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ABSTRACT

MethBank (http://bigd.big.ac.cn/methbank) is a
database that integrates high-quality DNA methy-
lomes across a variety of species and provides an
interactive browser for visualization of methylation
data. Here, we present an updated implementation of
MethBank (version 3.0) by incorporating more DNA
methylomes from multiple species and equipping
with more enhanced functionalities for data annota-
tion and more friendly web interfaces for data presen-
tation, search and visualization. MethBank 3.0 fea-
tures large-scale integration of high-quality methy-
lomes, involving 34 consensus reference methy-
lomes derived from a large number of human sam-
ples, 336 single-base resolution methylomes from
different developmental stages and/or tissues of five
plants, and 18 single-base resolution methylomes
from gametes and early embryos at multiple stages of
two animals. Additionally, it is enhanced by improv-
ing the functionalities for data annotation, which ac-
cordingly enables systematic identification of methy-
lation sites closely associated with age, sites with
constant methylation levels across different ages,
differentially methylated promoters, age-specific dif-
ferentially methylated cytosines/regions, and methy-
lated CpG islands. Moreover, MethBank provides
tools to estimate human methylation age online and
to identify differentially methylated promoters, re-
spectively. Taken together, MethBank is upgraded

with significant improvements and advances over the
previous version, which is of great help for decipher-
ing DNA methylation regulatory mechanisms for epi-
genetic studies.

INTRODUCTION

DNA methylation, as a major epigenetic modification,
plays important roles in human diseases and aging (1–4),
embryonic development of animals (5–8) as well as growth
and development of plants (9–12). Recently, studies in hu-
man have found that DNA methylation biomarkers of ag-
ing are associated closely with mortality rates and incidence
of cardio-metabolic disease (13,14). Accordingly, identifica-
tion of DNA methylation states for healthy people at dif-
ferent ages is able to provide references and controls for
studying DNA methylation regulatory mechanisms and in-
vestigating epigenetic biomarkers for diseases (15–17). Ad-
ditionally, DNA methylation exerts substantial impacts on
animal embryonic development (5,7) as well as responds to
stress (9) and development processes in plants (11). To make
it short, recent studies on DNA methylation conducted in
a wide variety of species have generated vast amounts of
data, presenting the necessity for comprehensive integration
of methylation data that would be of great help for system-
atic exploration of DNA methylation signatures in epige-
netic studies.

MethBank (http://bigd.big.ac.cn/methbank), with the
first version released in 2014, is a database dedicated to
integrating high-quality DNA methylomes across a vari-
ety of species and providing an interactive browser for vi-
sualization of high-resolution DNA methylation data (18).
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With the rapid advancements in high-throughput sequenc-
ing technologies and the ever-growing amount of methyla-
tion data as mentioned above, here we present the upgraded
version of MethBank (v3.0) and describe its major updates
in the past three years. In contrast to its first release that was
primarily focused on DNA methylation reprogramming in
early embryonic development in two model organisms (ze-
brafish and mouse), MethBank 3.0 integrates 34 consensus
reference methylomes (CRMs) compiled from 4577 healthy
human samples at different ages, 336 single-base resolution
methylomes (SRMs) of five plants and 18 SRMs of two
animals. Moreover, it features systematic identification of
not only gene methylation profiles but also differentially
methylated promoters (DMPs), age-specific differentially
methylated regions/cytosines (DMRs/DMCs) and methy-
lation sites in close association with age, etc. and equips
with more enhanced functionalities for data annotation and
more friendly web interfaces for data presentation, search
and visualization.

MATERIALS AND METHODS

Data sources

Whole-genome bisulfite sequencing data with genome cov-
erage > 30X on Illumina sequencing platform of ani-
mals and plants are downloaded from Sequence Read
Archive (SRA) (19) and Genome Sequence Archive (GSA)
(20). Considering the higher resolution of HumanMethyla-
tion450 (450K; 482 421 CpG sites) BeadChip than Human-
Methylation27 (27K; 27 578 CpG sites) BeadChip (21,22),
MethBank only collects 450K array datasets from periph-
eral blood of healthy people with known age in Gene Ex-
pression Omnibus (GEO) (13,23–28). All datasets used in
MethBank 3.0 are summarized in Supplementary Table S1.

