other hand, 13C incorporation 

from serine to nucleobase moieties was lower in naïve cells (Figure S2E), indicating one-

carbon metabolism through N10-formyl-tetrahydrofolate (f-THF) accounted for reduced 

nucleotide biosynthesis. 13C incorporation from glutamine to nucleobase moieties through 

aspartate was also lower in naïve cells (Figure 3E), which could be attributed to lower 

glutamine incorporation into the TCA cycle (Figure S2B). In summary, these data suggest 

that the one-carbon metabolism pathway branching from glycolysis is more active in the 

primed state.

In addition, mRNA transcripts of genes associated with the reactions predicted by the model 

to be differentially sensitive were also significantly more likely to be differentially expressed 

(p-value = 0.003, t-test; Figure S1G). While pathway enrichment of transcriptomics data did 

not identify differential activity of these pathways, analysis of specific transcripts prioritized 

by the model revealed lower expression of folate pathway genes Mthfd1, Mthfd2, Mthfd2l, 
Mthfs, Mthfr, Dhfr, and nucleotide biosynthesis pathway genes Adsl, Atic and Gart, in the 

naïve state cells (Figure S1E). Further assessment of in vivo E4.5 pre-implantation epiblast 

(naïve) versus E5.5 post-implantation epiblast (primed) also showed lower expression of 

Phgdh, Psat, Shmt1/2 (serine metabolism), Mthfd1l, Mthfs, Mtfhfd2, Dhfr (folate pathway), 

Mat2a, Mat1a, Cbs (Methionine/cysteine metabolism), and Adsl, Gart, Tyms, Atic, Paics 
(nucleotide biosynthesis) (Figure S1H). A dormant state of diapause characteristic of the 

embryonic epiblast showed the lowest expression of most genes listed above (Figure S1H) 

(Boroviak et al., 2015). Taken together, these data suggest that mouse naïve state 

pluripotency is associated with lower one-carbon metabolism and glutamine metabolism 

required for nucleotide biosynthesis.

Tracking metabolic network rewiring by Lin28

We next examined the metabolic state of naïve induced pluripotent stem cells (iPSCs) 

cultured in LIF/2i condition depleted of Lin28. Lin28 knockout cells show elevated naïve 

state features compared with wildtype cells; they have defects in priming and do not grow 

well in the primed condition (FGF2/Activin). Indeed, our prior analysis has indicated that 

Lin28-deficient cells represent a surrogate for the naïve state metabotype (Zhang et al., 

2016).

With the same approach using time-course metabolomics data and reaction deletion analysis, 

we discovered similar metabolic differences in one-carbon, oxidative phosphorylation and 

nucleotide metabolism between Lin28 knockout and wildtype cells (Table S2B, S3B). Lin28 

knockout cells were more sensitive to deletion of reactions in the mitochondria, and less 

sensitive to deletion of one-carbon metabolism reactions, reminiscent of the naïve state 

compared with the primed state (Figure 4A-C). The comparison between Lin28 knockout 

cells and wildtype cells (both in 2i) differed from the comparison between naïve cells and 
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primed cells in the activity of the pentose phosphate pathway (Figure 4D). This analysis also 

revealed the importance of the nucleotide salvage pathway in Lin28 knockout cells, with 

reactions in purine salvage and purine cycle pathways such as Hgprt, predicted to have 

higher flux in Lin28 knockout cells (Figure 4A, 4B). This could explain a previous report 

that these cells are deficient in de novo nucleotide biosynthesis and addition of nucleotides 

in the media rescues this phenotype (Zhang et al., 2016). Time-course analysis of 13C-

glucose incorporation also showed lower flux to nucleotides in Lin28 knockout cells (Figure 

4C, Figure S1C). In addition, 13C-glutamine tracing revealed knockout cells had lower flux 

to nucleotide, similar to the 2i naïve state (Figure 4C, Figure S1D).

