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ABSTRACT

Recently, experiments revealed the pupylation to be a signal for the selective 
regulation of proteins in several serious human diseases. As one of the most significant 
post translational modification in the field of biology and disease, pupylation has 
the ability to playing the key role in the regulation various diseases’ biological 
processes. Meanwhile, effectively identification such type modification will be helpful 
for proteins to perform their biological functions and contribute to understanding the 
molecular mechanism, which is the foundation of drug design. The existing algorithms 
of identification such types of modified sites often have some defects, such as low 
accuracy and time-consuming. In this research, the pupylation sites’ identification 
model, CIPPN, demonstrates better performance than other existing approaches in 
this field. The proposed predictor achieves Acc value of 89.12 and Mcc value of 0.7949 
in 10-fold cross-validation tests in the Pupdb Database (http://cwtung.kmu.edu.tw/
pupdb). Significantly, such algorithm not only investigates the sequential, structural 
and evolutionary hallmarks around pupylation sites but also compares the differences 
of pupylation from the environmental, conservative and functional characterization 
of substrates. Therefore, the proposed feature description approach and algorithm 
results prove to be useful for further experimental investigation of such modification’s 
identification.

INTRODUCTION

Post-translational modifications results in various 
human diseases such as cancers and autoimmune diseases, 
pernicious anemia, cardiovascular disease, cancer and 
neurodegenerative disorders. Protein plays the key roles 
in the field of biology and disease. Such modifications 
provide a fine-tuned control of protein functions in various 
types of cells in the field of disease research and drug 
design. For example, the well-known tumor suppressor 
p53 is subject to many post-translational modifications, 
which have ability to altering its localization, stability 
and other related functions, thus ultimately modulating 

its response to various forms of genotoxic stress [1–4]. 
Therefore, p53 drives both the activation and repression 
of a large number of promoters, which ultimately define 
its tumor sup-pressor abilities [5–10]. It could not be 
ignored that the above mentioned tumor suppressor is a 
critical transcription factor in the field of post translational 
modification [11].

When it comes to the post translational modification, 
it seems to be essential for regulating protein functions 
in all living cells and organisms [12–14]. It should be 
noted that ubiquitylation may seem to be one of the most 
common type of protein post-translational modification 
[15]. Such type plays significant roles in the regulation of 
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DNA repair, transcription and other cellular processions. 
On the other hand, ubiquitylation is critical in the several 
types of Human diseases, such as lung cancer, breast 
cancer, Type 2 diabetes and other complex diseases which 
have been serious threats to human health [16–20].

Recently, pupylation, which is a common 
modification type in the protein post translational 
modification, has been treated as the first PTM in 
prokaryotes [21, 22]. Similar to ubiquitin, prokaryotic 
ubiquitin-like protein (Pup) seems to attach to specific 
lysine residues. As the initially found the PTM small 
protein modification in prokaryotes, prokaryotic ubiquitin-
like protein (Pup) in Mycobacterium tuberculosis (Mtb) 
play an important role in the selection of proteins’ 
degradation [23].

To better understand the biological mechanisms 
of pupylation, the basic target and fundamental task are 
the accurate and effective prediction of the pupylation 
sites. Another is worth mentioning, cellular pathways 
involved in determining the fate of essential proteins 
by PTM processions and events. Such pathways seem 
to be an increasingly important area of related study 
in the field. Among so many modifications, the better 
understanding of eukaryotic ubiquitylation by ubiquitin 
protein has shown to be especially essential and valuable 
[24–28]. With those capabilities and functionalities, such 
pathways play particular key roles in the cellular events 
[29–31].