Data analysis

For whole-genome bisulfite sequencing (WGBS) data of
animals and plants (Supplementary Figure S1), sequenc-
ing read quality is evaluated by FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc), low qual-
ity read ends are filtered and adapter sequences are removed
via Trim Galore (http://www.bioinformatics.babraham.ac.
uk/projects/trim galore). WBSA (Web service for Bisulfite
Sequencing data Analysis) (29) is used to align reads to
genome, identify cytosine context, and annotate the methy-
lation levels of cytosine sites. A CpG island is defined as
a sequence ≥200 bp with C + G content ≥ 50% and CpG
observed/CpG expected ≥0.6. A CpG island with average
methylation level >0.6 is defined as a methylated CpG is-
land (mCpGI). The promoter region is defined as the re-
gion 2000 bp upstream of transcription start site (TSS) for
animals and 1500 bp upstream of TSS for plants. DMPs
are identified via Fisher’s exact test with FDR corrected P-
values <0.01 on the condition that the delta methylation
levels of the promoters between two samples are greater
than 0.1 for C/CH (H = A, C or T) and 0.2 for CG. In
animals, only CG sequence context is considered.

For Illumina Infinium HumanMethylation450 BeadChip
data (Supplementary Figure S2), Minfi (source (‘https://
bioconductor.org/biocLite.R’)) is implemented to upload

the raw intensity data into R (version 3.3.2). Cytosine
methylation beta values are calculated as

Beta value

= methylated signal/ (methylated signal + unmethylated signal + 100) .

PCA (Principal Component Analysis) is used to remove
outlier samples. BMIQ (Beta MIxture Quantile dilation)
(30) is used to correct the bias of probes coming from two
different designs. In addition, DNA methylation levels of
age-related CpG sites at the same age in different batches are
assumed to be similar. Consequently, samples at the same
age in different batches are grouped together, and batch ef-
fects are removed in each group using L/S batch adjustment
separately. All 4577 samples are divided into 12 age groups
by clustering analysis. In CRMs, the methylation level for a
specific CpG site is the median of methylation levels of all
the samples in any specific age group. The reference ranges
of methylation level in healthy population are defined from
the first quantile to the third quantile. The Spearman corre-
lation between DNA methylation level and age is measured
for each CpG site. The CpGs with correlation coefficients
≥0.6 are considered to be sites that are closely associated
with age. Following a published procedure (31), the methy-
lation cytosine is defined as an age-specific DMC if the lin-
ear model considering a fixed effect for age and a random
effect for gender fits the data better than that without con-
sidering a fixed effect for age, satisfying with the Bonferroni
corrected P ≤ 1.03E–7 (0.05/485K CpGs, F-test) as well as
the effect size ≥ 20%. Multiple comparisons are then per-
formed to determine which age group each DMC belongs
to. A CpG site is identified as a site with constant methy-
lation levels across different ages, if it has no statistically
significant difference in the mean methylation (Scheffe test)
between any two age groups and the absolute difference of
methylation levels between any two age groups is ≤0.1. An
age-specific DMR is defined as a region covering at least
three age-specific DMCs with an inter-CpG distance ≤1000
bp.

NEW FEATURES AND UPDATES

MethBank 3.0 features large-scale integration of CRMs
compiled from 450K data of humans (Table 1), SRMs from
WGBS data of plants and animals (Table 2). Compared to
its first release in 2014 that only included 18 SRMs from
gametes and early embryos at multiple stages of two ani-
mal species (zebrafish and mouse), MethBank 3.0 addition-
ally integrates 34 CRMs at different age groups of humans
and 336 SRMs from different developmental stages and/or
tissues of five plants. Furthermore, it is enhanced not only
by equipping with more friendly web interfaces for data
presentation, search and visualization but also improving
the functionalities for data annotation, which leads to sys-
tematic identification of genome-wide methylation profiles,
DMCs, DMRs, DMPs and methylation sites in close asso-
ciation with age, etc. Detailed statistics of database contents
in MethBank 3.0 are summarized in Tables 1 and 2.

For human, MethBank integrates a comprehensive col-
lection of HumanMethylation450 BeadChip datasets from
4577 peripheral blood samples of healthy people at differ-
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Table 1. Data statistics of human 450K data in MethBank 3.0

Data item Number

CRMsa 34
Sites closely associated with age 692
Sites with relatively constant methylation levels across different ages 2371
Age-specific DMCsb 53 680
Age-specific DMRsc 1716
Annotated genes 984 842

aConsensus Reference Methylome.
bDifferentially Methylated Cytosine.
cDifferentially Methylated Region.

