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Abstract

The intrinsic stochasticity of gene expression can give rise to large fluctuations and rare events that 

drive phenotypic variation in a population of genetically identical cells. Characterizing the 

fluctuations that give rise to such rare events motivates the analysis of large deviations in 

stochastic models of gene expression. Recent developments in non-equilibrium statistical 

mechanics have led to a framework for analyzing Markovian processes conditioned on rare events 

and for representing such processes by conditioning-free driven Markovian processes. We use this 

framework, in combination with approaches based on queueing theory, to analyze a general class 

of stochastic models of gene expression. Modeling gene expression as a Batch Markovian Arrival 

Process (BMAP), we derive exact analytical results quantifying large deviations of time-integrated 

random variables such as promoter activity fluctuations. We find that the conditioning-free driven 

process can also be represented by a BMAP that has the same form as the original process, but 

with renormalized parameters. The results obtained can be used to quantify the likelihood of large 

deviations, to characterize system fluctuations conditional on rare events and to identify 

combinations of model parameters that can give rise to dynamical phase transitions in system 

dynamics.

In stochastic systems, it is often of great interest to characterize the fluctuations that give rise 

to rare events. For example, a recurring theme in current biological research is rare events 

leading to phenotypic variation in clonal cells [1]. Prominent examples include latency in 

HIV-1 viral infections [2], sporulation in bacteria [3], and reversible drug tolerance [4] in 

subpopulations of cancer cells. In several cases, the corresponding rare phenotypic transition 

is primarily driven by the intrinsic stochasticity of gene expression. These observations 

provide strong motivation for analyzing rare large deviations in stochastic models of gene 

expression [5, 6].

The development of a framework for analyzing rare events in stochastic gene expression 

needs to take into account multiple factors. Single-cell experiments indicate complex 

mechanisms underlying bursting (i.e. long periods of inactivity punctuated by shorter 

periods of activity) in gene expression [7], motivating the study of general stochastic models 

with multiple promoter states [8, 9]. Furthermore, the random variables whose rare 

fluctuations are of interest can be diverse, ranging from promoter activity fluctuations [3] to 
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the fraction of time spent in specific promoter states [2]. These observations motivate the 

analysis of a general class of gene expression models that can accommodate arbitrary 

complexity in promoter dynamics and bursting. The development of an analytical framework 

for rare events in such models can be used to address several questions of current interest: 

(1) How do combinations of underlying model parameters control the likelihood of rare 

events? (2) How can we characterize fluctuations in the system conditioned on the 

occurrence of a rare event? (3) Can we determine the changes in dynamical model 

parameters that mimic the effects of rare fluctuations?

Recent developments in nonequilibrium statistical mechanics using large deviation theory 

provide a framework for addressing such issues [10, 11, 12]. In particular, considerable 

interest has focused on deriving conditioning-free Markov processes, termed driven 
processes, whose statistics reproduce the fluctuations of the original Markov process 

conditioned on the occurrence of a rare event [13, 14]. So far, nontrivial examples which 

explicitly characterize the driven process for infinite dimensional systems have been limited. 

Furthermore, it is of interest to determine systems for which the stochastic generator for the 

driven process has the same structure as the original process [15]. In the following, we 

combine large deviation theory framework with tools from queueing theory [16, 17], to 

obtain analytical formulas for the statistics of rare events in a general class of stochastic 

models of gene expression. We find that the conditioning-free Markov process that generates 

rare fluctuations generically maintains the same structure as the original Markov process.

Model

We consider gene expression from a promoter with N internal states, labeled i = 1, …, N, as 

illustrated in figure 1. The promoter makes random transitions among its N states switching 

from j → i with rate αij. In each state, bursts of gene expression leading to the production of 

mRNAs occur with rates ki, and burst sizes n drawn from a state-dependent distribution 

bi(n). In the limit that protein degradation rates are much smaller than mRNA degradation 

rates, a widely-used approximation involves assuming that proteins are created in random 

instantaneous bursts from each mRNA [18, 19, 20, 21]. Given the validity of this ‘bursty 

protein synthesis’ approximation, the model considered in figure 1 can also be used to 

represent gene expression at the level of proteins.

