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ABSTRACT

Biological networks provide new opportunities for
understanding the cellular biology in both health
and disease states. We generated tissue specific
integrated networks (INs) for liver, muscle and adi-
pose tissues by integrating metabolic, regulatory and
protein-protein interaction networks. We also gener-
ated human co-expression networks (CNs) for 46 nor-
mal tissues and 17 cancers to explore the functional
relationships between genes as well as their rela-
tionships with biological functions, and investigate
the overlap between functional and physical interac-
tions provided by CNs and INs, respectively. These
networks can be employed in the analysis of omics
data, provide detailed insight into disease mecha-
nisms by identifying the key biological components
and eventually can be used in the development of ef-
ficient treatment strategies. Moreover, comparative
analysis of the networks may allow for the identifi-
cation of tissue-specific targets that can be used in
the development of drugs with the minimum toxic ef-
fect to other human tissues. These context-specific
INs and CNs are presented in an interactive website
http://inetmodels.com without any limitation.

INTRODUCTION

Systems biology is an emerging tool that uses both inte-
grative and systems-level approaches for organizing and
interpreting highly complex and heterogeneous informa-
tion generated by high-throughput technologies (1). Sys-
tems biology/medicine has provided a new perspective in
biology and medicine and allowed for detailed understand-
ing of how biological systems function in both health and

disease states through the use of biological networks includ-
ing GEnome-scale metabolic Models (GEMs), transcrip-
tional regulatory networks (RNs), protein–protein interac-
tion networks (PPINs), signalling networks (SNs) and co-
expression networks (CNs) (2,3). To date, a large number of
GEMs has been generated for major human tissues (4–8),
tumor samples (9–11) as well as individual patients (12–14).
Similarly, generic and tissue-specific PPINs (15,16), RNs
(17,18) and SNs (19,20) have been generated and employed
in understanding the relationship between genes and their
key role in various biological functions in different clinical
conditions. Those biological networks have provided a com-
prehensive perspective on the biological functions of the
given tissue/cancer and used as comprehensive resources in
the analysis and integration of multiple omics data. These
models have been deposited to resources such as Human
Metabolic Atlas (21), BIGG database (22) and BioModels
(23).

Considering the interplay between the proteins and their
major role in a specific biological function, we gener-
ated tissue-specific Integrated Networks (INs) by merging
GEMs, RNs and PPINs for liver, adipose and muscle tissues
(24). Even though INs provide detailed information about
the physical link between genes, metabolites and transcrip-
tion factors, these physical links do not have to result in
functional relationship. In this context, we also generated
tissue-specific CNs for 46 major human tissues and tested
an hypothesis about the association of fatty acid synthase
(FASN), the key enzyme in de novo lipid synthesis, with the
progression of non-alcoholic fatty liver disease (NAFLD)
and hepatocellular carcinoma (HCC) (25). Here, we pre-
sented INs for liver, muscle and adipose tissues and CNs
for 46 human tissues and 17 cancers to the research com-
munity. We created a database for tissue/cancer-specific bi-
ological networks (TCSBN) and presented these networks
in an interactive website http://inetmodels.com without any
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limitation. Our database allows users to explore the rela-
tionships between genes and biological functions in a given
tissue/cancer through the employment of CNs in gene-
centric manner. Each gene is linked to Human Protein At-
las (HPA) (http://www.proteinatlas.org/), where the protein
and mRNA expression in major human tissues (8) and the
subcellular localization of the proteins (26) are presented.
Moreover, users can investigate the overlap between func-
tional and physical interactions through the employment of
INs and CNs for human tissues. We finally presented a case
study where we employed these biological networks for test-
ing a biological hypothesis that can be used in the discovery
of tissue-specific drug targets for the development of effi-
cient treatment methods.

DATABASE DESCRIPTION

We generated INs for liver, muscle and adipose tissues by
integrating GEMs, PPINs and RNs (24). We used tissue-
specific proteomics and transcriptomics data presented in
HPA (8) to refine the generic human PPIN (27) and RN that
is generated using ENCODE DNase-seq data (28). INs have
been employed in the analysis of the transcriptomics data
obtained from lean and obese subjects and deregulation
around mannose metabolism has been elucidated (24). The
study proposed that plasma mannose levels can be used in
prediction of the insulin resistance independently of BMI.
In a follow up study, plasma mannose levels have been ana-
lyzed with specific liquid chromatography- mass spectrome-
try in relation to future development (up to 8 years) of Type
2 diabetes (T2D), cardiovascular disease (CVD) and dia-
betic kidney disease in a total of over 8,000 individuals who
did not have disease at the time of the baseline mannose lev-
els (29). We found that elevated plasma mannose levels are
strong markers of future risk of several chronic diseases and
that it may contribute to their development rather than just
being a novel biomarker (29). It has been demonstrated that
tissue-specific INs are valuable tools in the analysis of clin-
ical data and provide useful information that can be trans-
lated to the clinic.

