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ABSTRACT

EBI metagenomics (http://www.ebi.ac.uk/
metagenomics) provides a free to use platform
for the analysis and archiving of sequence data
derived from the microbial populations found in a
particular environment. Over the past two years,
EBI metagenomics has increased the number of
datasets analysed 10-fold. In addition to increased
throughput, the underlying analysis pipeline has
been overhauled to include both new or updated
tools and reference databases. Of particular note is
a new workflow for taxonomic assignments that has
been extended to include assignments based on
both the large and small subunit RNA marker genes
and to encompass all cellular micro-organisms. We
also describe the addition of metagenomic assembly
as a new analysis service. Our pilot studies have
produced over 2400 assemblies from datasets in the
public domain. From these assemblies, we have pro-
duced a searchable, non-redundant protein database
of over 50 million sequences. To provide improved
access to the data stored within the resource, we
have developed a programmatic interface that pro-
vides access to the analysis results and associated
sample metadata. Finally, we have integrated the
results of a series of statistical analyses that provide
estimations of diversity and sample comparisons.

INTRODUCTION

The term ‘metagenomics’ describes the collective analysis of
microbial genomes sampled from a particular environment,
such as soil, seawater or a human body site. Such genomic
analyses can provide powerful insights into microbial com-
munity composition and function. Underpinned by dra-
matically falling DNA sequencing costs, metagenomic anal-
yses have become increasingly mainstream in recent years
and have been applied to a diverse variety of fields, includ-
ing marine ecology, agriculture, food manufacture, bioen-
ergy production and human health. Notable recent metage-
nomic studies have helped to identify new microbial phyla
with distinct metabolic repertoires (1,2), to discover novel
CRISPR–Cas systems (3) with potential application in gene
editing, to rapidly expand the library of known protein
structures (4), and to link the microbiome to a host of dis-
orders, from rheumatoid arthritis (5) to Parkinson’s Disease
(6).

Despite widespread interest and uptake by the research
community, metagenomic analyses can be challenging due
to the volume and nature of the underlying sequence data.
Single metagenomic whole genome shotgun (WGS) se-
quencing runs can yield hundreds of millions of sequences,
representing tens of gigabytes (GB) of uncompressed data
on disk. With many experiments involving tens or hun-
dreds of such runs, data volumes can quickly overwhelm the
storage capacities and analysis capabilities of individual re-
searchers. The sequences themselves, meanwhile, tend to be
relatively short, ranging from approximately 100 to 500 bp
(with a mean of ∼230 base pairs) following merging and
quality trimming for typical Illumina paired-end runs - the
dominant sequencing platform for metagenomics. This can
pose a problem when trying to determine the functional ac-
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tivity encoded within a metagenome. Typically, short reads
represent only small fragments of the underlying full-length
gene sequences. Predicted protein coding sequences based
on these fragments often lack the distinguishing features
of full length proteins, such as binding sites, active sites, or
other important amino acid motifs that can be used to infer
function.

Assembly of sequences in silico into longer contigs helps
to address this problem, allowing more detailed functional
annotation. In addition, the generation of longer assemblies
enables detection of larger and more complex genomic fea-
tures, such as operons and CRISPRs, and allows inference
of function based upon genome context. It also potentially
allows taxonomic binning of contigs, and partial, or even
complete, reconstruction of genomes (7,8). However, many
of the best-performing assembly tools require substantial
computational resources. For example, assembly of a soil
WGS run with 16 GB paired-end gzipped fastq files from
Alaskan Tundra (9) (ENA study accession PRJEB10725,
run accession ERR1035438) requires over 500GB RAM to
assemble using metaSPAdes (10) version 3.10.1. Not all re-
searchers have access to this kind of computational power.

Another common problem is the effect that different se-
quence processing tools, analysis software and reference
databases exert upon analysis results. Differences in al-
gorithms and/or parameters at each sequence processing
stage, from initial quality control (QC) (11), to gene predic-
tion (12,13), through to assembly (14), can all substantially
impact the number, quality and average length of sequences
in a metagenomic dataset. Alongside this, choice of anal-
ysis tools, reference databases, and software settings can
profoundly influence taxonomic classification and function
prediction (15–17). As a result, it is hard to make meaning-
ful comparisons between the analysis results of two different
datasets that have been processed using different pipelines.