We next quantified the overall similarity of the 3744 reaction sensitivities between naïve, 

primed, lin28 knockout and wildtype cells using unsupervised clustering and multi-

dimensional scaling (MDS) analysis (Figure 4D, 4E). Hierarchical clustering analysis 

revealed that most reactions that show differential sensitivity between cell states share the 

same direction of change in both naïve versus primed cells and ΔLin28 versus wildtype 

cells, suggesting broad similarities between the two scenarios (Figure 4D). A small subset of 

reactions showed the opposite direction of change in ΔLin28 versus wildtype compared to 

naive versus primed cells, suggesting that these two scenarios are similar, but not identical 

(Figure 4D). MDS analysis, which visualizes the entire set of variation in a data in three 

dimensions, confirmed that knockout of Lin28 moves the cellular metabolic network of iPS 

cells closer to the naïve ES cell state (Figure 4E).

Simulating impact of metabolic pathways on histone methylation

The one-carbon metabolism pathway is required for histone methylation in ESCs through 

modulating the SAM/SAH ratio (Shyh-Chang et al., 2013) (Figure 3C). To assess the impact 

of the naive and primed metabolic network states on histone methylation, we simulated the 

effect of metabolic reaction deletions on SAM flux and subsequently histone methylation 

under the assumption that SAM is a limiting metabolite for methylation. Deletion of 

reactions in one-carbon metabolism and nucleotide metabolism preferentially affected SAM 

production in the primed state over the naive state (Figure 5A; Table S4). We experimentally 

validated this prediction by treating cells with 3-deazaadenosine (3-DZA), a SAH hydrolase 

inhibitor that decreases the SAM/SAH ratio, and found that it more profoundly affected 

H3K4, H3K9, and H3K27 trimethylation in the primed state relative to the naive state 

(Figure 5B). Furthermore, treatment with 3-DZA affected wildtype H3K9 trimethylation 

more than Lin28 knockout, consistent with the role of Lin28 in the primed state (Figure 5C). 

FBA also revealed higher flux through SAM synthesis reactions in the primed state, 

suggesting that the primed state relies more on one-carbon metabolism for production of 

SAM (Table S4). Consistent with the in silico prediction, the primed metabolic state has 

higher C13 incorporation from serine towards SAM than the naïve state based on tracing 

C13-labeled serine (Figure 5E). Further, histone methytransferases and demethylases are not 

differentially expressed in these two states, hence altered SAM metabolism can explain the 

observed differential histone methylation (Figure 5D).
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Discussion

Metabolism influences gene regulatory networks that govern cell fate choices (Ryall et al., 

2015; Zhang et al., 2012), in both pluripotent stem cells (Carey et al., 2015) and various 

types of adult progenitor/stem cells (Peng et al., 2016; Yang et al., 2016). Given the 

development potential of naive ESCs compared to primed ESCs, it is critical to understand 

the metabolic differences between these pluripotent cell fates. Analysis using our dynamic 

metabolic modeling framework revealed three insights on pluripotent stem cell metabolism. 

Firstly, previous studies showed higher mitochondria function in mouse ESCs, in 

comparison to EpiSC or human ESCs (Zhou et al., 2012). Further, human naive-like cells 

have higher nicotinamide N-methyltransferase (NNMT) activity that consume SAM 

(Sperber et al., 2015). Here we comprehensively characterized the metabolic network of two 

bona fide pluripotent states in mouse ESCs, and discovered that during priming, the entire 

one-carbon metabolic pathway is activated, including upstream serine production from 

glucose and downstream SAM and nucleotide production through folate cycle and 

methionine cycle. This makes mouse primed ESCs more vulnerable to folate metabolism 

inhibition and SAM/SAH repression. Interestingly, this effect is compartment-specific, with 

folate inhibition in mitochondria more sensitive in naïve cells, while cytoplasmic inhibition 

is more sensitive in primed cells. Our systems approach has thus uncovered a transition of 

one-carbon metabolism between two clearly defined naïve and primed states.