Moreover, we generated CNs for 46 human tissues and 17
cancers using the tissue and cancer specific RNA-seq data
presented in GTEx (30) and TCGA (31) databases, respec-
tively. RNA-seq data of those databases were processed with
different pipelines and counted with different units, such as
transcripts per million (TPM) for human tissues in GTEX
(30) and fragments per kilobase of transcript per million
mapped reads (FPKM) for cancers in TCGA (31). There-
fore, to minimize the biases during the generation of CNs,
we excluded lowly-expressed genes based on their median
gene expression (less than 1 TPM for human tissues; less
than 1 FPKM for cancers) and combined all top-100 (i.e.
positive correlation) and bottom-100 (i.e. negative corre-
lation) co-expressed genes of remaining genes on the net-
works, based on Pearson’s correlation coefficients. Of note,
the number of genes included in each network may vary
since the mRNA expression of a gene is different in each
tissue or cancer. Those human tissue networks included the
smallest network of whole blood (10 063 nodes) and the
largest network of testis (15 621 nodes) and human cancer
networks included the smallest network of liver cancer (10

037 nodes) and the largest network of glioma (12 147 nodes)
(Supplementary Table S1).

We identified liver-specific targets that can be used in the
development of drugs for liver diseases with the minimum
toxic effect to other human tissues. Moreover, we generated
cancer-specific co-expression networks of 17 major human
cancers (32). We found that a large fraction of genes is dif-
ferentially expressed in cancers and these genes have an im-
pact on overall patient survival. We also showed that gene
expression patterns of individual tumours varied consider-
ably, and could exceed the variation observed between dif-
ferent cancer types. Shorter patient survival was generally
associated with up-regulation of genes involved in mitosis
and cell growth, and down-regulation of genes involved in
cellular differentiation. We also found that genes involved in
hallmarks of cancer (33,34) were mostly co-expressed with
prognostic genes in each cancer. For all cancers, we found
co-expression clusters enriched with prognostic genes and
hallmark genes and identified potential targets that may be
used in the development of anti-cancer drugs.

NETWORK SEARCH

Users may explore neighbours of a query gene in each bi-
ological network (Figure 1) to identify the genes that ei-
ther directly interacts or co-expresses with the queried gene.
Choosing a query gene in a network type, users may se-
lect the direction to find neighbours of a query gene: from
source node to target node, or vice versa. For integrated
networks, this option is useful in finding the regulators of
a query gene (by ‘target to source’ option) or target genes
(by ‘source to target’ option). In Figure 1A, we used ‘target
to source’ option to find regulators of FASN in liver inte-
grated network. In addition, the user may set a parameter
to describe a maximal number of nodes for neighbours of a
queried gene to limit the network size for visualization pur-
poses. We ranked the neighbour genes based on the absolute
correlation coefficients and showed them with correspond-
ing correlation coefficients and P-values. Therefore, users
can choose neighbours of a query gene with desired statisti-
cal significances. The database includes another parameter,
called edge pruning parameter, to show only edges with de-
sired statistical significances. We set default P-value as 0.01,
but users can change it in a full range of P-values.

As an example, we searched a transporter involved in
the transport of fatty acids from cytosol to mitochondria,
carnitine palmitoyltransferase I (CPT1A) in the liver co-
expression network (Supplementary Figure S1) by setting
maximum number of nodes to 25 and edge pruning param-
eter to 2 (i.e. –log 10 P = 2.0). We identified three clusters
of co-expressed neighbours (red circles, Supplementary Fig-
ure S1A). Interestingly, a cluster that is negatively correlated
to CPT1A includes enzymes involved in lipid synthesis. We
also found two other clusters that include genes involved in
the beta-oxidation of fatty acids, electron chain transport,
lipid transport and mitochondrial biogenesis, which are as-
sociated with the function of CPT1A. Likewise, users can
search their genes of interest and identify functionally re-
lated genes in a given tissue or cancer.