EBI Metagenomics (https://www.ebi.ac.uk/
metagenomics/) aims to address many of these issues
as a freely available hub for the analysis, exploration and
archiving of metagenomic data. In common with analysis
platforms such as MG-RAST (18) and IMG/M (19), EBI
Metagenomics provides standardised processing and anal-
ysis pipelines that allow functional and taxonomic analyses
of user-submitted sequences. It also offers a variety of
analytical and visualization tools to support examination
and comparison of datasets. Through partnership with the
European Nucleotide Archive (ENA), EBI Metagenomics
also has a unique archiving remit. Datasets submitted for
analysis are accessioned and stored permanently within
ENA (which operates under the International Nucleotide
Sequence Database Collaboration (INSDC)) for public
reference.

EBI Metagenomics supplements its analysis of user-
submitted data by processing publicly available metage-
nomic datasets drawn from the ENA. Enabling large scale
data analysis using standardised pipelines allows new user-
submitted studies to be placed in context with other data
(e.g. does a marine study drawn from a particular loca-
tion have the same microbial community structure as a
similar study performed by another research group), in-
creasing data reuse and maximizing the knowledge that can
be extracted from both datasets. The strategy of pursuing

publicly available data has led EBI Metagenomics to grow
rapidly over the last 2 years to become one of the world’s
largest metagenomic data repositories. It currently houses
over 100 000 publicly available datasets, sampled from a
wide range of environments, ranging from insect digestive
tracts to hydrothermal vents.

Here, we report a number of significant new develop-
ments with EBI Metagenomics over the last two years, in-
cluding two new analysis pipeline updates, an upgrade to
the taxonomic analysis component to enable eukaryotic
classification, along with a 10-fold increase in the number of
datasets analysed by the resource. In addition, we report the
development of a detailed web-based faceted search facil-
ity, underpinned by extensive indexing of contextual meta-
data, and a first iteration of a new RESTful API to allow
programmatic access to metadata and analysis results. We
also discuss the resource’s recent move towards provision
of assembly of metagenomic datasets and the concomitant
development of a searchable non-redundant metagenomic
peptide database, representing 10s of millions of novel se-
quences.

UPDATES TO DATA CONTENT

‘Metagenomics’ is often used as a catch-all term and
can refer to several different experiment types. Within
EBI Metagenomics, data is divided into WGS sequencing
of DNA extracted from environmental samples (metage-
nomics), whole transcriptome shotgun sequencing (meta-
transcriptomics) and metagenetic studies that target mark-
ers, such as the small subunit (SSU) ribosomal ribonucleic
acid gene (amplicon) or other genes (metabarcoding), such
as ITS1 or COX1, in order to assign taxonomy. In addition,
the resource provides analysis of user-submitted assembled
sequence data (assembly). In a recent change to our pipeline
capability (outlined in the Assembly and peptide database
creation section below), EBI Metagenomics has begun to
offer assembly of public metagenomes and user-submitted
data upon request.

Analysed data in EBI Metagenomics are structured into
projects, samples and runs, mimicking the organisation
found in ENA. These are arranged in potential one-to-
many relationships, where one project may contain several
samples that can each have a number of associated runs.
Such multiple runs can take the form of technical replicates
or different experiments performed upon the same sample
material (eg, metagenomic analysis of WGS data, plus anal-
ysis of the assembled underlying reads).

EBI Metagenomics currently contains over 1200 publicly
available projects, comprising ∼75 000 samples and ∼100
000 runs, representing a 10-fold increase in the number of
datasets over the last two years. The majority of this data
(∼77 000 runs) are 16S rRNA gene amplicon datasets, fol-
lowed by WGS metagenomic datasets (∼15 000 runs) with
a smaller number of metatranscriptomic studies and as-
semblies. This is broadly consistent with the breakdown of
metagenomic data submission to the ENA. The number of
runs for each study type, split according to source environ-
ment (also known as ‘biome’), is shown in Figure 1.

https://www.ebi.ac.uk/metagenomics/
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Figure 1. Illustration of the number of projects and runs analysed from each biome. The number of projects and runs from different study types are shown
on consecutive log axes. This figure was produced using the iTOL server (44).