Recently, several large-scale proteomics advanced 
technologies have been brought in identification 
pupylation sites [32–36]. Considering conventional 
experimental approaches’ weakness is usually costly 
and luxury. Therefore, it is urgent to design and develop 
computational methods to identify the potential pupylation 
sites. Up to now, several predictors have been proposed 
and developed for such events. When it comes to the 
group-based prediction system 2.2 versions (GPS2.2) 
algorithm, Liu and their coworkers introduced the  first 
predictor for the prediction of the pupylation sites in 
the field of bioinformatics [37]. Yan Xu and their team 
developed the iSulf-Cys algorithm to identify the 
S-sulfenylation Sites with the physicochemical properties 
of amino acid residues [38, 39]. Tung developed a 
predictor, which is named the iPUP server, utilizing 
the composition of k-spaced amino acid pairs that are a 
special composition of amino acid and its abbreviation is 
CKSAAPs surrounding lysine-centered peptides with the 
SVM algorithm [40]. Chen and colleagues have designed 
a predictor on support vector machine named PupPred 
server, where the amino acid pair composition employed 
as the features so as to encode lysine-centered peptides 
[41]. Currently, Hasan and coworkers proposed a web 
server, which is named pbPUP, to predict pupylation 
modification sites with the method on profile-based 
CKSAAPs’ feature [42, 43]. And such model is also 
employed the SVM model as the classifier.

RESULTS

By fusing three different and distinguish amino 
acid residues’ component information approaches, a 
new ensemble classification framework named, has been 
established for predicting pupylation sites in protein 
sequences. To evaluate the performance of the proposed 
two features, several parameters, including Sn, Sp, Acc, 
MCC and AUC have been employed as the in this work. 
The following equations, which include from eq.(1) to 
eq.(4), have the ability to demonstrate the function of 
the above mentioned parameters. All experiments are 
performed on the personal computer with a 3.40GHz 
Intel(R) Core(TM) i7-3770M CPU and 16G bytes of 
memory.

Sn TP
TP FN

=
+ � (1)

Sp TN
TN FP

=
+ � (2)

Acc TP TN
TP FP TN FN

=
+

+ + + � (3)

MCC TP TN FP FN
TP TN TP FN TN FP TN FN

=
−

+ + + +
* *

( ) * ( ) * ( ) * ( )  (4)

Where, the TP means the true sample in positive set, the 
TN means the true sample in the negative one, the FP 
means the false sample in the positive and the FN means 
the false sample in the negaitve. Meanwhile the AUC 
means the area under the ROC curse, which have the 
ability to show the receiver operating characteristic in the 
field of classification issue.

Performance of AAIndex PCA

In our study, each type of features has contributed 
to the prediction model in different degrees. So, the 
employed feature types’ comparison showed in the Table 
1. From the table, it was easily to find that the features 
on the amino acid upstream/downstream residues 
composition information play less significant effect in the 
pupylation sites prediction. In other words, the adjacent 
amino acid residues’ statistic features do not meet the 
needs on accurate and precise prediction pupylation sites. 
The second type of classification feature is the features 
derived from the AAIndex. These features contain the 
physical, chemical and biological properties of each kind 
amino acid residues. From the table, we can find that 
the candidate properties work well in this kind of post 
translational modification. However, the large amount 
of pupylation segments will cause the huge number of 
feature information. Such situation will also bring the 
unprecedented challenges in the field of computation, 
storing and transmission. The next type of feature is the 
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AAIndex features’ combination by PCA. Such type of 
features seem to have the similar performances with the 
second features’ type. It was noted that the scale of these 
features is far smaller than the former one. Therefore, the 
AAIndex features’ combination with PCA has the ability 
to replacement the AAIndex features’ combination in 
some degree. Meanwhile, the PCA procession merely 
survives the main information of former combination. 
Some minor information of the AAIndex features’ 
combination will be taken into account in the future 
research.

In the aspect of neural network, we selected the 
optimal number of hidden neurons by testing from 2 to 5 
with the alternative layers ranging from 2 to 4. The results 
of 10-fold validation were shown in Figure 1. The other 
performances’ measures are listed in Table 1.

Comparison with other methods

To demonstrate the performance of proposed 
model, we compare current prediction model with the 
other models. Meanwhile, we also carry the comparisons 
among k nearest neighbors, support vector machine and 
Naïve Bayes classification algorithms in this work. The 
testing set was submitted to the GPS-PUP web server and 
the outputs were utilized to calculate the corresponding 
sensitivity, specificity and other performance indicators. 
It should be pointed out that we can guarantee that the 
testing data’s protein segments are not included in the 
training dataset of GPS-PUP.