Secondly, a previous report found that deleting Lin28 changes mouse ESCs to a naïve-like 

state. At the network level, broad similarities between 2i naïve and Lin28 knockout cells 

were observed. Yet, unique differences in the pentose phosphate pathway identified by our 

analysis suggest that these states are not identical (Figure 4D). Thirdly, we found that 

increased flux through one-carbon pathway leads to higher flux towards SAM and histone 

methylation in primed state, and inhibiting these pathways reduces methylation 

disproportionately in primed state. A previous report connected NNMT activity to SAM 

consumption (Sperber et al., 2015).

Our approach revealed that serine flux and the one-carbon metabolic pathway contribute to 

SAM production and histone methylation. Consistent with a low SAM pool, naive mouse 

cells have hypomethylated DNA and histone, and are tolerant to loss of epigenetic regulators 

such as DNMT1 and polycomb protein EED, in contrast to primed cells (Weinberger et al., 

2016). Since recent studies also implied that similar metabolic changes in one-carbon and 

oxidative metabolism may occur in converted human naïve-like and primed PSCs (Sperber 

et al., 2015; Takashima et al., 2014), whether the converted naïve-like cells become more 

tolerant to DNMT1 depletion and/or to SAM/SAH repression, merit careful investigation to 

substantiate the identity of those cells.

Pervasive histone methylation is a key feature of primed cells and our findings directly tie 

into the biology of primed pluripotency. Our model also suggests that hypomethylation in 

naïve cells is likely due to the lack of one-carbon donor - SAM. Differentiation potential 

(governed by epigenetic regulations) and proliferation are the two most important cellular 

phenotypes that distinguish naive and primed pluripotent states. The mechanism of 

regulation of histone methylation so far is unknown since histone methytransferases and 
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demethylases are not differentially expressed in these two states (Figure 5D). Our study 

provides evidence that altered one-carbon and SAM metabolism account for the differential 

histone methylation in these two states, which in turn determines expression of various 

pluripotent and developmental genes.

While most of our experimental observations were consistent with model predictions, 

treatment of naïve ESCs with 3-DZA surprisingly resulted in increased histone methylation, 

which was not predicted by the model. We speculate that this might be due to the kinetic 

effect of enzyme inhibition, which is not incorporated into the metabolic model due to the 

lack of kinetic parameters. DZA is an inhibitor to SAH hydrolase that catalyzes both 

directions of the reaction between SAH and homocysteine+adenosine. In the primed state 

cells, there is sufficient SAM production, and the flux of the reaction is likely to be towards 

making homocysteine+adenosine from SAH. Inhibiting SAH hydrolase leads to build-up of 

SAH and a decreased SAM/SAH ratio, and thus reduced histone methylation as predicted by 

our model. Whereas in the naive cells, due to limited SAM production, we hypothesize the 

flux might be directed towards making SAH from homocysteine+adenosine, and inhibiting 

SAH hydrolase in this case might indeed lead to less SAH, an increased SAM/SAH ratio, 

and increased histone methylation for certain histone marks.

Our work suggests an interplay between mitochondrial respiratory metabolism and one-

carbon metabolism during ESC pluripotent state transitions, pointing to an unappreciated 

role of elevated mitochondrial function in naive state pluripotency. Similar coupling between 

one-carbon and respiratory metabolism has been recently reported in cancer cell lines (Bao 

et al., 2016). Further, many of the enzymes predicted to be differentially active between 

naïve and primed ESCs, such as PHGDH, MTHFR and other one-carbon metabolism 

pathway constituents, have also been associated with tumor initiation, progression and 

metastases (Locasale, 2013; Piskounova et al., 2015). Comparison of metabolic genes that 

are sensitive in NCI-60 cancer cell lines (Figure 2) with corresponding sensitivity in naive 

and primed cells (Figure 3) revealed that the metabolic state of many NCI-60 cell lines is 

surprisingly similar to naive cell metabolism but not to prime cell metabolism. This 

intriguing preliminary observation needs to be explored further in a future study. Our 

findings may provide a better understanding of metabolic rewiring during tumorigenesis as 

well.