The statistical state of the system is specified by a vector  whose 

elements are the probabilities  for the promoter to be in state i at time t having 

produced a total of M mRNAs. The dynamics is an example of what is known in queueing 

theory as a Batch Markovian Arrival Process (BMAP) [22], whose evolution is specified by 

the master equation

(1)
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where the N × N matrix D0 is the transition rate matrix for intra-promoter transitions, 

whereas Dn (n ≥ 1) is an N × N diagonal matrix whose nonzero elements specify the rate of 

creating n mRNA in a burst:

(2)

The diagonal elements  enforce probability conservation. While the representation of the 

dynamics in terms of the matrices Dn is convenient, the full dynamics occur on the infinite-

dimensional space spanned by the states (i, M). Thus, the generator matrix for the master 

equation (1) is infinite dimensional,

(3)

which is a formulation of the dynamics we will need in the following.

Finally, note that if we focus on promoter dynamics alone, the state of the system is 

specified by the vector . The corresponding master equation has the 

generator . In this case, the dynamics will be referred to as promoter-only 

dynamics, whereas the dynamics in (1) is the full system dynamics. In the following, unless 

otherwise stated, we will assume that the matrix  is irreducible.

Large deviations

Large deviation theory for Markov processes specifies the relative likelihood to observe 

large fluctuations in trajectory observables [12, 14]. We will be interested in the fluctuations 

of the class of trajectory random variables

(4)

where the sums extend over all transitions along a random realization of the BMAP, with 

each transition weighted by the parameters g and the time spent in each state weighted by f. 
Notable examples are the promoter activity, that is the number of mRNAs/proteins produced 

up to time t (fi = 0 and ), or the total time spent in promoter state i (fj = δij and 

).

Now, the law of large numbers tells us that for large t, the rate a = At/t, will approach its 

average value ā = limt→∞ At/t with near unit probability. However, rare large deviations 
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from this mean value are possible, and can be quantified, because the probability density of a 
satisfies a large deviation principle for large t [11, 23],

(5)

with large deviation rate function I(a). One can view this as an extension of the central limit 

theorem, quantifying not just the Gaussian fluctuations about the typical value (given by the 

minimum of I), but also the relative likelihood of rare fluctuations.

The theory of large deviations establishes that one way of obtaining the rate function I(a) is 

by evaluating the (scaled) cumulant generating function (SCGF) [23, 11]

(6)

where 〈·〉t denotes an average over full system trajectories of duration t. The rate function 

can then be recovered using the Legendre-Fenchel transform [23, 11]

(7)

The function I(a) (ψ(λ)) is the nonequilibrium analog of the entropy (free energy) in 

equilibrium systems. It is important to note that (7) only gives the convex hull of I, that is the 

smallest convex set that encompasses I [11]. When I is not strictly convex, that is having 

multiple local minima or having a linear part, the SCGF ψ is not differentiable everywhere, 

and is characterized by a nonanalyticity such as a kink. The appearance of such a structure in 

ψ is called a dynamical phase transition [11, 24, 25] in analogy with the nonanalytic 

behavior of the free energy characterizing phase transitions in equilibrium statistical 

mechanics.

A key insight from large deviation theory is that ψ(λ) can be obtained from the largest 

eigenvalue of a modified or twisted generator matrix (cf. (3))

(8)

with elements [13, 14]

(9)
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To obtain ψ from the largest eigenvalue of , we have to diagonalize an infinite-

dimensional matrix. As we will show, the structure of BMAPs greatly simplifies this 

calculation, and reduces the computation to finding the dominant eigenvalue of an N-

dimensional matrix, where N is the number of promoter states.

The basic idea is to investigate the generating function  for At, from which, 

in the long-time limit, the SCGF can be obtained as ψ(λ) = −limt→∞(1/t) ln Gt(λ) (by 

definition (6)). We can express Gt(λ) in terms of the joint probability at time t to be at (i, M) 

having accumulated A of the trajectory observable, pt(M, A):

(10)

where we have introduced the state-dependent generating function Gt(M; λ) = ∫ dA pt(M, 

A)e−λA. The key insight from large deviation theory is that Gt(M; λ) is the solution of the 

twisted dynamics [13]

(11)

and its long-time behavior is controlled by the largest eigenvalue of its generator, the 

infinite-dimensional matrix .