PIPELINE UPDATES

The EBI Metagenomics team continually evaluates new
tools and approaches for potential inclusion in the pipeline
with the aim of providing the best possible analyses. An
updated version of the analysis pipeline (version 3.0, out-
lined in Figure 2A) was released in July 2016, with updates
to a number of tools and algorithms: InterProScan 5.19
(based on InterPro release 58.0) (20); Trimmomatic 0.35
(21); FragGeneScan 1.20 (13), QIIME, 1.9.1 (22) and a new
Gene Ontology slim for visualization (23,24). The QC steps
of the pipeline were also extended to cover additional met-
rics, such as distribution of read lengths, % GC content and
relative nucleotide abundances. In addition to enriching the
data outputs, this also brought the QC visualizations on
the site into closer alignment with those provided by MG-
RAST (18), providing consistency and helping users transi-
tion from one site to the other.

The analysis pipeline underwent a more substantial up-
date in August 2017 to version 4.0 (Figure 2B), with the
entire taxonomic profiling section replaced. The rRNASe-
lector based component (25), which was previously used to
identify 16S rRNA genes, was replaced with Infernal (26)
(running in HMM-only mode) using a library of riboso-
mal RNA models from Rfam 12.2 (27) (families compris-
ing Rfam clans CL00111 (SSU) and CL00112 (LSU)). This
allows accurate identification of both large and small sub-

unit (LSU and SSU) ribosomal ribonucleic acid genes, in-
cluding the eukaryotic 18S rRNA gene. In addition to the
ribosomal subunit RNAs, the pipeline also extracts other
non-coding RNAs (ncRNAs) such as SRP RNA, tRNA,
tmRNA and RNase, using the following libraries: CL00001
(tRNA clan), CL00002 (RNase P clan) and CL00003 (SRP
RNA clan).

The QIIME taxonomic classification component of the
analysis pipeline was replaced with MAPseq version 1.2
(28), which offers fast and accurate classification of reads,
and provides corresponding confidence scores for assign-
ment at each taxonomic level. The Greengenes reference
database (29) was replaced with SILVA SSU/LSU version
128 (30), which includes eukaryotic as well as prokaryotic
sequences, thus enabling eukaryotic taxonomic classifica-
tion. In order to make it compatible with MAPseq, the
SILVA database was remapped to an 8-level taxonomy, us-
ing in house scripts. The resulting classification system was
compared to QIIME/Greengenes and benchmarked using
both mock community and real-world datasets to confirm
validity of results.

Prodigal (31) version 2.6.3 was added to run alongside
FragGeneScan version 1.20 as part of a combined gene
caller component. For assembled sequences, the predictions
from Prodigal are supplemented by any non-overlapping
regions called by FragGeneScan. For short reads, FragGe-
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Figure 2. Schematic representations of the EBI metagenomics pipeline versions 3.0 (A) and 4.0 (B). Tools and reference databases updated in each release
are indicated by a magenta circle and described in detail within the text. Processing steps are indicated in the colour rounded boxes (yellow, blue, green),
tools in dark grey boxes and databases in light grey boxes. Input and output files as white squares. The combined gene caller component is indicated as
CGC.

neScan alone is used. Finally, InterProScan was updated to
version 5.25 (based on InterPro release 64.0).

EXTENDED TAXONOMIC ANALYSIS TO ALL CELLU-
LAR LIFE

The adoption of Infernal using a comprehensive library of
ribosomal models means that the pipeline now identifies
SSUs (16S and 18S rRNAs). Comparing these against the
SILVA database that includes both prokaryotic and eukary-
otic references allows rich classification and a reduction in
the number of sequences labelled as unclassified (see Figure
3).

UPDATE OF THE METAGENOMICS GO SLIM

As part of the pipeline 3.0 update, the metagenomics GO
slim, which is used to summarize functional annotations
for visualization on the website, was rebuilt. This was based
upon the analysis of all GO terms that had been assigned
to approximately 20 billion protein coding sequences us-

ing pipeline version 2.0. The updated slim provides sum-
marization for 97% of terms, compared to 83% previ-
ously, and therefore gives a better representation of the
underlying annotations. The updated metagenomics GO
slim is available at: http://www.geneontology.org/ontology/
subsets/goslim metagenomics.obo.