During this work, it is found that the ensemble 
model affected by the random initializations similar to 
other machine learning algorithms. And then, we have 
repeated the experiments for several times with different 

initializations to demonstrate the stability of the proposed 
ensemble algorithm.

On the other hand, it is also interesting to find from 
the Figure 2 that the number of hidden layers in the neural 
network of the proposed ensemble algorithm plays a 
critical role in its performance. Although this paper has 
tested a large range from 2 to 4 and selected 15 to construct 
our final classification model. Meanwhile, the selection of 
these parameters can also be applied independent. Hence, 
one of the important future research topics is to discover 
the size of hidden layers and hidden nodes with difference 
type data structures.

From the Table 1, we can find that the performances 
of feature AAIndex PCA can clear distinct the difference 
between the negative samples and the positive ones. 
It was pointed that the first proposed feature extracting 
method achieves the average Acc value of 83.41 in the 
PupDB data set, which can be treated as the benchmark 
data set in the field of identification pupylation sites. 
And the other performances on evaluating the method 
are Sn, Sp and Mcc, whose values are 69.55, 97.51 and 
0.6987, respectively. So, in this 10-fold cross validation, 
the domain of Acc can range from 80.33% to 85.17. 
Meanwhile the Sn’s domain can range from 65.21% to 
77.71%. And the upper bound and the lower bound of Sp 
are 98.67% and 95.36%, respectively. At the same time, 
it is easy to find out that the values of Sn are significantly 
higher than the Sp’s values in each subset. And the ROC 
curves of each subset show in the Figure 2.

Performance of AAIndex BLOSUM62 PCA

From the Table 2, we can find that the performances 
of feature AAIndex BLOSUM62 PCA can clear distinct 

Table 1: Prediction the database on Pupdb 10-fold with AAIndex PCA

Subset Sn(%) Sp(%) Acc(%) Mcc AUC

1 65.21 96.45 80.83 0.6491 0.8017

2 73.42 95.36 84.39 0.7049 0.8115

3 69.43 97.56 83.50 0.6980 0.8231

4 64.43 96.23 80.33 0.6398 0.7667

5 72.02 98.32 85.17 0.7291 0.8091

6 65.32 97.67 81.50 0.6656 0.8073

7 68.64 97.53 83.09 0.6912 0.8137

8 69.43 98.64 84.04 0.7117 0.8342

9 67.57 98.67 83.12 0.6970 0.8451

10 77.71 98.63 88.17 0.7806 0.8072

Average 69.55 97.51 83.53 0.6987 0.8119

The first column records sensitivity of these ten subsets of the Pupdb. The second column records the specialty of such 
subsets. And the 3th and 4th column record the accuracy and the Markovian correlation coefficient, AUC of these data, 
respectively.
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Figure 1: The ROC curves of feature of AAIndex PCA.

Figure 2: The ROC curves of feature of AAIndex BLOSUM62 PCA.
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the differences between the negative samples and the 
positive ones. It was pointed that the first proposed feature 
extracting method achieves the average Acc value of 89.12 
in the PupDB data set. And the other performances on 
evaluating the method are Sn, Sp and Mcc, whose values 
are 97.96, 80.28 and 0.7949, respectively. So, in this 10-
fold cross validation, the domain of Acc can range from 
83.82% to 92.59%. The range of Acc is much smaller than 
the AAIndex PCA method. Meanwhile the Sn’s domain 
can range from 87.57% to 99.81%. And the lower bound 
and the upper bound of Sp are 76.42% and 85.75%, 

respectively. However, it is interesting to observe that the 
values of Sp are significantly higher than the Sn’s values 
in each subset. And the ROC curves of each subset show 
in the Figure 2.

In order to evaluate the performance of those two 
methods, several pupylation identification methods and 
algorithm have been developed in the website resources. 
However, some of them had broken links, so they could 
hardly be tested in this model. In fact the predictors, which 
employed PUL-PUP, PSoL, SVM_balance, Naïve Bayesian 
and other methods were included in the comparison tables. 