Our systems biology approach overcomes a significant challenge in genome-scale modeling 

by inferring the metabolic state of mammalian cells directly from time-course metabolomics 

data. The power of our approach is that it can infer the activity of thousands of reactions 

based on the measurement of a few hundred metabolites. Interpreting metabolomics data is 

quite challenging due to the highly interconnected nature of metabolic networks. The 

metabolites in our time-course data were involved in 834 metabolic reactions in the model, 

even after excluding ubiquitous metabolites such as ATP and NADH. Hence, it is difficult to 

manually infer the differentially active reactions from the metabolomics data. By overlaying 

these data onto the model, we identified a small, prioritized set of reactions that are 

differentially active between these two states.
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Using our approach, we identified compartment specific differences in folate metabolism, 

which we validated using cytosolic and mitochondrial folate inhibitors (Figure 3F). This is 

significant given that information on cellular compartments is lost during metabolomics 

measurement. Further, the model correctly identified differences in oxidative 

phosphorylation pathway despite there being no direct measurement of this pathway’s 

activity. These results highlight the power of our systems approach to infer metabolic 

changes based on network topology that goes beyond traditional analysis of metabolomics 

data.

Our computational approach still has some limitations despite these numerous advances 

highlighted earlier. Firstly, the algorithm requires the levels of numerous metabolites (~100) 

to infer the activity of reactions in the metabolic model. The accuracy of the approach 

dropped significantly with data from fewer than 65 metabolites (i.e., 33% of the data; Figure 

1F). Future studies should reveal which metabolites provide the most predictive power for 

these models. Secondly, existing genome-scale metabolic models lack detailed mapping of 

atom transfer from substrates to products, thus preventing the incorporation of isotopomer 

labeling distribution from 13C tracing data. 13C flux tracing studies currently use 

significantly smaller metabolic models with atomic mapping to predict fluxes. Our systems-

scale approach can complement such traditional 13C analysis approaches by making coarse-

grained predictions for a larger set of reactions. Thirdly, our approach is restricted to 

predicting the impact of complete enzyme inhibition or gene knockouts on the metabolic 

network. As enzyme kinetic parameters become available, it should be possible to simulate 

the systems-level impact of nuanced changes in enzyme levels.

Looking forward, a systems-level understanding of stem cell metabolism could allow us to 

rationally manipulate specific metabolic modules to facilitate differentiation and aid cell-fate 

engineering. Our approach could be readily extended to understand metabolic mechanisms 

underlying other cell-fate changes and could open new avenues for computational 

identification of metabolic vulnerabilities of cancer cells and other complex metabolic 

disorders.

Experimental Procedures

Genome-scale metabolic network modeling

We used the Duarte et al. model of human metabolism for all the metabolic modeling in this 

study as it has been widely applied in literature for understanding cellular metabolism of 

various normal and disease states (Duarte et al., 2007). We also used the human Recon 2.0 

model and the genome-scale model of mouse metabolism as further validation. The mouse 

model was derived based on homology with the Duarte et al. human model. Using these 

models leads to the identification of similar set of genes and pathways that were 

differentially active between naïve and primed states (Table S2C).

We used FBA to determine the optimal metabolic state that satisfies the growth objective and 

the metabolomics constraints. Mathematically in FBA, we solve the optimization problem to 

identify a metabolic state (v, a vector of reaction fluxes) that maximizes a specific cellular 

Chandrasekaran et al. Page 11

Cell Rep. Author manuscript; available in PMC 2018 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



objective, such as the biomass production or ATP synthesis rate, while satisfying 

thermodynamic and mass balance constraints. FBA is formulated as:

where S is the stoichiometric matrix with Sij representing the stoichiometric coefficient of 

metabolite i in reaction j, v is the flux vector and b represents the rate of change of 

metabolites (dM/dt). In traditional FBA, the value of R.H.S vector b is assumed to be zero to 

represent steady state. We set this value proportional to the measured rate of change from 

time-course metabolomics data. For each dynamic metabolite, we include a flux activity 

coefficient, whose value and sign determines if there is increased or decreased flux activity 

involving the metabolite.

where epsilon is a vector of flux activity coefficient values (≠ 0 for dynamic metabolites).