DATA DISCOVERY AND RETRIEVAL INTERFACES

With the rapid expansion in the number of datasets, it
has become increasingly important to improve access to
the data contained within EBI Metagenomics for explo-
ration and discovery. To this end, we have made use of the
EMBL-EBI search (32) infrastructure to implement more
powerful browsing and searching. A search input box is
present on all pages, allowing entry of free text (eg, ‘hu-
man’) or colon-separated fields and values (eg, ‘experi-
ment type:amplicon’). Searches are subdivided into three
levels: projects, samples and runs, as each level has differ-
ent metadata available. The results are displayed in separate
tabs and can be filtered by facets and numerical search con-

http://www.geneontology.org/ontology/subsets/goslim_metagenomics.obo
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Figure 3. Krona plots showing taxonomic classification of run ERR771104 from Ocean Sampling Day 2014 (ENA project accession PRJEB8682). (A)
Produced using version 2.0 of the pipeline and (B) using version 4.0. Prokaryotic taxonomic lineages are shown in red, eukaryotic in blue and unclassified
in grey. The total number of 16S rRNA/SSU input sequences was similar in each case (976 with version 2.0 versus 1008 with version 4.0).

trols, as appropriate for the data type. For example, run-
level has the richest set of indexed facets that can be used
for filtering, with Organism, GO-terms and InterPro anno-
tations. The latter two can also be used as search terms,
and the results can then be filtered by fields such as tem-
perature or depth. Using this search interface, it is possi-
ble to rapidly and easily narrow down datasets (for exam-
ple, to discover all runs that contain antibiotic biosynthesis
monooxygenase sequences in soil, where Actinobacteria are
found, determined using metatranscriptomics).

To provide a richer search and retrieval interface, we
have begun development of a RESTful API, providing
programmatic access to the data. The base address to
the API is https://www.ebi.ac.uk/metagenomics/api/v0.2/.
There are several top-level resources, such as studies, sam-
ples, runs, experiment-types, biomes and annotations. Links
to a resource (eg, https://www.ebi.ac.uk/metagenomics/api/
v0.2/biomes) return a JSON object formatted data structure
that contains the resource type (in this example ‘biomes’),
associated object identifier (id) and attributes. Where ap-
propriate, relationships and links are provided to other
resources, allowing complex queries to be constructed.
For example, https://www.ebi.ac.uk/metagenomics/api/v0.
2/studies retrieves a list of all studies, while https://www.ebi.
ac.uk/metagenomics/api/v0.2/studies/ERP009004 retrieves
a single study, with the accession ERP009004. The samples
contained within this study can be retrieved using the fol-
lowing URL: https://www.ebi.ac.uk/metagenomics/api/v0.
2/studies/ERP009004/samples.

Lists of resources can be filtered and sorted by selected
attributes, allowing the construction of more complex
queries. For instance, in order to retrieve oceanographic
samples from metagenomic studies taken at temperature
less than or equal to 10◦C, the following query could

be constructed https://www.ebi.ac.uk/metagenomics/
api/v0.2/biomes/root:Environmental:Aquatic:Marine/
samples?experiment type=metagenomic&metadata key=
temperature&metadata value lte=10&ordering=
accession. The provision of such complex queries al-
lows metadata to be combined with annotation for
powerful data analysis and visualisation (see Figure 4).

As some queries can result in a large response, the API
supports pagination, using a page number and size of results
per page as query parameters. The API response also distin-
guishes between attributes and relationships, allowing cus-
tomization of the response by passing fields or including re-
lations as parameters in the initial query. We have utilized an
interactive documentation framework (Swagger UI) to vi-
sualize and simplify interaction with the API’s resources via
an HTML interface. Detailed explanations of the purpose
of all resources, along with many examples, are provided
to guide end-users. Documentation on how to use the end-
points is available at https://www.ebi.ac.uk/metagenomics/
api/docs/.