Table 2: Prediction the database on Pupdb 10-fold with AAIndex BLOSUM62 PCA

Subset Sn(%) Sp(%) Acc(%) Mcc AUC

1 99.81 80.48 90.15 0.8183 0.8127

2 95.57 80.11 87.84 0.7660 0.8157

3 99.27 76.79 88.03 0.7806 0.8287

4 99.72 83.54 91.63 0.8437 0.7903

5 99.34 81.59 90.46 0.8224 0.8107

6 99.43 85.75 92.59 0.8599 0.8102

7 99.52 77.53 88.52 0.7898 0.8167

8 99.62 76.42 88.02 0.7817 0.8397

9 99.75 80.47 90.11 0.8175 0.8576

10 87.57 80.06 83.82 0.6782 0.8162

Average 97.96 80.28 89.12 0.7949 0.8199

The first column records sensitivity of these ten subsets of the Pupdb. The second column records the specialty of such 
subsets. And the 3th and 4th column record the accuracy and the Markovian correlation coefficient, AUC of these data, 
respectively.

Table 3: Prediction the Pupdb database comparison with other methods

Method Sn(%) Sp(%) Acc(%) Mcc AUC

PUL-PUP 82.24 91.57 88.92 0.7413 0.7238

PSoL 67.50 73.60 70.55 0.4118 0.6378

SVM_balance 76.71 63.65 69.88 0.4071 0.6571

Naïve Bayesian 82.78 86.40 84.59 0.6923 0.7528

DEC–SVM 75.49 77.87 77.70 0.5338 0.7891

SET–SVM 93.77 77.87 79.05 0.7256 0.8013

IMP-PUP 94.58 78.12 79.34 0.7371 0.8031

AAIndex 
PCA+Neural 
Network

65.50 99.52 82.51 0.6914 0.8119

AAIndex 
BLOSUM62 
PCA+ Neural 
Network

97.96 80.28 89.12 0.7949 0.8199



Oncotarget108872www.impactjournals.com/oncotarget

Table 4: The comparison with difference features

Features Sn(%) Sp(%) Acc(%) Mcc AUC

Binary Encoding 43.36 75.80 59.58 0.2026 0.6472

AA Composition 64.14 52.79 58.46 0.1704 0.6121

AA Pair Composition 62.46 62.48 62.47 0.2494 0.6917

Grouping AA Composition 41.78 76.04 58.91 0.1897 0.5919

Physicochemical Properties 55.53 63.93 59.73 0.1953 0.5976

KNN Features 64.94 55.85 60.39 0.2088 0.6477

Secondary Tendency Structure 59.96 57.40 58.68 0.1737 0.6211

PSSM 51.20 69.39 60.30 0.2094 0.6374

Binary Coding 64.04 78.60 71.63 0.4310 0.6271

PSSM2 61.11 68.94 65.11 0.3014 0.7921

AAIndex PCA 65.50 99.17 82.32 0.6868 0.8119

AAIndex BLOSUM62 PCA 97.96 80.28 89.12 0.7949 0.8199

Figure 3: The Steps of AAIndex PCA Features. The initial step is the predicted protein sequences in this work. The second step is 
the predicted amino acid segments from the protein sequences. The 3th step is transform the amino acid segments to property matrix of the 
amino acid segments. The fourth step is the Principal Component Analysis (PCA) of the property matrix.
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Table 5: The selected properties from the AAIndex database

