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Abstract

The ability to control pattern formation is critical for the both the embryonic development of 

complex structures as well as for the regeneration/repair of damaged or missing tissues and organs. 

In addition to chemical gradients and gene regulatory networks, endogenous ion flows are key 

regulators of cell behavior. Not only do bioelectric cues provide information needed for the initial 

development of structures, they also enable the robust restoration of normal pattern after injury. In 

order to expand our basic understanding of morphogenetic processes responsible for the repair of 

complex anatomy, we need to identify the roles of endogenous voltage gradients, ion flows, and 

electric fields. In complement to the current focus on molecular genetics, decoding the information 

transduced by bioelectric cues enhances our knowledge of the dynamic control of growth and 

pattern formation. Recent advances in science and technology place us in an exciting time to 

elucidate the interplay between molecular-genetic inputs and important biophysical cues that 

direct the creation of tissues and organs. Moving forward, these new insights enable additional 

approaches to direct cell behavior and may result in profound advances in augmentation of 

regenerative capacity.
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Introduction

A critical goal of regenerative biology and medicine is to understand and control the 

mechanisms underlying the processes directing growth and patterning. Alongside 

conventionally-studied transcriptional networks and chemical cues, additional inputs enable 

cells to cooperate and make decisions necessary for the repair and remodeling of complex 

anatomical structures. Endogenous ion flows serve as important regulators of cell behavior, 

coordinating cell activity during pattern homeostasis. Located within cell membranes, ion 

channels, pores, and pumps create a complex language of bioelectric signals that is tightly 
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integrated with gene regulatory networks to direct cell behavior toward the creation and 

maintenance of functional tissues and organs. Here we discuss the known roles of ion-based 

physiological processes in directing cell behavior during pattern formation and regeneration. 

Specifically excluded in this review are the fast-acting action potentials associated with 

neurons and muscle cells, externally-applied electromagnetic fields and radiation, and ultra-

weak photon emission.

What is developmental bioelectricity?

All cells drive and respond to changes in transmembrane voltage potential (Vmem). Unlike 

fast-spiking currents normally associated with nerve and muscle cell activity, ion pumps, 

channels, and pores distribute specific ion species across cellular plasma membranes to 

produce slowly-changing spatial patterns of resting potential (Figure 1). In addition, groups 

of cells can be electrically connected via the diffusion of small molecules between cells 

through electrical synapses known as gap junctions (Fitzharris and Baltz, 2006; Mathews 

and Levin, 2017). These transmembrane potentials, fluxes of individual ions, and iso-electric 

cell compartments established by gap junctions, convey information to target cells, their 

neighbors, and in some instances, to distant locations. This signaling modality is used to 

process and transmit information about regenerative parameters such as cell type, tissue size, 

positional information, axial polarity, and organ identity (Levin, 2014; Levin et al., 2017; 

Pitcairn and McLaughlin, 2016). Importantly, these signals (unlike the familiar mRNA and 

protein signals) can only be characterized in the living state. Furthermore, the ability of 

channels and gap junctions to open and close post-translationally means that bioelectric cell 

states are a complex function of a given cell's microenvironment history, impinging 

physiological signals, and expression levels of electrogenic machinery.

Over a century of observations in developmental bioelectricity - a historical 

perspective

The “electrical properties of living tissues” have been discussed by scientists for over a 

century (Mathews, 1903); prescient workers such as Burr (Burr and Northrop, 1935a) and 

Lund (Lund, 1947) characterized bioelectrical gradients in developing and regenerative 

systems, and used applied voltages to show that bioelectric signals were not merely 

epiphenomena of housekeeping physiology but were instructive for specific changes in 

growth and patterning in a range of fungal, plant, invertebrate, and vertebrate species. Marsh 

and Beams spearheaded some of the useful studies supporting an instructive role for 

bioelectric signaling during tissue patterning. By applying external electric fields to worm 

fragments, they demonstrated the ability to specifically alter the anterior-posterior polarity of 

regenerating fragments of planaria (Marsh and Beams, 1947, 1952). Subsequent 

instrumental work by several researchers including Lionel Jaffe, Richard Nuccitelli, Richard 

Borgens, Colin McCaig, and Ken Robinson, found that the electrical properties of single 

cells, neural tissues, epithelia, and entire appendages, were able to direct growth, 

morphology, and tissue polarity during regeneration of a wide range of model species 

(Borgens, 1982, 1983, 1986; Borgens, 1989; Jaffe, 1980, 1981, 1982; Jaffe et al., 1974; 