DIVERSITY ESTIMATION AND SAMPLE COMPAR-
ISONS

As part of pipeline v4.0, we have added additional informa-
tion regarding metagenomic community diversity estima-
tion, and information to allow comparisons between runs
and samples. For each run and sample we produce plots
to graphically illustrate the taxa abundance distribution,
and use OTU counts to compute diversity indices, includ-
ing several estimates of the total diversity of the commu-
nity sampled. These estimates are computed using R pack-
ages for community ecology such as sads (https://CRAN.
R-project.org/package=sads) and vegan (https://CRAN.R-
project.org/package=vegan). Estimates are also computed

https://www.ebi.ac.uk/metagenomics/api/v0.2/
https://www.ebi.ac.uk/metagenomics/api/v0.2/biomes
https://www.ebi.ac.uk/metagenomics/api/v0.2/studies
https://www.ebi.ac.uk/metagenomics/api/v0.2/studies/ERP009004
https://www.ebi.ac.uk/metagenomics/api/v0.2/studies/ERP009004/samples
https://www.ebi.ac.uk/metagenomics/api/v0.2/biomes/root:Environmental:Aquatic:Marine/samples?experiment_type=metagenomic&metadata_key=temperature&metadata_value_lte=10&ordering=accession
https://www.ebi.ac.uk/metagenomics/api/docs/
https://CRAN.R-project.org/package=sads
https://CRAN.R-project.org/package=vegan


Nucleic Acids Research, 2018, Vol. 46, Database issue D731

Figure 4. Correlation between temperature (A) and depth (B) and photosynthesis-related GO term counts, normalized by number of InterPro annotations,
for Tara Oceans project PRJEB1787. Metadata and annotations were retrieved from the API and combined on the fly to generate the visualizations.

at the level of sample, based on simple pooling of OTU
counts from all runs in a sample. Additionally, estimates
are provided for the number of individuals that would need
to be sequenced in order to see a given fraction of the to-
tal population diversity (based on the assumption of an un-
derlying Poisson-log-normal taxa abundance distribution).
These provide guidance for the sequencing effort likely to
be required for a more complete characterisation of the mi-
crobial community of interest.

Additional diagnostic plots have also been added which
allow for the comparison of samples and runs within a
study. In addition to a PCA plot for the identification of
outlying runs, these provide a robust estimate of the fold-
change difference in taxonomic composition between a ref-
erence sample (or run) and all other samples (or runs) in
the study. Estimates of differences are computed using the
DESeq2 (33) software via the Bioconductor package phy-
loseq (34). These estimates are most robust for studies with
replication in the form of multiple runs per sample.

ASSEMBLY AND PEPTIDE DATABASE CREATION

In 2017, we undertook a feasibility study aimed at inves-
tigating assembly of metagenomic datasets given current
infrastructural resources. During this study, we evaluated
a number of different assembly algorithms with respect to
processing speed and memory usage, as well as quality of as-
semblies. Based on the results, we believe it is feasible to of-
fer assembly of user-submitted metagenomic datasets, sub-
ject to request. We have chosen a panel of three assemblers
for use with the pipeline: metaSPAdes, MEGAHIT (35) and
Minia (36). This selection is based on the quality of assem-
bly across a range of biomes and the resources required to
produce an assembly.

MetaSPAdes and MEGAHIT have been found to be
amongst the best performing assemblers for metagenomic
data, according to independent review (14). Minia, mean-
while, has very low memory requirements and can be used
to assemble very large datasets from diverse communities.
These assertions have also been confirmed by other bench-
marking initiatives, such as CAMI (http://dx.doi.org/10.
1101/099127), which also demonstrated that Minia excelled
at assembling abundant circular elements.

To enable the selection of the optimal assembly pipeline
(for a given data set and available compute resources)
we have developed a neural network, built using Tensor-
Flow (https://arxiv.org/abs/1603.04467). This considers in-
puts such as source biome, sequencing platform, file size,
read count and base count to estimate and assign the ap-
propriate assembler and memory parameters. metaSPAdes
is used as the default, with Minia as the alternative if pre-
dicted metaSPAdes memory requirements are too high.
MEGAHIT, which offers a middle ground in term of mem-
ory usage, can be used in place of metaSPAdes, if requested
by users.