No. AAIndex ID Name of Properties

1 CHOP780207 Normalized frequency of C-terminal non helical region

2 DAYM780201 Relative mutability

3 EISD860102 Atom-based hydrophobic moment

4 FAUJ880108 Localized electrical effect

5 FAUJ880111 Positive charge

6 FINA910103 Helix termination parameter at position j-2, j-1, j

7 JANJ780101 Average accessible surface area

8 KARP850103 Flexibility parameter for two rigid neighbors

9 KLEP840101 Net charge

10 KRIW710101 Side chain interaction parameter

11 KRIW790102 Fraction of site occupied by water

12 NAKH920103 AA composition of EXT of single-spanning proteins

13 QIAN880101 Weights for alpha-helix at the window position of -6

Figure 4: The Steps of AAIndex BLOSUM62 PCA Features. The initial step is the protein segments of the predicted amino acid 
segments in this work. The 2nd step is transform the amino acid segments to property matrix of the amino acid segments. The first and 
second steps are same as the second and third steps of the steps of AAIndex PCA features. The 3th step is the BLOSUM 62 matrix, which 
is the interaction between the amino acid residues. The property matrix and the BLOSUM 62 matrix get the multiplication operation in this 
steps. And then, they get a novel interaction matrix. The fourth step is the Principal Component Analysis (PCA) with the novel interaction 
matrix.
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From the Table 3, we can find that the second proposed 
method can reach higher accuracy than the PUL_PUP 
method and the first method merely reach 82.51% in this 
performance. At the same time, we can also find that the 
methods such as the SET-SVM, IMP_PUP and the second 
method can get ideal values in the sensitivity and the 
methods such as the PUL-PUP, Naïve Bayesian and the first 
method can get appropriate value in the specialty.

In order to evaluate the performance of those 
two features, several pupylation identification features 
also have been developed in the literature resources. In 
this work, several features such as Binary Encoding, 
AA Composition, AA Pair Composition, Grouping AA 
Composition, Physicochemical Properties, KNN Features, 
Secondary Tendency Structure and Binary Coding have 
been compared. The comparison among these features 
show in the Table 4.

DISCUSSIONS

Features

Generally, the types of proteins’ features can reach 
more than 10,000. Such huge of features, including 
statistical features such as amino acid compositions 
(AAC), dipeptide compositions (DC), biological features 
such as pseudo amino acid compositions (PseAAC), 
characteristic features such as hydrophilic, free energy 
of molecules and Van der Waals forces of amino acid 
residues and physical features such as relative molecular 
mass, molecular charge number and other relative 
features merely contain remarkably few key classification 
information in the prediction issue [68–70]. Nevertheless, 
the above mentioned features can hardly effectively 
and  accurately have the ability to description the 
interaction between predicted modification lysine residue 
and upstream/downstream amino acid residues [71]. 
Therefore, a special type of features, utilized to classify 
and distinguish the pupylated lysine residues and the non-
pupylated lysine residues, has been improved and polished 
in the proposed prediction method in this work.

Because of the potential sites, the features of amino 
acid residues should be taken into account. The most 
popular and well-known amino acids’ feature index is the 
AAIndex, which is a website database of numerical indices 
representing various physical, chemical and biological 
properties of the amino acid residues, pairs of amino acid 
peptides, other forms of protein sequence information. All 
those relative information could be easily derived from 
published literatures [72–74]. So, several types of amino 
acids’ features have been employed in this research. And 
the more detailed information on the selected amino acid 
features showed in Table 5.

In this work, we have selected several properties, 
which show in the Table 5, from the AAIndex database. 
Those selected properties have been constructed a matrix, 

whose size is m lines and n columns. The m lines mean 
the m-length predicted protein segment and the n-columns 
mean the n-dimension selecting property in this research. 
However, the property matrix seems to be hardly treated as 
the feature in this classification model. Therefore, the PCA 
(Principal Components Analysis) has been employed as 
the feature processing. PCA is a mathematical algorithm 
that tries to reduce and decrease the dimensionality of the 
data matrix. The detailed steps show in Figure 3.

Given a predicted sample matrix with m amino 
acid residues and n properties, the matrix is first focused 
on the means of variables. This will make sure the data 
have the ability to centering on the origin of principal 
components, and the data could not be affected by the 
spatial relationships of the data nor the variances along 
other variables [74–76]. The principal components Y is 
given by the linear combination of the variables x1, x2, …, 
xm and the formulate shows in the (5).

