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ABSTRACT

The GWIPS-viz browser (http://gwips.ucc.ie/) is an
on-line genome browser which is tailored for explor-
ing ribosome profiling (Ribo-seq) data. Since its pub-
lication in 2014, GWIPS-viz provides Ribo-seq data
for an additional 14 genomes bringing the current to-
tal to 23. The integration of new Ribo-seq data has
been automated thereby increasing the number of
available tracks to 1792, a 10-fold increase in the
last three years. The increase is particularly substan-
tial for data derived from human sources. Following
user requests, we added the functionality to down-
load these tracks in bigWig format. We also incor-
porated new types of data (e.g. TCP-seq) as well as
auxiliary tracks from other sources that help with the
interpretation of Ribo-seq data. Improvements in the
visualization of the data have been carried out par-
ticularly for bacterial genomes where the Ribo-seq
data are now shown in a strand specific manner. For
higher eukaryotic datasets, we provide characteris-
tics of individual datasets using the RUST program
which includes the triplet periodicity, sequencing bi-
ases and relative inferred A-site dwell times. This in-
formation can be used for assessing the quality of
Ribo-seq datasets. To improve the power of the sig-
nal, we aggregate Ribo-seq data from several studies
into Global aggregate tracks for each genome.

INTRODUCTION

Ribosome profiling (Ribo-seq) is a biochemical technique
that utilizes high throughput sequencing that captures the
mRNA fragments that are protected by actively translat-
ing ribosomes (1) thereby providing Genome-Wide Infor-
mation on Protein Synthesis (GWIPS) (2). Ribo-seq was
first carried out in Saccharomyces cerevisiae (1) and has
since been used in many organisms resulting in a substan-
tial growth in the number of published datasets. The nu-
merous applications of the ribosome profiling technique as
well as its limitations are described in details elsewhere (3—
14). While the majority of Ribo-seq datasets represent foot-

prints of elongating ribosomes, a number of studies have
used protocols for enriching footprints deriving from initi-
ating ribosomes and more recently a modification of the ri-
bosome profiling protocol allowed footprinting of scanning
ribosomes (15).

To account for differences in mRNA abundance, most
Ribo-seq studies also generate parallel datasets where to-
tal mRNA (or total RNA) is randomly degraded and
subsequently sequenced. Here we refer to such datasets
as mRNA-seq. To date, the majority of published Ribo-
seq/mRNA-seq raw sequencing data have been deposited
in NCBI’s Sequence Read Archive (SRA) (16).

The GWIPS-viz browser (http:/gwips.ucc.ie/) uses the
functionality of the UCSC Genome Browser (17) to provide
visualizations of Ribo-seq coupled with mRNA-seq con-
trols so that users can freely explore pre-populated Ribo-
seq/mRNA-seq tracks without the need to download, pre-
process and align raw sequencing data to the correspond-
ing genomes. Since its original publication (18), we have
striven to expand the repertoire of Ribo-seq/mRNA-seq
data hosted on GWIPS-viz. We have also incorporated ad-
ditional tracks as well as improved visualizations to help
users better interpret the Ribo-seq/mRNA-seq data.

New genomes in GWIPS-viz

In 2014, GWIPS-viz provided Ribo-seq/mRNA-seq
data for nine genomes: Homo sapiens (hgl9), Mus
musculus (mml0), Danio rerio (danRer7), Caenorhab-
ditis elegans (cel0), S. cerevisiae (sacCer3), Escherichia
coli K12 (ASM584.v2), Bacillus subtilis (11/09/2009),
human cytomegalovirus (HHVS strain Merlin) and
bacteriophage lambda (NC_001416). Today GWIPS-viz
provides Ribo-seq/mRNA-seq data for an additional 14
genomes: Rattus novegicus (rn6), Xenopus laevis (v6.0),
Drosophila melanogaster (dm3), Trypanosoma brucei brucei
(TriTrypDb TREU927 — v 5.1), Plasmodium falciparum
(ASM276v1), Schizosaccharomyces pombe (ASM294v2),

Neurospora  crassa  (or74a/GCF_000182925.2_NC12),
Arabidopsis  thaliana (Nov-2013), Zea Mays B73
(GCF_000005005.1_NC_024459.1), E. «coli BW25113

(ASM75055v1), Caulobacter crescentus (ASM2200v1),
Streptomyces coelicolor (ASM20383vl), Staphylococcus
aureus USA300_FPR3757 (ASM1346 v1), S. aureus NCTC
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8325 (ASM1342 vl). In addition, the more recent hg38
version of the human genome assembly has been provided.