The value of the flux activity coefficients is directly determined based on the rate of change 

of metabolite levels over time. Since subcellular compartment-specific information is lost 

during metabolomics measurement, we assumed that the measured metabolites represent the 

sum total of those in the cytoplasm, nucleus and the mitochondrial compartments in the 

model. In addition, some metabolite changes might represent noise in the data and these 

constraints would be predicted to be infeasible by the model. To account for these issues, we 

implemented an approach, defined below, that identifies a metabolic state that best fits the 

entire set of metabolomics constraints simultaneously:

Alpha and beta are positive vectors that represent deviation from the measured experimental 

data (See Supplemental Experimental Procedures). The entire sequence of steps in the 

dynamic modeling approach are described in the pseudo-code provided in the supplement 

(See Supplemental Experimental Procedures)

The approach is robust to relative weights for metabolomics data and growth objective (as 

defined by the kappa parameter), and also to noise in metabolomics data (Figure 1E). Using 

a simple model that takes as input only the direction of change of metabolites (i.e., 

accumulating or depleting) without the magnitude also led to qualitatively similar set of 

predictions for naïve and primed states (Figure 1F).

In addition to FBA, we used flux variability analysis (FVA) to determine the range of 

feasible fluxes for each reaction. Reactions that had either higher minimal flux or both 
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higher minimal and maximal flux compared to the second condition (naïve or primed state) 

were considered to have higher activity in that condition.

Software and data availability

The MATLAB implementation of the algorithm and associated data sets are publicly 

available at the Synapse bioinformatics software repository (www.synapse.org/#!

Synapse:syn7253624/wiki/406160). Examples and instructions for running the analysis are 

also provided. The entire metabolomics data for naïve, primed and Δlin28 cells are also 

provided as a supplementary dataset (Table S5, S6). The optimization problem was solved 

using the Gurobi mathematical programming solver.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of our approach to integrate time-course metabolomics (intracellular or 
extracellular) with genome-scale metabolic models to reconstruct the metabolic network of 
different cell fates
A. A simple metabolic network consisting of two parallel pathways to produce the growth-

associated metabolite C is shown, along with its corresponding stoichiometric matrix 

representation. Deleting Reactions 2 or 4 should impact the biomass production equally in 

this model. B. Time-course metabolomics data from two different conditions are then 

overlaid onto the metabolic network model and dynamic metabolites are identified. The 

accumulation or depletion of metabolites resulting from increased or decreased flux through 
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the reactions involving those metabolites are represented in silico using flux-activity 

coefficients. A global metabolomics-consistent metabolic network state is determined for 

each condition. In this case, metabolomics integration reveals a higher flux through Reaction 

2 in condition 1 and a higher flux through Reaction 4 in condition 2. C. Differentially-

sensitive and differentially active metabolic reactions are determined by performing 

genome-scale reaction deletion analysis and flux variability analysis. D. Overview of the 

steps in processing metabolomics data, integration with the metabolic model, and prediction 

of metabolic vulnerabilities. E. A genome-scale model of metabolism is used to integrate 

data across hundreds of metabolites to identify differentially sensitive reactions between 

conditions.
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Figure 2. Validation of our approach to infer metabolic states from time course metabolomics 
data by applying it to predict the metabolic behavior of NCI 60 cancer cell lines
A. Table of cell-line specific metabolic vulnerabilities predicted by our approach. The 

predicted growth (measured by ATP flux) of 48 differentially sensitive gene knockouts in the 

NCI60 cell lines is shown relative to wildtype. Highlighted genes affect ATP flux across all 

cell lines. B. The set of cell line-specific metabolic gene vulnerabilities predicted by our 

approach were consistent with siRNA screens. The GARP (Gene Activity Rank Profile) 

scores of genes that were sensitive (vulnerable) in a cell line were found to be lower than 

those that were not predicted to be sensitive in a given cell line. The lower the GARP score 

for a given cell line, the more essential is the gene in that particular cell line (data from Koh 

et al., 2012). The distribution of GARP scores for the sensitive and non-sensitive 

associations are shown. The distributions were compared using the Kolmogorov-Smirnov 

test (p-value = 10−6). C. Predictions were also consistent with siRNA knockout screen (p-

value (KS-test) = 0.0034; Cheung et al 2016). Distribution of ATARIS (Analytic Technique 

for Assessment of RNAi by Similarity) z-scores are shown for sensitive and non-sensitive 
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gene knockouts across all cell lines. D. Predictions were also consistent with a CRISPR/

Cas9 mediated knockout screen (p-value (KS-test) = 0.0012; Aguirre et al 2016). 