Y a x a x a xm m= + + +1 1 2 2  � (5)

The principal component is computed such that it accounts 
for the most possible variance of the selected properties. 
To prevent such state, weights are evaluated by the 
constraint that the sum of squares is equal to 1. And the 
formulate shows in the (6).

a a am1
2

2
2 2 1+ + + = � (6)

In this paper, we took advantage of the BLOSUM62 
matrix, a popular substitution matrix used for sequence 
alignment of proteins. This explains some details in 
BLOSUM62 that may seem counter intuitive at first 
glance. For example, W/W combination score +11 and L/L 
pair only score +4. The scores could be evaluated by the 
following equation. Those scores consist of a 20×20 score 
matrix. In our work, the values of BLOSUM62 are treated 
as the weights between the potential predicted lysine 
sites and the adjacent amino acid residues. The second 
type of feature is the first type feature with the relation 
weight between the lysine and other kinds of amino acid 
residues in the predicted protein segments. In order to 
show the steps more clearly, the following Figure 4 will 
be described the steps.

MATERIALS AND METHODS

Data

The post translational modification resources show 
the detailed system flow of the online-construction. 
Considering the inaccessibility of database, it contents 
in several online PTM resources, 11 biological databases 
related to PTMs are integrated in dbPTM totally and 
several biological processions [44–47].

First of all, a series of keywords, which is related to 
the PTM-related terms, have been constructed by referring 
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to the UniProtKB and SwissProt resources on the PTM list 
[21, 48, 49]. At the same time, the detailed information 
of those databases has been annotated by the RESID that 
is another international protein database in the field of 
proteomics [50–54].

Next, all fields could be searched by a series 
of keyword list of the constructed table list in the 
PubMed and other proteomics databases. According 
to not complete count, to 2016, about 850 review and 
original articles associated with MS/MS proteomics and 
protein modifications are retrieved from those database. 
Therefore, those datasets of pupylated proteins and 
pupylation sites identified by large-scale proteomics 
experiments are extracted from various PTM databases 
[55]. Particularly, PupDB, which is a collection of 
pupylated proteins and pupylation sites, have been 
constructed by Tung and co-workers in 2012 [56, 57]. 
Such database includes 76, 51 and 55 pupylated proteins 
with known and reported pupylation sites in many 
datasets. Considering pupylation’s occurrence on lysine 
residues, both positive and negative sample groups with 
silicon methods are represented as 2m+1 length residues’ 
peptide segments with lysine in the center. The potential 
peptides with pupylated lysine in the center could be 
treated as positive samples. On the contrary, the other 
non-modified potential peptides seem to be the negative 
ones. At the same time, another step of the preprocessing 
seems to avoid overestimating prediction performances of 
proposed methods in this work. So the redundant peptides 
of identical sequences have been removed.

To solve the heterogeneity among those data 
collected from different databases from the website 
resource, such reported sites have been mapped from 
the UniProtKB protein. With the development of high- 
throughput of MS-based approaches in the field of post-
translational proteomics, this update, meanwhile, includes 
manually curated MS/MS-identified peptides associated 
with PTMs from research articles [58–63].

The source of pupylation protein sequences have 
been extracted by the UniProtKB/Swissprot database in 
this research [64]. To ensure the quality, the selected data, 
have been used in this research, was constructed by the 
UniProtKB/SwissProt at http://www.ebi.ac.uk/uniprot/.

The detailed procedures show as following the steps:
I. Vistiting the website at http://www.uniprot.org/, 

and then the button ‘Advanced’.
II. Choosing the ‘Modified residue’ for ‘Fields’.
III. Choosing the ‘Any experimental assertion’ for 

‘Evidence’.
IV. The proteins thus obtained were subject to a 

screening operation to remove those sequences, which 
have above 50% pairwise sequence identity to any other.

It was pointed that the aforementioned existing 
prediction servers were generally trained about the 
experimentally annotated pupylated proteins. However, 
those prediction servers’ data resources have been 

collected from the PupDB database, which is a classical 
benchmark database [6]. It is noteworthy that only 268 
annotated pupylated proteins with 311 known pupylation 
sites were included in the current version of PupDB 
database [65–67]. Considering such phenomenon, the scale 
of defined and submitted the modified protein sequences 
seem to be relatively small. Those prediction models and 
relative researcher could hardly reflect the real distribution 
of modification sites commendably. Consequently, the 
prediction accuracy of existing computational methods 
could hardly be unsatisfactory. Really, there are 268 
annotated pupylated protein sequences.