Table 2. Data statistics of WGBS data in MethBank 3.0

Species SRMsa DMPsb mCpGIsc Genes related to mCpGIs Annotated genes

Mouse 9 108 215 4645 4526 526 338
Zebrafish 9 6572 56 204 33 679 331 708
Rice 172 46 674 528 463 90 893 6 049 625
Soybean 112 89 036 40 955 5110 4 794 282
Tomato 40 54 387 53 353 2254 979 927
Cassava 8 NAd 6126 378 198 522
Common bean 4 NAd 4079 178 81 766

aSingle-base Resolution Methylome.
bDifferentially Methylated Promoter.
cMethylated CpG Island.
dNot available due to limited sample.

ent ages (from newborn to 101 years old). Based on clus-
tering analysis, all collected samples are divided into 12
groups in terms of age, namely, 0 (newborn; n = 258), 2–
4 (n = 13), 5–13 (n = 56), 14–16 (n = 180), 17–28 (n = 424),
29–36 (n = 297), 37–42 (n = 201), 43∼53 (n = 760), 54–
66 (n = 1299), 67–75 (n = 602), 76–88 (n = 453) and 89–
101 (n = 34), accordingly leading to 34 CRMs for all age
groups with each considering three cases by gender (that is,
male, female and mixed; except for the 2–4 age group due
to limited samples). As each site has a reference range of
methylation level in healthy population, MethBank offers
CRMs for healthy people at different age groups, which are
of great helpfulness to investigate the difference of methy-
lation profiles by comparison with specific samples under
investigation, for example, from cancer patients. Consider-
ing that aberrant DNA methylation is a potential cause of
age-related diseases (32,33), MethBank detects 692 methy-
lation sites that are closely associated with age (Figure 1),
helpful for investigating aging states and studying regula-
tory mechanisms of DNA methylation during aging. Mean-
while, MethBank identifies 2371 methylation sites that have
relatively constant methylation levels across different ages
in healthy people, which potentially can be used as puta-
tively candidate biomarkers to predict specific diseases (34).
In addition, MethBank provides a list of 53 680 age-specific
DMCs and 1716 age-specific DMRs (Table 1), presumably
bearing great utility for fully capturing epigenetic signa-
tures during human aging. To support information search
and exploration, MethBank also allows users to search gene
methylation profiles in all age groups. It is also able to visu-
alize all methylation profiles in the methylome browser and
download all annotated data and analysis results.

It has been reported that non-CG methylation accounts
for a considerable proportion in plants (35–38) and thus is

considered to play vital roles during plant growth and devel-
opment (12). For plants, therefore, both CG and non-CG
methylations are taken into account in the upgraded ver-
sion of MethBank. Specifically, MethBank 3.0 incorporates
SRMs differentiated C, CG, CHG and CHH contexts from
five economically important crops, including 172 SRMs
for Oryza sativa (rice), 112 for Glycine max (soybean), 8
for Manihot esculenta (cassava), 4 for Phaseolus vulgaris
(common bean), and 40 for Solanum lycopersicum (tomato).
Moreover, to enable in-depth investigation of DNA methy-
lation data, it identifies a large number of DMPs (46 674
for rice, 89 036 for soybean, 54 387 for tomato) between a
range of conditions and detects genes related to mCpGIs
(90 893 for rice, 5110 for soybean, 2254 for tomato, 378 for
cassava, and 178 for common bean) for all collected samples
(Table 2). For each gene, MethBank visualizes its methyla-
tion levels in promoter and gene body for different sequence
contexts under all available stages and tissues (Figure 2).
Additionally, detailed metadata of all raw data, such as se-
quencing platform, submitters, year of submission, number
of experiments, mapping rate, genome coverage and bisul-
fite conversion rate, is summarized for each dataset in each
species as well. To better display genome-wide methylation
status for each species, MethBank depicts whole-genome
methylation alteration in three sequence contexts for all
chromosomes and provides the distribution of methylation
levels and percentage of methylcytosines identified in differ-
ent sequence contexts.

Apart from the 18 SRMs of gametes and early embryos at
multiple developmental stages of two model animals (nine
for zebrafish and nine for mouse), MethBank 3.0 identifies
DMPs between specific development stages and mCpGIs
for all collected SRMs. Specifically, it identifies 6572 DMPs,
56 204 mCpGIs and 33 679 genes related to mCpGIs for ze-
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Figure 1. Screenshots of human methylation data. (A) Sites closely associated with age. (B) Sites with constant methylation levels across different ages. (C)
Age-specific differentially methylated cytosines. (D) Methylation states at promoter and gene body as well as basic information, by searching the human
gene MIR4632. (E) Methylation levels in a genomic region from 99 364 349 to 149 214 473 in human chromosome 1.
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Figure 2. Screenshots of rice methylation data. (A) Methylation profiles at promoter and gene body considering different sequence contexts, by taking
rice gene Os01g0101300 as an example. (B) Whole-genome methylation alterations in different sequence contexts, with 10 layers from outer to inner,
namely, chromosomes, distributions of CG methylation levels, CHG methylation levels, CHH methylation levels, Watson strand genes, methylation levels
in Watson strand genes, methylation levels in Crick strand genes, Crick strand genes, CpG islands, and methylation level in CpG islands. (C) Distribution of
methylation levels under different sequence contexts. (D) Gene list related to differentially methylated promoters between seed and leaf in the CG context.
(E) Catalog of genes related to methylated CpG islands of callus tissue.
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brafish, and 108 215 DMPs, 4645 mCpGIs and 4526 genes
related to mCpGIs for mouse, respectively (Table 2), which
are helpful for dissecting regulatory mechanisms of DNA
methylation reprograming during embryonic development.
Similarly, MethBank depicts methylation levels in promoter
and gene body for each annotated gene considering all 18
collected gametes and early embryos at multiple develop-
mental stages and illustrates whole-genome CpG methyla-
tion levels. All these information can be interactively dis-
played in the methylome browser. Certainly, MethBank
provides detailed metadata for all collected raw data and
displays the distribution of CpGs with different methylation
levels.