Distribution of ATARIS z-scores are shown for sensitive and non-sensitive gene knockouts 

across all cell lines. E. Sensitivity analysis of the dynamic modeling approach. Increasing 

the weight parameter (kappa) results in increasing weight for the metabolomics data over 

growth. Correlation with the default settings (kappa = 1, i.e., equal weights for growth and 

metabolomics) and after changing kappa is shown for the predicted difference in growth 

between naïve and prime states after deletion of all the 3744 metabolic reactions in the 

model. F. The approach is robust to noise in the metabolomics data. 10, 25 and 33% of the 

metabolites in the metabolomics data were randomly removed and the impact on the 

predictions between naïve and primed state were analyzed. Correlation from predictions 

using this randomly sampled data with the predictions using the entire data set is shown. 

Predictions made by using just the direction of change (accumulation or depletion) without 

the magnitude also gave qualitatively similar predictions as using the entire data (shown as 

yellow bar).
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Figure 3. Mapping the metabolic differences between naive and primed stem cells using the 
computational model of metabolism
A. Overview of our approach to measure time-course metabolomics data and identify 

differentially active reactions. B. To identify differentially active metabolic reactions, we 

performed reaction knockout analysis on the naive and primed metabolic networks. The 

histogram shows the distribution of growth rates after in silico deletion of all the metabolic 

reactions. The horizontal x axis shows the relative selectivity of each knockout for naïve 

state versus the primed state. The stronger the magnitude of selectivity, the greater the 

difference between the growth rate of the reaction knockout between two states. The 
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majority (96%) of knockouts do not have a differential effect on naive or primed 

metabolism. The y-axis shows the total number of reactions in each bin. Metabolic reactions 

that showed the greatest differences in growth between the two states are highlighted. The 

full list of reactions and their abbreviations are provided in Table S2A. The suffix ‘m’ at the 

end of each reaction name indicates a reaction occurring in mitochondria; isoforms are 

represented with numerical suffixes (orange: more sensitive to deletion in naïve; purple: 

more sensitive to deletion in primed). C. Schematic diagram of the metabolic pathways that 

are predicted to differ between the two states (Naïve – orange labels, Primed – pink labels) 

as identified by the model. The thickness of the reaction name label border is proportional to 

the extent of the differential activity of the reactions between the two states. Reactions 

predicted to impact SAM flux in prime state (MAT, AHC and METS) are also highlighted 

(Table S4). D. 13C tracing of glucose revealed that metabolites in the one-carbon and 

nucleotide metabolism were differentially labeled between the two conditions suggesting re-

routing of metabolic flux. The heat map shows the total isotopomers labeled at different time 

points for each metabolite after z-transformation (Supplemental Experimental Procedures). 

E. 13C tracing of glutamine revealed that metabolites in nucleotide metabolism were 

differentially labeled. Metabolites showing significant differences between the two states (p 

< 0.05) are displayed in D and E heat maps. n=3 for each time point. F. Viability of cells 

after treatment with the anti-folate methotrexate and the mitochondrial MTHFD2 inhibitor 

for 2 days. For primed cells, ESCs were treated with FGF2/Activin for 3 days at the time of 

measurement. Error bars: standard error of mean. n=3. *p<0.05. Error bar means standard 

error of mean. The viability curves were significantly different between naïve and primed 

cells for both inhibitors (p-value = 0.01 and 5 × 10−4 for MTHFD2 inhibitor and 

Methotrexate respectively, Wilcoxon Signed Rank test).
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Figure 4. Mapping the metabolic differences of Lin28 knockout versus wildtype PSCs using the 
computational model of metabolism
A. The histogram shows the distribution of growth rates after in silico deletion of all the 