In this study, the proposed method, which aims to 
improve the prediction of pupylation sites, by using an 
alternative structure neural network and employed two 
types of protein information as the classification features. 
Specifically, the alternation structure neural network 
classification model is trained on those training proteins 
segments taking advantage of the selected features. And 
the initial ensemble model is utilized to classification 
the testing pupylated proteins segments. Then, the final 
ensemble classification, which is used to construct the 
proposed algorithm, results at the end of classification. As 
illustrated by our experimental results, the performance of 
the predictor has been improved effectively by the selected 
data set. The results indicated that the proposed algorithm 
outperforms three other existing predictors significantly.

CONCLUSIONS

Much knowledge about protein sequences with 
pupylation has been accumulated to date. There are still 
numerous unanswered issues and questions regarding 
specific aspects of the classification issue in the field of 
machine learning. Nowadays non-consensus sequences 
that make up their mind which specific lysine would 
become pupylation could be identified when non-
homologous proteins seem to be considered. It is hard to 
regard that all segments carry similar structures before 
they bind to the component of the pupylation modification.

Systematic analysis of the pupylated sites along with 
information on the exact sites is utilized by identifying 
the modified sites from the protein sequences. Here, it 
can be easily find that not only the sequence markers but 
also structural markers about pupylated sites. First of all, 
the analysis of sequence features demonstrates that the 
adjacent amino acid residues in the potential segments 
could be close to modified lysines residues in spatial 
structure. Secondly, pupylation protein segments have 
high propensity flexibility in the field of protein structure. 
Finally, the conservative in pupylation segments seem to 
be high.

On the other hand, another significant result of 
this research is design of the pupylation sites prediction 
model with different types of features. Every selected 
type of features is contributed to the prediction model 

http://www.ebi.ac.uk/uniprot/
http://www.uniprot.org/
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more or less. Here, it was pointed that unbalanced 
datasets, which the negative samples can reach 5 times 
than the positive ones, present a hottest topic in the 
field of machine learning classification. In our work, the 
unbalanced datasets will try to avoid the negative impacts 
with the preprocess steps, which the positive samples 
replicate themselves until the size of positive samples 
can generally reach the scale of the negative ones in both 
training and testing set. Nevertheless, the preprocess 
method will increase the burden of classification model. 
The model’s training time will be greatly extended. 
Considering the burden and the training time, an 
improved preprocess step has been introduced to deal 
with the unbalance classification model. Such improved 
step merely replicate the positive samples in the testing 
set. With such step, the unbalanced classification issues 
can be solved basically and the burden of classification 
model will not increase. For future research, other 
methods, such as semi-supervised learning, will be 
explored and developed to deal with the unlabeled post 
translational modification sites in the predicted protein 
segments.

To summarize, the design of ensemble 
classification model represents an attempt to predict 
candidate pupylated segments based on the multi-type 
feature. Because the size of experimentally identified 
modification sites will be rocketing in the future 
and such sites will be enriched the training set, the 
current accuracy of the ensemble is helpful to identify 
the new sites. With the established link between the 
feature description and the classification system, such 
predictions, especially when confirmed by experiments, 
would be helpful to identify the degradation possibilities 
of individual proteins more precisely, and may ultimately 
lead to design of drugs and treatment of diseases.

In this work, we have developed a novel pupylation 
sites prediction ensemble algorithm. To our knowledge, 
it is the first time such ensemble flexible neural tree 
model has been applied to predict the potential pupylation 
sites. Experimental results demonstrate that such method 
outperformed the existing pupylation sites prediction. 
At the same time, the majority modification type likely 
pupylation sites could be predicted in non-annotated 
lysine sites by utilizing the proposed ensemble model. 
Meanwhile, it could be believed that such method can be 
utilized to prediction the other types of modified sites in 
the potential protein segments. Therefore, we will design 
and develop the web server for such algorithm in future 
research.
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