New tracks in GWIPS-viz

As well as the addition of new genomes to GWIPS-viz,
the number of hosted tracks has grown by 10-fold. This is
largely a result of our automated computational pipeline
for the integration of new Ribo-seq and mRNA-seq data
for genomes already in the browser, bringing the total num-
ber of tracks to 1792 tracks across the 23 genomes. The in-
crease has been particularly substantial for Ribo-seq data
generated for human as well as for mouse and S. cere-
visiae. New data since the original GWIPS-viz publication
include: H. sapiens hg38 assembly (19-49), H. sapiens hgl9
assembly (43,50-54), M. musculus (51,52,55-75), R. novegi-
cus (76-78), D. rerio (719-81), X. laevis (82), C. elegans (83—
85), D. melanogaster (86-88), T. brucei brucei (89), P. fal-
ciparum (90), S. cerevisiae (15,64,82,85,91-109), S. pombe
(82,110), N. crassa (111), A. thaliana (112-114), Z. Mays
B73 (115), E. coli KI2 (116-124), E. coli BW25113 (125),
B. subtilis (126), C. crescentus (127), S. coelicolor (128),
S. aureus USA300_FPR3757 (129), S. aureus NCTC 8325
(130). This expansion of datasets allows for improved cross-
species comparison of orthologous genes while the avail-
ability of datasets from multiple research groups permits
the assessment of technical reproducibility of the ribosome
densities (131).

In addition to individual tracks reflecting Ribo-seq data
generated under different conditions for each study, we ag-
gregate each study’s data into an A// track. We then aggre-
gate the A/l tracks from each study into a Global Aggregate
track for each genome (Figure 1A-D). This has the effect
of improving the overall Ribo-seq signal by reducing the
contribution of dataset specific biases and stochastic noise
due to low coverage. The increased number of datasets is
expected to yield higher sensitivity. The Global Aggregate
tracks are set as the default for each genome and users can
turn on/off each study’s data contribution to the aggregated
data and then refine the visualizations by turning on/off in-
dividual tracks in each study. In addition, we provide Global
Aggregate tracks through the UCSC Genome Browser for
the human hg38 and hgl9 assemblies.

We have also incorporated a new type of data into
GWIPS-viz. Recently the Preiss group developed a tech-
nique called translation complex profile sequencing (TCP-
seq), where ribosome subunits are cross-linked to mRNA,
allowing footprinting of both elongating and scanning ri-
bosomes (15). We now provide this data in the Small Ribo-
somal Subunits (Footprints) track group for S. cerevisiae.
Given that TCP-seq is a powerful tool for studying trans-
lation initiation (132), we anticipate that the experimental
protocol will be adapted for other species quite soon and we
will strive to incorporate new TCP-seq data into GWIPS-viz
as it becomes available.

For S. cerevisiae we also generated an additional
gene annotation track from transcript isoform sequencing
(TIF-seq) data (133). Given that Saccharomyces Genome
Database (SGD) (134) and Ensembl (135) gene annotations
for S. cerevisiae do not include UTR regions, and given that
Ribo-seq has shown that extensive translation occurs in 5

leader regions (1) and to a lesser extent in 3’ trailer regions
(97), we thought it useful to integrate the 5’ leader and 3
trailer gene annotations as interpreted by (133) from their
TIF-seq data for S. cerevisiae.