In addition to large-scale data integrated, MethBank is
enhanced by equipping with more user-friendly and intu-
itive web interfaces to facilitate data presentation, search
and visualization. For human, users can retrieve methyla-
tion profiles in promoter and gene body for any given gene
across all age groups with different gender. MethBank also
enables users to obtain methylation levels for any specific ge-
nomic region across different age groups. For animals and
plants, users can search for gene methylation profiles as well
as DMPs, mCpGIs and methylation levels for any specific
genomic region. In addition, MethBank provides a list of
genes related to DMPs between samples in designated envi-
ronmental conditions or at specific development stages and
offers a catalog of mCpGIs and related genes as well as gene
methylation profiles for all samples. Regarding data visual-
ization, it is capable of displaying high-resolution methyla-
tion profiles in the methylome browser, including 34 CRMs
across 12 age groups, 336 SRMs at different developmen-
tal stages and/or in tissues of five plants, and 18 SRMs for
gametes and different development stages of early embryos
of two animals. Compared with the previous release, the up-
dated version of MethBank makes all relevant data publicly
downloadable, including DNA methylomes, gene methyla-
tion profiles, DMPs, mCpGIs and related genes, methyla-
tion sites closely associated with age, sites with constant
methylation levels across different ages, age-specific DMCs
and DMRs. All annotated data and analysis results are
available for download at http://bigd.big.ac.cn/methbank/
downloads.

Evidence has accumulated that DNA methylation can be
used to predict human methylation age which can reflect
the clinical and physiological status of organisms (15,39).
Thus, prediction of DNA methylation age is helpful to study
age-associated physiological decline and diseases (15,40–
43) and also very useful for forensic applications, for exam-
ple, to estimate the age of a suspect based on blood left on
a crime scene (44). Based on large-scale human methylation
datasets integrated in MethBank 3.0, we develop an online
tool, named Age Predictor, to estimate the DNA methyla-
tion age by three machine learning methods (SVM, Ran-
dom Forest and Elastic Net) and provide the corresponding
web services for online analysis. Specifically, methylation
sites that are identified to be closely associated with age are
used for age prediction (see details in Supplementary Text
S1). In addition, a bootstrap process is adopted, with the
purpose to provide the confidence interval of the predicted
age. To enable users to run the Age Predictor in a convenient
way, MethBank allows to upload raw data or processed data

or specify a GEO sample ID. The comparison between Age
Predictor and two popular approaches (24,41) shows that
Age Predictor achieves higher accuracy (see Supplemen-
tary Table S2; unpublished results which will be summa-
rized into another paper). Additionally, we develop another
tool named IDMP (Identification of Differentially Methy-
lated Promoter) to identify DMPs via Fisher’s exact test
and FDR correction (see details in Supplementary Text S2),
which is publicly accessible and downloadable through the
home page of MethBank.

DISCUSSION AND FUTURE PLANS

Since its inception in 2014, MethBank is dedicated to inte-
grating genome-wide DNA methylation data for a wide va-
riety of species. In contrast to the previous version that con-
tains 18 SRMs of embryonic development of two animals,
MethBank 3.0 is upgraded significantly by incorporating 34
CRMs from healthy people at different age groups and 336
SRMs under different developments and stress conditions
of five economically important plants. In addition, Meth-
Bank is significantly enhanced by equipping with more user-
friendly web interfaces for data presentation, search and vi-
sualization and improving the functionalities for data anno-
tation, which accordingly enables identification of not only
gene methylation profiles but also DMCs, DMRs, DMPs,
methylation sites in close association with age and sites with
constant methylation levels across different ages. It conse-
quently allows users to retrieve genome-wide methylation
profiles as well as specific gene/regional methylation lev-
els across all collected samples and also provides two tools
for methylation age prediction and DMP identification. As
an important resource in the BIG Data Center (45), Meth-
Bank will be frequently upgraded and improved. We will in-
tegrate more high-quality methylomes from a wider range
of species and develop new functionalities that allow users
to submit analyzed data to MethBank. Taken together, the
ultimate goal of MethBank is to serve as a public methyla-
tion databank by the community, for the community and of
the community.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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