As part of the assembly tool evaluation process, we
assembled a number of publicly available metagenomic
datasets from ENA, drawn from a diverse range of environ-
ments. To date, we have assembled 2,298 different shotgun
metagenomics datasets from 78 different projects. All bar
nine of these have been assembled using metaSPAdes, with
eight assembled using Minia and one using MEGAHIT. Of
the assemblies, 1,935 are from a range of human micro-
biome projects, including the HMP project (37) that was
previously absent from EBI Metagenomics. These are ac-
companied by smaller numbers of assemblies from a range
of biomes: 187 marine, 151 from soil, 10 wastewater sludge,
6 freshwater, 7 animal gut microbiomes and 2 others. As
EBI Metagenomics has remits to both analyse and archive,
these assemblies have also been submitted to the ENA (ac-
cessions summarised in Supplementary Table S1), before
being retrieved for analysis with the EBI Metagenomics
pipeline. Combined with the pre-existing assemblies, EBI
Metagenomics now contains over 2400 assembled datasets,
corresponding to 13% of the shotgun metagenomics data.
Having established that it is possible to offer assembly as an
analysis service, we will continue to assemble public datasets
internally and respond to user request to assemble other
datasets (either their own private data or public data) un-
til our user interfaces are enriched to allow the selection of
the analysis type directly.

As a compendium to the assemblies and their associated
analysis results, we have developed a workflow to produce a
non-redundant set of peptides. From an initial 400 assem-
bly datasets, a non-redundant peptide database of almost
50 million sequences has been produced. Over 15 million

http://dx.doi.org/10.1101/099127
https://arxiv.org/abs/1603.04467
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Figure 5. HMMER search results using the assembled peptide database. Searching the full length subdivision of the assembled peptide database with an
arginine deiminase from Streptococcus sanguinis SK1057 (UniProt identifier: F2BTU6) identified over 800 sequences with a significant match (E-value <

1e–10) to the query sequence, with <9% (78 sequences) having an identical counterpart in UniProtKB.

of these are predicted to be full length, yet only ∼1 million
have exact counterparts in the UniProtKB (38) database.
To allow the querying of this sequence database by users
with a target sequence, we have deployed a HMMER web
search engine and server (39). This interface can be accessed
via a tab on the front page of the website. Sequences can
be queried against either the entire database, or just the
full-length sequences, or the fragment subset. Matching se-
quences are displayed, along with alignments between the
query and matches, and cross-links to any matching coun-
terparts in UniProtKB (see Figure 5). Sequences are also
mapped to the runs and/or samples from which they orig-
inated, allowing contextual metadata to be associated. We
expect this database to grow rapidly, reaching 100s of mil-
lions, or even billions, of sequences as we assimilate more
and more proteins from our assemblies.

DATA SUBMISSION SERVICES AND GROWTH

Data submission to EBI Metagenomics is routed via ENA,
which offers interactive and programmatic interfaces, sup-
ported by an active submissions helpdesk and training ma-
terials. There have been incremental updates to this ser-
vice through 2017, including improvements to sample de-
scription and assembly submission user workflows. From
its inception, EBI Metagenomics has had a commitment to
supporting data standards, to allow full discoverability, in-
teroperability and reusability of data. Focusing especially
on contextual data standards around sample descriptions,
which are essential in interpreting metagenomics studies,
ENA implements the MIxS standards in its submission sys-
tem (40). ENA has continued to track developments in
MIxS and its underlying structured vocabularies. A third

of metagenomics samples submitted through EMBL-EBI
see users appropriately selecting MIxS sample checklists
during the submission process. An ongoing discussion with
INSDC (41) partners assures uptake of these standards for
those datasets not routed through submissions services at
EMBL-EBI.

The rate of growth of metagenomic sequence submission
to ENA is increasing, as illustrated in Figure 6. At the same
time, the rate of data analysis by EBI Metagenomics has
also increased following a major pipeline improvement in
2014 aimed at optimising analysis throughput. While a siz-
able volume of data has now been analysed, this represents
only a small proportion of overall available data, and fur-
ther pipeline improvements will be required to keep pace.
However, not all of the data identified within the ENA will
be tractable for analysis. For example, some samples are
metabarcoding studies targeting specific marker genes out-
side of the scope of the pipeline. Others are isolate genomes
from retrieved from an environmental sample, which is also
outside of the current scope of the resource.

