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Abstract

The robustness of biological systems is often depicted as a key system-level emergent property 

that allows uniform phenotypes in fluctuating environments. Yet, analysis of single-cell signaling 

responses identified multiple examples of cellular responses with high degrees of heterogeneity. 

Here we discuss the implications of the observed lack of response accuracy in the context of new 

observations coming from single-cell approaches. Single-cell approaches provide a new way to 

measure the abundance of thousands of molecular species in a single-cell. Repeatedly, analysis of 

cell distributions identifies clusters within these distributions where cells can be grouped into 

specific cell states. If cells in a population occupy distinct cell states, the observed variable 

response could in fact be accurate for each cell conditioned on its own internal state. In this view, 

the observed lack of accuracy, i.e. response heterogeneity, could in fact be beneficial and a 

potentially regulated feature of cell state variability. Therefore, to truly determine whether the 

observed response heterogeneity is a desired property or a physical limitation, future analysis of 

signaling heterogeneity must take into account the internal states of cells in the population.

Introduction – Biology is “Messy Yet Beautiful”

At the turn of the 21st century, biology was undergoing a technological and conceptual 

revolution. The human genome project was just completed, and technologies such as 

microarray and later next generation sequencing, were starting to move from their initial 

noisy start to being a robust experimental platform. These advances caused scientists from 

other disciplines to start pay attention to biology, with the hope that tools and approaches 

from physics, math, engineering, and computer science will help “crack” the enormous 

puzzles in biology. Indeed, the turn of the century was accompanied by a few “manifests” 

that tried to define new approaches to study biology [1–3].

As scientists trained in the various quantitative disciplines moved to biology, one key 

difference stood out: Biology is “messy”. Experimental physicists are trained that data 

collection should always be accompanied with a model of the measurement error such that 

each number has associated “significant digits” that are reliable in their measurements. 

While in principle these concepts are true in biology as well, in practice experimental 

biology is different. It is not uncommon for biologists to use various anthropomorphisms, 
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such as “my cells are not happy today”. What is the right number of significant digits 

relevant to cell happiness?

The observation that biology is “messy” causes one to ask: how does it even work? If 

biological systems are hard to control and manipulate, how do they tolerate natural 

environmental fluctuation? As all chemical reaction rates are affected by temperature, 

effectively all kinetic parameters inside a cell will change as temperature fluctuates. How 

can cells function with such variability in their internal parameters? How does “messy 

biology” even work? The beauty of biology, is that it does. Many biological systems are able 

to function at a wide range of conditions, and trying to understand this perceived tension 

acted as a call for action that powered the inception of systems biology.

The Robustness of Signaling Networks

In a seminal paper in 1997, Barkai and Leibler coined the term “biological robustness”, 

arguing that: “the key properties of biochemical networks should be robust in order to ensure 

their proper functioning” [4]. They demonstrated that bacterial chemotaxis is robust and this 

robustness is accomplished through simple adaptation. This initial work was followed by 

many others that demonstrated low parameter sensitivity in a large number of systems [5–

11]. At the time these studies were coming out, the call for a new “system” approach was at 

its peak, and many authors of these opinion pieces used robustness as an example of a 

system level property [1,2,12]. In an opinion piece titled: “Biological Robustness”, Kitano 

wrote that: “[Robustness] is one of the fundamental and ubiquitously observed systems-level 

phenomena that cannot be understood by looking at the individual components.” [2].

Of course, robustness is not a completely new concept, and it was not invented in 1997. In 

engineering disciplines, “control theory” emerged from mechanical engineering and became 

its own interdisciplinary subject area that combines engineering, math, and computer 

science. Control theory studies how to design, i.e. engineer, a system to produce a desired 

output despite potential fluctuations in inputs and system parameters. Naturally, there is a 

great deal of correspondence between biological robustness and control theory, and the 

similarities and differences were studied in detail [13,14].

Since biological systems are evolved and not designed, it is important to make a distinction 

between the two key timescales of fluctuations that the system needs to be robust against. 