metabolic reactions. The horizontal x-axis shows the relative effect of each gene knockout 

on the growth rate of Lin28 knockout versus wild type cells (selectivity). The y-axis shows 

the total number of reactions in each bin. Top pathways with multiple differential reactions 

are highlighted; see Table S2B for the full list of reactions (Naïve – orange, Primed – 

purple). B. Schematic diagram of the metabolic pathways that are predicted to differ 

between the two states (Wildtype – orange labels, ΔLin28 – pink labels) as identified by the 

model. The thickness of the reaction label border is proportional to the extent of the 

differential activity of the reactions between the two states. C. Left, 13C tracing of glucose 

revealed that metabolites downstream of the PHGDH, MTR, MTHFR, UMPS and DHODH 

pathways were differentially labeled between the two conditions suggesting re-wiring of the 
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metabolic network of these two states. Right, 13C tracing of glutamine revealed that 

glutamine flux is routed towards nucleotide metabolism in wildtype cells. Metabolites that 

are differentially labeled (p < 0.05) are displayed in both heat maps. n=3 for each time point. 

The heat maps show the total isotopomers labeled at different time points for each 

metabolite after z-transformation (Supplemental Experimental Procedures). D. Unsupervised 

hierarchical clustering analysis of the entire set of 3744 reactions and their differential 

activity between naïve and primed cells, and lin28 knockout versus wildtype cells. Reactions 

are clustered based on extent of similarity between the two comparisons (Naïve vs Primed 

and ΔLin28 vs WT). The majority of reactions do not have differential impact in any state 

(yellow color in both rows). The bottom panel shows the cluster of 220 reactions that exhibit 

differential sensitivity between different cell states. Overall, even reactions that show 

differential sensitivity have the same direction of change in both Naïve vs Primed cells and 

ΔLin28 vs WT cells suggesting broad similarities between the different states (96.6% 

similarity). A small subset of reactions (N = 33) show opposite differences in ΔLin28 vs WT 

compared to naive vs primed cells; reactions with strongest differences are highlighted. E. 
Multi-dimensional scaling analysis captures the overall metabolic differences between cell 

states, and confirmed that knockout of Lin28 moves the cellular metabolic network closer to 

Naïve cell metabolism.

Chandrasekaran et al. Page 23

Cell Rep. Author manuscript; available in PMC 2018 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Prediction and validation of intracellular SAM levels and global histone methylation
A. Using the metabolic model, we predicted metabolic changes that can impact SAM flux 

and subsequently histone methylation. The histogram shows the distribution of SAM flux 

towards histone methylation after deletion of all the metabolic reactions. The horizontal x-

axis shows the relative effect of each knockout on SAM flux in the naïve state versus the 

primed state (selectivity). The y-axis shows the total number of reactions in each bin. 

Metabolic reactions that showed the greatest differences in SAM flux between the two states 

are highlighted. No reaction was predicted to impact SAM production in the naïve state over 
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a z-score threshold of −2. B. Western blotting of H3K4me3, H3K9me3 and H3K27me3 of 

naïve and primed cells treated with 20 μM 3-DZA for two days. Lower panels show 

densitometry of the bands. C, Western blotting of H3K9me3 of wildtype and Lin28 

knockout PS cells treated with 20 μM 3-DZA for two days. D. The mRNA expression levels 

of histone methytransferases and demethylases are similar in both the naive and primed 

states (n=4). E, Naive and primed cells were labeled with 50% [U13C]-serine for 24 hours, 

and the fraction of each SAM isotopomer are shown.

Chandrasekaran et al. Page 25

Cell Rep. Author manuscript; available in PMC 2018 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Summary
	Graphical abstract
	Introduction
	Results
	Construction of a dynamic genome-scale metabolic model
	Modeling murine naïve and primed ESC metabolism
	Validating predicted metabolic differences between naïve and primed mouse ESCs
	Tracking metabolic network rewiring by Lin28
	Simulating impact of metabolic pathways on histone methylation

	Discussion
	Experimental Procedures
	Genome-scale metabolic network modeling
	Software and data availability

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