The users are allowed for searching multiple genes (as
queries up to three genes) that may help to see the co-
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Figure 1. Description of the database to explore the neighbours of a query gene. (A) Users can input a query gene in a network type to explore and constrain
a network size to visualize by setting maximum number of neighbour nodes. For instance, we queried fatty acid synthase (FASN) in liver integrated network,
liver co-expression network and liver cancer co-expression network. Of note, ‘target to source’ option was used to find regulators of FASN in liver integrated
network. (B) The users are allowed for searching multiple genes (up to three genes). We showed an example for searching FASN and G6PD simultaneously
in liver co-expression network and found their neighbours are independently clustered. (C) Along with a visualized network from a query gene, it also shows
tables of a query gene and neighbours with their expression values of given tissue. (D) Through hyperlinks of each gene to Human Protein Atlas (HPA),
users can explore expression in human tissues and cancers as well as the subcellular localization of the gene. The expression of PKLR in HPA showed its
tissue-specific expressions, especially in liver and kidney tissues. (E) We showed correlation coefficients and P-values of visualized edges, enabling users to
check statistical significance of the searched network.

expression landscape of genes of interest, simultaneously
(Figure 1B and Supplementary Figure S1B). For exam-
ple, we searched CPT1A and FASN, which have differ-
ent functions in lipid metabolism and found to be inde-
pendently clustered and negatively correlated in liver co-
expression networks (Supplementary Figure S1A). In addi-
tion, we checked FASN and glucose-6-phosphate dehydro-
genase (G6PD), which are enzymes inversely metabolizing
NADPH, and identified independent clusters that are nega-
tively correlated in liver co-expression network (Figure 1B).
Likewise, users may check genes of interest if they are clus-
tered together in a given tissue or cancer network.

We also showed expressions of genes in selected tissues
at ‘Search Genes’ and ‘Related Genes’ tables: mean with
standard deviation, minimum and maximum expressions
in each tissue sample included in the analysis. For INs, we
used gene expression information from GTEx RNA-seq
of corresponding tissues. Hyperlinks of the shown genes
enable users to check their protein expressions in HPA
(8). For example, when we checked neighbours of CPT1A
by the hyperlinks (Supplementary Figure S1A), we found
Apolipoprotein A-V (APOA5) as liver-tissue enriched gene

in HPA database, whereas CPT2 as expressed in all hu-
man tissues. Thus, the user can check the tissue-specificity
of a gene through hyperlinks to HPA. We also showed co-
expression values and P-values on edges of visualized net-
works as ‘Edges’ tables for all types of networks (Figure 1E).
All network figures and expression as well as edge tables can
be downloaded as image file and CSV file, respectively. Edge
tables saved as CSV file can be imported into Cytoscape
(www.cytoscape.org) for more detailed network visualiza-
tion and modularization (see tutorial page).

A CASE STUDY RELATED TO FASN

A major strength of our database is to explore co-expression
landscape over various human tissues and cancers. In our
recent work, we found that co-expression gene clusters were
associated with tissue-specific functions and enabled the
testing of biological hypotheses in a given tissue context
(25). Notably, tissue-specific CNs allowed for the identifi-
cation of tissue-specific drug targets with minimum toxic
effects expected for other tissues. Our recent study also
showed that co-expression gene clusters might assist in iden-
tifying cancer driver genes when it is combined with clinical
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Figure 2. A comparative analysis of co-expression landscape over 46 human tissues and 17 cancers. Among top-100 coexpressed genes of 46 human tissues
or 17 cancers, we selected those genes that are shown mostly in tissues (A) or cancers (C), respectively. Polar coordinate indicates how many tissues or
cancers they were shown as top-co-expressed genes. Likewise among bottom-100 co-expressed genes of 46 human tissues or 17 cancers, we selected those
that are shown mostly in tissues (B) or cancers (D), respectively.

metadata (32). Here, we presented a case study to explore
co-expression landscape for testing a biological hypothesis,
which may benefit research community.