The relevant timescale for comparison is the lifetime of the system, and fluctuation could be 

either faster or slower than the lifetime of a cell. Gene expression variability of a key 

enzyme in two cells of the same population will result in variable maximum rates of reaction 

(Vmax), which can potentially change during the lifetime of a cell. In contrast, mutations in 

the catalytic site of the enzyme change a reaction’s Vmax on an evolutionary timescale, far 

exceeding the lifetime of a cell. These two timescales can, for the most part, be analyzed 

separately, despite their many natural connections. Here we won’t discuss the evolutionary 

timescale, instead focusing on the relationship between robustness and variability on fast 

time scales.
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The premise that biological systems are robust and therefore must be insensitive to 

parameter variability became so accepted that many researchers started using robustness as a 

criterion to probe biological systems. Both in specific mechanistic models [5,15,16] and in 

simple abstract 3-node networks [17–19], researchers used the criteria of robustness as a 

model selection tool [19,20]. This approach argues that if many different models, e.g. 

different wiring diagrams of a signaling network, all produce the same output, then the most 

likely one to be true is the one that is the most robust. In practice, for a given model many 

random sets of parameters are tested; the model that got the function “right” with the most 

parameter sets “wins” and is most likely the correct one.

But are all biological systems “robust”? The strength of robust systems is that they are 

insensitive to change. This is not always a benefit. Robustness could also mean rigidity and 

lack of ability to tune the output of the system to a changing environment. If biological 

systems are robust, e.g. the response of cells to a specific ligand was robust to intracellular 

changes in protein concentration, one would expect little response variability. However, 

simple observation of mammalian cells show that this is not the case. Genetically identical 

cells of the same cell type still show variation [21]. Even sister cells that are almost identical 

at the point of division diverge quickly, showing variable responses to identical 

environments [22]. But is the observed variability substantial? How can one determine if the 

observed variability is high or low? To do so necessitates new and better tools that can 

quantify cellular response variability.

Quantifying the Accuracy of Signaling Networks

A useful and successful approach to quantify robustness is to analyze a population of cells 

and measure their phenotypic distribution. A simplistic approach is to look at the overall 

index of dispersion, or coefficient of variation, of the underlying distribution. This direct 

approach was utilized in the analysis of single protein variability in cells. However, this 

statistical measure has some limitations: it neither takes into account nor interprets the shape 

of the underlying distribution. For example, if cells vary 10% in their response to a specific 

ligand, is that high or low? If the variability between different ligands is 5%, then one would 

say that a 10% variability is high. On the other hand, if the difference between response to 

different ligands is 50%, then a 10% variability within each sample, seems small. Therefore, 

to quantify robustness of cellular response to changing environment, just measuring overall 

dispersion is insufficient and a more sophisticated approach is needed.

Information theory allows one to quantify the amount of mutual information between two 

distributions [23]. Furthermore, one could calculate mutual information directly from 

samples without any assumptions on the underlying distributions. Therefore, mutual 

information is a powerful statistical tool and as such was utilized multiple times in 

neuroscience [24,25], developmental biology [26], genetic networks [27–29],and signal 

transduction [21,30–34]. For signal transduction, the function of the network is to transmit 

information about the extracellular environment to various cellular response machineries. 

Estimation of the maximal possible mutual information between ligand and cellular response 

distributions can inform on the accuracy by which cells respond to a specific ligand 

concentration [35,36]. In pioneering work, Cheong et al [31] used such an approach to 
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directly measure the performance of these networks as communication channels. Based on 

the assumption that all cells are from an independent and identically distributed sample, one 

could simply quantify the degree of overlap in response distributions between different 

ligand concentrations and use that to estimate the ability of a signaling network to transmit 

information about that ligand [30,37]. Due to its historical roots in computer science, the 

information transmission capacity is measured in bits. Cheong et al applied these measures 

to many signaling networks, concluding that they are poor at their core task with less than 1 

bit of information transmission capacity. One interpretation of this observation is that the 

system can only transmit 2 states without any ambiguity. This direct interpretation might be 

simplistic in biological systems, and many more states could be transmitted if the system can 

accept low level of error [38]. Regardless, information transmission of 1 bit does not allow 

for much wiggle room. More importantly than the measurement itself, is the claim that this 

is the upper limit of cellular information transmission capability. Therefore, they concluded 

that for the core function of information transmission, biological systems are non-robust and 

that biochemical “noise” limits the accuracy of these networks.

Are signaling networks poor at their core task of information transmission? Follow-up work 

by Selimkhanov et al [21] further investigated this question. They showed that the existence 

of upper bounds depends on two assumptions: 1. That all cells are identical and hence any 

noise and variability in the system occurs stochastically during the process of signal 

transduction, and 2. That the cells only use a scalar for information transmission. If one 

quantifies cellular information transmission taking into account the multivariable dynamic 

profile of the signal, the empirical measurement of information transmission is almost 

double the previous estimates by Cheong et al. But perhaps more importantly, the reason for 

this increase is not from reduction of noise during the process of signal transmission itself. 