IMPROVED DOCUMENTATION

Over the past two years our range of services has changed
and expanded substantially. While we endeavour to inform
our user community via blogs or social media, information
disseminated in this way can be transient. In the past, our
help pages have been relatively brief and lacked search func-
tionality. To overcome these deficiencies, we now provide
revised and expanded documentation for both the pipeline
and website, hosted externally at Read the Docs (http://
emg-docs.readthedocs.io/). The advantages offered by this
service include the ability to search within documentation,

http://emg-docs.readthedocs.io/
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Figure 6. Growth of metagenomics data housed in ENA and processed by EBI Metagenomics (EMG). This graph shows the cumulative growth of envi-
ronmental data in the two resources (ENA: solid lines, EMG: dashed lines) according to two different metrics: numbers of samples (blue) and number of
bases (orange).

to export the documents in numerous formats and to sup-
port concurrent versions for different pipeline/website re-
leases. Furthermore, as this documentation is available in
GitHub, it allows team members, external collaborators and
users to contribute to the documentation

DISCUSSION

As the field of metagenomics develops, data volumes grow,
and sequence processing and analysis algorithms mature,
it is important that analysis pipelines evolve to keep pace.
EBI Metagenomics began life several years ago as a small
resource, largely devoted to processing Roche 454 metage-
nomic data (42). It has grown to become one of the largest
metagenomic repositories in the world, supporting the anal-
ysis of a range of study types, generated with a variety of
different sequencing technologies, from a range of differ-
ent biomes. The next stage in its development has been to
extend and improve its processing and analyses to keep up
with progress in the field. At the same time, it has looked to
extend access to captured contextual metadata and analysis
results, to become more useful to the research community.

To this end, the last two years have seen EBI Metage-
nomics pipeline changes aimed at updating tools and broad-
ening the scope of analyses. These have included new com-
ponents to enable eukaryotic taxonomic analysis and bet-
ter representation of functional annotation using updated
reference databases. At the same time, extensive data index-
ing to support web-based searches and a new RESTful API

serving contextual metadata and results have been devel-
oped to offer powerful entry points for browsing, searching
and discovery of data from both a manual and program-
matic perspective.

A more fundamental change is the shift towards provi-
sion of assembly of both user-submitted and publicly avail-
able metagenomic datasets. This represents a new and ex-
citing development for the resource, which will provide the
opportunity to compare the differences between raw reads
and assembly analysis outputs (a comparison that will re-
quire tracking of raw reads to contigs to maintain abun-
dance counts).

Assembly also opens the door to more in-depth func-
tional annotation. For example, provision of full length pro-
tein sequences potentially allows their annotation using the
complete set of InterPro (43) member databases, some of
which are excluded from the current EBI Metagenomics
pipeline as they do not perform well at annotating sequence
fragments. The ability to annotate at a very deep functional
level (e.g. classifying sequences into specific protein subfam-
ilies and identifying precise enzymatic functions) in turn al-
lows more sophisticated analyses, such as reconstruction of
precise metabolic pathways within a microbial community
at very high resolution. Furthermore, assembly also unlocks
the possibility of taxonomic binning, genome reconstruc-
tion and annotation, which brings the potential for identi-
fication of new organisms.

Such developments will provide new analysis types and
entry points to the resource. The first of these is already
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accessible in the form of the nascent non-redundant pep-
tide database, described above. The generation of such a
database––and the ability to run sequence-based searches
against it––addresses a feature frequently requested from
our user community. Other entry points or views of the
data, such as intuitive visualisations of assembled contigs
and their associated annotations, are currently lacking and
will need to be developed.

As EBI Metagenomics continues to evolve, careful
thought will need to be given as to how new features scale,
to balance usability with sustainability. For example, gener-
ating one vast peptide database based on all assembled se-
quence data will not address community needs, as the data
needs to be structured in meaningful ways (for example,
mapping the sequences back to particular biomes and/or
environmental conditions). At the same time, we will need
to monitor our assembly strategy, since without algorithm
development, there will be many projects where it is sim-
ply computationally too expensive to assemble all sequence
data without impacting analysis of user-submitted data and
the day-to-day activities of the resource. Dealing with these
issues, and with those outlined above, will be a key priority
for EBI Metagenomics in the forthcoming years.
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