With respect to 5’ leader region delineation, we incorpo-
rated Riken 5 cap analysis gene expression (CAGE) data
(136) as a permanent track in the Annotations Tracks and
External Data track group for the human hgl9 assembly.
At the time of the incorporation, Riken CAGE data tracks
for other GWIPS-viz assemblies were not available for per-
manent track integration. However, as GWIPS-viz also now
includes the UCSC Genome Browser’s Track Hub function-
ality (137), we provide Riken’s FANTOMS tracks for hg38,
hg19, mm9 and rn6 as public track hubs. While these tracks
are hosted and managed by the Riken group on their own
server, a simple connection makes it easy to explore their
CAGE data in conjunction with our Ribo-seq/mRNA-seq
tracks in GWIPS-viz.

Initially we did not provide UCSC Genome Browser’s
custom track feature (138) in GWIPS-viz. The custom track
is only accessible to the user who uploads it, i.e. it is not
a publicly available track. Many GWIPS-viz users, how-
ever, expressed an interest in the custom track feature as a
means to explore their own Ribo-seq data in the context of
published data and so we now include it. The custom track
feature is also particularly useful for users of RiboGalaxy
(139), a Galaxy based platform (140) that we have devel-
oped specifically for processing, mapping and analysing
Ribo-seq data. Researchers can use the GWIPS-viz suite of
tools in RiboGalaxy to generate Ribo-seq profiles that infer
either the A-site (elongating ribosomes) or P-site (initiating
ribosomes) from either the 5’ end or the 3’ end of Ribo-seq
reads and the resulting profiles can be directly visualised
as custom tracks in GWIPS-viz. The direct interface be-
tween GWIPS-viz and RiboGalaxy also allows data from
GWIPS-viz to be retrieved into RiboGalaxy. We also pro-
vide a direct link to RiboGalaxy (http://ribogalaxy.ucc.ie/)
from the GWIPS-viz homepage.

Improvements in data visualizations

Previously for bacterial genomes (E. coli K12, B. subtilis)
our Ribo-seq and mRNA-seq profiles on GWIPS-viz did
not provide strand orientation information. Our Ribo-seq
density plots also used the center-weighted approach (141)
to infer ribosome A-sites. Since then, several studies have
shown that inferring the ribosome decoding center from
the 3’ ends of bacterial Ribo-seq data is more accurate
(124,142,143). We decided to carry-out an overhaul of our
bacterial tracks and now provide strand orientation infor-
mation using the UCSC Genome Browser overlay function-
ality (144) in addition to A-site inference using a fixed off-
set from 3’ footprint ends (Figure 1A,B). We have extended
these improvements to the new bacterial genomes we now
hostin GWIPS-viz (E. coli BW25113, C. crescentus, S. coeli-
color, S. aureus NCTC 8325, S. aureus USA300_FPR3757).
Recently we integrated the multi-region exon-only view
(17), which is particularly useful for displaying Ribo-seq
data for higher eukaryotes where exonic regions may be in-
terrupted by long intronic regions (Figure 1C,D).
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Figure 1. Exploring ribosome profiling data using GWIPS-viz. (A and B) Strand specific representation of the data for overlapping genes nudG and ynjH in
the E. coli genome. In panel A, the Ribo-seq and mRNA-seq reads mapping to the forward strand (red) and to the reverse strand (blue) are both displayed.
In panel B, only the reads mapping to the reverse strand are displayed. The profiles were generated using the Global aggregate tracks for E. coliin GWIPS-
viz. (C and D) Aggregated human Ribo-seq data (red) at the SLC3544 locus show that most of translation takes place at the uORF that spans the first three
exons rather than the CDS (50,146,147). The exon-only view of the SLC35A44 locus improves the visualization of the translated uORF, the conservation of
which is shown using the 100 vertebrates basewise conservation by PhyloP (148). (E) A RUST metafootprint profile that reveals the influence of mRNA
codons on the relative read density in the vicinity of the ribosome is shown in grey in the top panel (145). The Kullback-Leibler divergence (blue for a single
codon, green for adjacent codons) indicates the influence of each mRNA location on the frequency of ribosome footprint occurrence in the library. This is
an example of a dataset with low sequencing biases, where the A-site codon influence is the highest. The lower left panel shows RUST estimates of relative
codon decoding rates. The lower right panel shows the triplet periodicity signal (1,149) for individual read lengths. Panel E is taken from GWIPS-viz for
study (20). (F) A screen-shot of the Downloads page that provides Ribo-seq and mRNA-seq read alignments for all tracks available in GWIPS-viz.
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For higher eukaryotic datasets, we also now provide char-
acteristics obtained with RUST (145). RUST utilizes Ribo-
seq Unit Step Transfomation to normalize ribosome profil-
ing data. It further provides characteristics of ribosome pro-
filing datasets among which is a metafootprint profile which
shows the difference between observed (experimental) and
expected (equiprobable) frequencies of specific sequences
(commonly codons) in the vicinity of a ribosome footprint.
The expectation is that the highest variation in codon fre-
quencies should occur at the ribosome decoding center (A-
site) (Figure 1E). A high variation at the end of footprints
would occur due to sequencing biases. Thus, metafootprint
profiles can be used for assessing the level of sequencing bi-
ases in individual datasets. Clicking on each study link in
the GWIPS-viz genome page will open a new page with the
link to the RUST quality plots which include the RUST
metafootprint profile as well as a plot showing triplet peri-
odicity for reads of different lengths. The RUST plots also
include a panel that shows the relative inferred A-site dwell
times for each amino acid.