The structure of BMAPs allows us to simplify this calculation significantly. To this end, let 

us solve for the long-time dynamics of Gt by introducing , which 

from (11) evolves according to the simplified N-dimensional linear equation

(12)

where . Let us define . Notably,  is 

the N×N generator for promoter-only twisted dynamics. The largest eigenvalue of 

controls the long-time evolution of Γt(z = 1, λ) and thus gives us the SCGF. Indeed, 

denoting the largest eigenvalue of  by –ψ(λ) (anticipating the conclusion), and 

substituting the solution of (12) into (10) gives us

(13)

While the generator for the full system dynamics is infinite dimensional, the SCGF is 

obtained from the dominant eigenvalue of the N-dimensional matrix  for a model with 

N promoter states, a substantial simplification.
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Conditioning on rare fluctuations

Suppose we want to know what typical trajectories of the system look like, conditioned on 

observing a (possibly rare) rate a for the random variable At. Recent research in 

nonequilibrium statistical mechanics has shown that such information is encoded in the left 

eigenvector  corresponding to the dominant eigenvalue ψ(λ) of the twisted generator 

 [14, 25, 26]. Again, the structure of BMAPs leads to a significant simplification in 

determining this left eigenvector. Denoting  as the left eigenvector corresponding to ψ for 

, we have that the infinite-dimensional left eigenvector  is 

formed from repeated blocks of , due to the repeated block structure of D (3). Using this in 

combination with recent results for the driven process, we find that the conditioning-free 

Markov process that reproduces the statistics of the original process conditioned on a has a 

generator with the same structure as (3), with the corresponding transition rate matrices 

given by [14, 26]

(14)

with λ* = −I′(a). This surprising fact crucially depends on the class of random variables At 

considered in (4), which count promoter transitions with a weight that is independent of the 

number of mRNAs. Furthermore, given that the random variable At is derived solely from 

dynamics related to the production of mRNAs/proteins, the results for the driven process are 

independent of the decay dynamics for mRNAs/proteins. In particular, we note that the 

results for parameters defining the driven model will be the same for the case where the 

decay rate is μ = 0 (which does not have a well-defined steady-state) and for the case for 

finite μ (which does have a well-defined steady-state).

By analyzing the equations determining the left eigenvector  we find, remarkably, that the 

driven process corresponds to another BMAP with modified rates

(15)

and renormalized burst distribution

(16)

The above results, in combination with the equations determining the SCGF ψ(λ) and rate 

function I(a), constitute an analytical framework for characterizing rare events in a general 

class of stochastic models of gene expression.
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Applications

In the following, we will focus on applications of the preceding theoretical framework to the 

case of activity fluctuations (i.e. fi = 0 and ).

Let us consider rare events corresponding to low activity a from a given promoter with a 

typical activity ā. This correspond to a fold-reduction in the mean activity of r = a/ā. Let 

with λ* = −I′(a) denote the SCGF for the driven process. Then, by construction . 

As a result, the fold-change r can be expressed in terms of the driven process as,

(17)

However, we can flip this equation around and consider it as an equation for λ* in terms of 

the fold change r. Once λ* is obtained by solving this equation, the driven process for a 

given fold-change r is completely determined.

The driven process represents the most likely way the rare event in activity fluctuations 

occurs and thus is an ideal choice for generating distributions that can be used in importance 

sampling. Recent work, using a control theory perspective, has also shown that the driven 

process is the optimal way to to achieve the fold-reduction in activity while minimizing the 

‘distance’, in the sense of relative entropy, from the original process [27, 26]. Thus explicit 

characterization of the driven process is also critical in designing regulatory strategies for 

reducing promoter activity (thereby reducing mean mRNA/protein levels) that give rise to 

processes that are closest to the original process.