Rather, by transmitting a multivariate signal, cells can use some of that bandwidth to convey 

information about the cell state itself, reducing effective variability. The work by 

Selimkhanov et al effectively removed the upper bound on cell response accuracy for the 

case where the variability in cells is dominated by cell state variability. But is this really the 

case? Are genetically identical cells from a specific cell type homogenous or heterogeneous?

Lack of Accuracy or Functional Variability?

Technological advances struck again. Improvements to high-throughput measurement tools, 

such as RNAseq, increased sensitivity sufficiently that they started to be used for demanding 

applications like single-cell measurements [39,40]. These systematic measurements began to 

show that there are specific patterns underneath the large degree of variability. Machine 

learning and dimensionality reduction techniques [41,42] constantly showed that for many 

different populations of identical cells, there is systematic variability that emerges from co-

existence of specific cell states within the population.

The existence of specific patterns of single-cell gene expression suggests that kinetic 

parameters between cells will show specific differences. However, the relationship between 

kinetic parameters and gene expression is not easy to discern. In an attempt to understand 

the variability between cells in term of their kinetic parameters, Yao et al [43] performed 

parameter fitting to a differential equation model of cellular Ca2+ response to ATP using 
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experimental dynamic single-cell data from hundreds of cells. They found that like gene 

expression patterns, kinetic parameters are separated into distinct subpopulations. In the 

NfkB network, two complementary approaches illuminate the relationship between cell state 

and cellular response. Sero et al [44] analyzed the relationship between cellular morphology 

and NfkB response across a panel of epithelial cell lines, finding strong correlation between 

morphology and signaling response. A more direct, but challenging, approach is to measure 

in the same single-cell both response dynamics and gene expression patterns; this was 

recently accomplished for NfkB signaling [45] and again supports the hypothesis that there 

are few key classes of cellular response.

What causes the existence of subpopulations in genetically identical cells from the same cell 

type? One hypothesis that needs further experimental support is that the specific patterns are 

a result of epigenetic regulation of gene expression, and that a hidden variable, such as a 

chromatin regulator, are different between these cell types. What is unclear is whether the 

chromatin regulators are simply variable between cells, and the decoding of this variability 

manifest itself as cell subpopulations? Or whether the chromatin regulators themselves are 

“part of the network” and the correct interpretation of each subpopulation is as a stable point 

in “cell state space” [46]. Answering this question will require a mechanistic understanding 

of the causal factors behind the different cell states, a formidable computational and 

experimental challenge.

The existence of distinct cellular states in the population does not necessarily mean that each 

of these cell states is functionally important. It is possible that these cell states are “minima” 

in some rugged epigenetic landscape, but that the states themselves are not functional units. 

Alternatively, it is likely that the distinct cell states are functionally important. Work in 

different systems has provided some indication that variability could have an important 

function in the form of bet-hedging and increasing response diversity. In addition, recent 

theoretical work showed that individual variation could increase population response 

accuracy in the case that the input itself is noisy [47]. Averaging sharp ultrasensitive 

responses results in a more graded curve and a reduced effect of noise in the levels on input. 

Therefore, cellular variability could potentially play an important functional role. If that is 

the case, it was likely evolved to serve that function and hence cellular variability itself 

should not be considered noise, but an important regulated property of biological systems.

Outlook

The quest for identification of underlying principles is a driving force of scientific 

investigation. Initial work in systems biology focused on the question of robustness: how 

systems can become more uniform and respond in the same way despite existing 

biochemical variability. Both theoretical and experimental advances open a different view 

into the role of cellular variability. It suggests that variability is not simply something that 

has to be overcome, but instead an important functional property of the system. Does this 

means that we need to change how we think about robustness? Perhaps. A refined view of 

biological robustness needs to account for the fact that some time, it is the actual observed 

variability that has to be maintained. If indeed a specific distribution of cellular phenotypes 

in a population is optimal, how does the population of cells is maintained despite fluctuation 
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in the environment? Can a population of cells be robustly variable? Lastly, the existence of 

subpopulations does not mean that everything is variable. It is very possible that some 

systems properties need to be robust to variability in kinetic parameters across all cell 

subpopulations. Future work will be needed to further understand the interplay between 

population variability and response robustness.
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• Robustness is an important emergent property of biological systems

• Many cells populations show high response heterogeneity

• Single-cell technologies uncover complex structure of cell state distribution

• Response heterogeneity is possibly result of internal cell state and not lack of 

accuracy
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