Downloading Ribo-seq and mRNA-seq alignments

Following user requests, we added the functionality to
download our genomic alignments in bigWig format. While
the Tuble Browser provides the option to download our
Ribo-seq and mRNA-seq alignments in bedGraph format,
many users requested our original alignment files. Hence,
we built a separate Downloads page (Figure 1F) for this pur-
pose. For each Ribo-seq study hosted on GWIPS-viz, users
can download (1) ribosome profiles of elongating ribosomes
(number of footprints whose inferred A-site match a specific
coordinate, (2) Ribo-seq and (3) mRNA-seq coverage plots
that provide the number of reads that map to each coordi-
nate. Where available, data enriched with footprints of ini-
tiating ribosomes, represented as coordinates of inferred P-
site codons, can also be downloaded. In addition, footprints
of small ribosome subunits generated by TCP-seq (15) are
available for download for S. cerevisiae as coverage plots.

FUTURE PLANS

The development of an automated computational data in-
tegration pipeline has greatly helped us to keep pace with
the flux of new Ribo-seq data for genomes already existing
in GWIPS-viz. We do, however, still have some backlog in
terms of Ribo-seq data generated for genomes that we need
to manually add to GWIPS-viz. We are examining ways in
how we can improve our capacity to add new genomes par-
ticularly genomes that are not hosted on the UCSC Genome
Browser.

We also aim to continue to improve the visualizations of
Ribo-seq data. We wish to extend the overlay functionality
with strand-specific display to all the data tracks in GWIPS-
viz (currently provided for bacterial genomes only). Con-
versely, we want to provide RUST characteristics for Ribo-
seq data generated for bacteria. This requires adapting the
RUST programming code to using 3’ end offsetting for A-
site inference which we plan to do soon. In addition, we
want to use RUST parameters and other Ribo-seq spe-
cific parameters such as the triplet periodicity, to develop

a quality scoring method and provide this information on
GWIPS-viz for each dataset. This will allow users to com-
pare Ribo-seq datasets in terms of their quality across stud-
ies. It will also help us and our user-base to determine what
governs Ribo-seq data quality and how it can be maintained
and improved in future Ribo-seq data.

We also wish to avail of new functionality as it becomes
available on the UCSC Genome Browser. For this reason,
we have carried out several upgrades of the GWIPS-viz
browser to keep in-line with the UCSC Genome Browser.
The recent exon-only view is one such example which is par-
ticularly beneficial for eukaryotic organisms that extensively
use RNA splicing, permitting genomic alignments of Ribo-
seq data to be explored without intervening introns.

DATA AVAILABILITY

GWIPS-viz is publicly and freely available at (http://gwips.
ucc.ie/).
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