To illustrate the theoretical framework outlined above, we consider a widely used model of 

gene expression at the protein level [18, 19, 20]: geometrically distributed bursts (with mean 

b) of proteins arriving according to a Poisson process with rate km. In this case, the burst 

generating function is  and correspondingly, we obtain that the SCGF 

ψ(λ) = km−kmgb(e−λ). For a rare event corresponding to a r-fold reduction in mean activity, 

using (17) we see that the corresponding value of λ* is obtained by solving

(18)

Interestingly, we find that the renormalized burst distribution for the driven process 

continues to be a geometric distribution with the corresponding mean given by

(19)
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This indicates that the optimal way to reduce activity involves arrival of geometric bursts 

with a reduced mean and a modified arrival rate. Interestingly, in previous work [28], we 

have shown that post-transcriptional regulation (e.g by miRNAs) can alter bursts of protein 

expression by reducing the mean but keeping the burst distribution geometric. These results 

indicate that that optimal control (in the sense discussed above) can be achieved using a 

combination of transcriptional regulation and post-transcriptional regulation by miRNAs.

As a second illustration, we consider the two-state promoter model [29] depicted in figure 2 

with burst size one. The SCGF for mRNA activity is readily obtained by diagonalizing the 

twisted transition rate matrix:

(20)

Remarkably, ψ develops a nonanalyticity or kink in either the α → 0 or β → 0 limit. 

Specifically for β → 0, we plot in figure 2

(21)

which is nonanalytic for α < km. The observed kink in the SCGF is a signature of a 

dynamical phase transition, akin to the multiphase behavior observed in photon counting 

statistics of a quantum two-level system [30]. Here, the phase transition occurs because, as 

the activity level corresponding to the large deviation is changed, there is a qualitative 

change in the fluctuations that give rise to the rare event. In particular, below a critical 

activity level, these fluctuations involve long sojourns in the 0 (OFF) state (with no activity) 

that correspond to a nonvanishing finite fraction of the total time t. We do note, however, that 

the nonanalytic behavior only arises when the matrix for promoter-only dynamics 

becomes reducible. A detailed characterization of fluctuations in this limit will be presented 

in future work.

In conclusion, we have presented a framework for the quantitative analysis of the probability 

of large deviations and for characterizing system fluctuations conditional on rare events 

during gene expression. The framework developed provides explicit analytical formulae 

determining the driven process for a general class of stochastic models corresponding to 

BMAPs. Our results demonstrate that the driven process corresponding to a BMAP is 

another BMAP with renormalized parameters. This property may also be present in a related 

class of renewal processes, which, while distinct, share a similar structure in the dynamics 

[31]. Since BMAPs are used to model a wide range of applications in science and 

engineering (e.g. computer and communications networks [22]), the results derived are 

expected to have diverse applications. In the context of models of gene expression, the 

results derived can be used to: (1) determine the probability of rare events corresponding to a 

broad class of random variables for general promoter models with arbitrary mRNA/protein 

burst distributions; (2) directly simulate rare system trajectories corresponding to a large 

deviation in the random variable of interest and to predict the corresponding mRNA/protein 
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distributions conditioned on the rare event; (3) optimally control gene expression to achieve, 

for example, a specific fold-regulation while minimizing deviation from the unregulated 

process; and (4) determine regions in parameter space corresponding to nonanalytic 

behavior of the SCGF ψ(λ). The results obtained have thus opened new avenues for 

analyzing rare events in gene expression and have multiple applications ranging from 

importance sampling to optimal strategies for cellular regulation of gene expression.
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Figure 1. 
Schematic of generic promoter model for bursty mRNA transcription. The promoter makes 

random transitions among its N = 3 states with rates αij. Bursts of mRNA of size n are 

drawn from a state-dependent burst size distribution bi(n) and arrive with rate ki.
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Figure 2. 
Cumulant generating function ψ(λ) for the two-state promoter model pictured inset. 

Different lines correspond to decreasing β with the limiting value β → 0 given by the dotted 

line. All graphs have α < km and thus are in the nonanalytic phase for β → 0. Values: α = 1, 

km = 3, β = 1, 0.1, 0.01, 0.
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