Lipids serve as essential substrates for cell membrane,
signalling and energy storage and their synthesis is strictly
regulated in a cell and catalysed by a key enzyme, FASN
(35,36). Based on co-expression landscapes of over 46 hu-
man tissues, we studied how FASN is regulated together
with other genes. Among top-100 co-expressed (i.e. posi-
tive correlation) genes of FASN in all human tissues, we
studied the 25 genes that are most frequently identified
among human tissues (Figure 2A). Intriguingly, we found
that the majority of them are involved in lipid/cholesterol
metabolism: eighteen genes (72%) were enzymes and in-
volved in lipid/cholesterol synthesis and two genes (8%)
were regulators of lipid/cholesterol metabolism. Based on

DAVID gene ontology enrichment analysis (https://david.
ncifcrf.gov/), we found that these genes are significantly en-
riched in lipid metabolic process and cholesterol biosyn-
thetic process (FDR 2.19 × 10−18 and 3.68 × 10−10, respec-
tively). Notably, the most co-expressed gene in all human
tissues was stearoyl-CoA desaturase-1 (SCD), which catal-
yses the conversion of stearoyl-CoA to oleoyl-CoA, a sub-
sequent step of fatty acid synthesis by FASN. In addition,
among the 25 most co-expressed genes were the enzymes,
pyruvate carboxylase (PC) and intracellular lipase (LIPE),
which are highly relevant to fatty acid synthesis from pyru-
vate and dietary lipids, respectively. In contrast, we found
that the bottom-100 co-expressed (i.e. negative correlation)
genes with FASN in all human tissues were rarely associ-
ated with fatty acid synthesis (Figure 2B). Rather, one of

https://david.ncifcrf.gov/
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most-negatively correlated genes to FASN in all tissues was
CPT1A.

Lipid synthesis is required for cellular proliferation and
FASN is considered to be a therapeutic target for can-
cer treatment (37,38). Therefore, we analysed how FASN
is regulated in cancers, based on co-expression landscape
of FASN over 17 cancers (Figure 2C): among the top-100
co-expressed genes in all cancers, we selected the top-25
genes that are most frequently shown among cancers. Even
though cancers are known to show high heterogeneity, we
found that more than half of top-25 genes in all cancers were
associated with lipid metabolism: nine genes (36%) were en-
zymes for lipid/cholesterol synthesis and four genes (16%)
were regulators for lipid/cholesterol metabolism. Based on
DAVID analysis, we also found that they were signifi-
cantly enriched in lipid metabolic process and cholesterol
metabolic process (FDR 4.06 × 10−9 and 0.00112, respec-
tively). We also studied the bottom-100 co-expressed genes
in all cancers, as we analysed in human tissues (Figure 2D).
We observed that they were rarely associated with FASN.
Rather, one of them was associated with NAD+ synthesis,
which is required for fatty acid beta oxidation. In addition,
our analysis of tissue-specific targets based co-expression
landscape, yielded similar observations reported in our pre-
vious work (25) (Figure 1). For example, we can check
neighbours of FASN in liver cancer co-expression network
and also their expressions in normal tissues from hyperlinks
to HPA.

Among the top-100 co-expressed genes of FASN, most
genes were frequently found in all human tissues, show-
ing less tissue-specificity. From HPA, the users can find the
tissue-specificity of a given gene and identify tissue-specific
drug targets. For example, PKLR, the 10th top-coexpressed
gene with FASN in the liver cancer co-expression network,
was found to be liver tissue-specific based on HPA and it has
been identified as a drug target (Figure 1C and D). Further-
more, an integrated tissue network may assist in identifying
the regulators of given gene targets thus enabling to investi-
gate mechanistic details (Figure 1A).

CONCLUSION

We generated tissue and cancer specific biological networks
and presented them in a freely accessible interactive website
http://inetmodels.com. We showed that our resource may
benefit the research community to test a hypothesis and
identify potential tissue-specific drug targets that may be
used in the development of efficient treatment strategies.
The case study presented about FASN demonstrated the
successful use of our networks in testing a biological hy-
pothesis. We found that the co-expression landscape pro-
vided known biological knowledge, such as regulation of
lipid/cholesterol metabolism, important for cancer. In ad-
dition, we identified tissue-specific drug targets, expecting
less toxic effects on other human tissues, and also regulators
of given targets, based on physical interactions provided by
INs. Hence, we envisage that our database is a useful re-
source for the analysis of clinical data and for revealing the
underlying molecular mechanisms involved in the progres-
sion of the complex diseases as previously exemplified (39–
42).
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