McCaig et al., 2005; Nuccitelli and Jaffe, 1974, 1976; Robinson, 1983).
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With the advent of modern molecular, cellular, and genomic methodologies, more recently 

researchers have built upon these early studies to characterize proteins responsible for 

generating the bioelectric signals, transduction machinery that converts voltage change into 

second-messenger cascades, the gene regulatory networks downstream of bioelectric 

signaling, and ultimately the underlying mechanisms that direct cell behavior. The 

development of molecular-resolution genetic and pharmacological tools to investigate and 

manipulate ion flow has revealed that changes in resting potential can control individual cell 

behaviors including: proliferation, cell death, migration, and differentiation, in of a wide 

variety of cells types (Figure 1). In addition, recent data implicate endogenous 

spatiotemporal patterns of Vmem in regulating processes during embryonic development, 

regeneration, and patterning, that when altered, are responsible for a wide range of 

channelopathies and birth defects (Matusik, 2017; Persson and Bondke Persson, 2016).

Cell-level control of behavior by ion-mediated processes

During the creation of organized tissues, the ability to control cell behavior is critical for the 

formation of properly patterned structures. Large-scale morphogenesis necessitates the 

coordination of individual cells whose function is regulated via the integration of molecular 

cues and endogenous bioelectrical signals (as outlined in Figure 1). Both the creation of 

functional organs during development and regeneration of missing structures post-injury, 

require careful regulation of cell movement and positioning. Examples of cell migration 

events include the movement of progenitor cells towards the injury site observed in: planaria 

(Salo and Baguna, 1985), zebrafish (brains, hearts, fins) (Salo and Baguna, 1985; Tahara et 

al., 2016; Zupanc, 2006), and stem cell homing (Chute, 2006). Over half a century ago, 

several groups reported that electric fields could be used to direct cell behavior to orient cells 

either parallel or perpendicular to the field line, extend cell processes, or direct migration 

relative to the positioning of an anode or cathode (Anderson, 1951; Hyman and Bellamy, 

1922). Although there is some debate over which cell types respond to physiologically 

relevant electric fields (Robinson and Cormie, 2008), subsequent work has shown numerous 

embryonic and somatic cell types exhibit galvanotaxis in electric fields in vivo (Pullar and 

Isseroff, 2005; Stump and Robinson, 1983; Yao et al., 2008; Zhao et al., 1997). It has been 

postulated that during embryogenesis these electric fields serve to both polarize the early 

vertebrate embryos as well as provide important positional cues that direct cell movements 

necessary for morphogenesis and pattern formation (Pitcairn et al., 2017; Shi and Borgens, 

1995). This is especially relevant for guiding innervation and the movement of epithelial 

cells to close wounds – key components of regenerative response (Cao et al., 2013; Reid et 

al., 2005; Yamashita et al., 2013). Studies examining the migration of pigment cell 

derivatives originating from the neural crest, demonstrated altering bioelectrical events 

during early stages of embryogenesis caused melanocytes to inappropriately colonize tissues 

and organs in Xenopus tadpoles (Blackiston et al., 2011a; Morokuma et al., 2008). Similarly, 

a mutation in zebrafish that disrupts the pore function of an inwardly rectifying potassium 

channel (Kir7.1) altered the migration, but not the differentiation, of melanosomes (Iwashita 

et al., 2006).

Since it is a prerequisite for metastasis, much research has focused on targeting cell 

migration as way to hinder cancer progression. Ion transport proteins are easily accessible in 
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cell membranes and are often overexpressed or activated in cancer (Becchetti et al., 2017; 

Funk, 2015; Pollak et al., 2017); thus, inhibition of the mechanisms underlying metastasis 

offers great therapeutic potential. Numerous studies have implicated bioelectric signaling as 

one of the mediators of electric guidance in migrating metastatic cancer cells (Fraser et al., 

2005; Litan and Langhans, 2015; Mycielska and Djamgoz, 2004; Schwab, 2001; Schwab et 

al., 2012; Schwab and Stock, 2014).

Integration of cell proliferation into the overall pattern of a tissue and its size during 

regeneration can be controlled by membrane potential. As a general rule, proliferating cells 

tend to be more depolarized than non-proliferating (often differentiated) cells. This 

observation was further explored in a comparative analysis examining the membrane voltage 

of numerous cell types that revealed a striking functional connection between resting Vmem 

and the ability to progress through the cell cycle (Binggeli and Weinstein, 1986; Levin, 

2012; Rao et al., 2015). Although the control of cell division by bioelectric signals is not 

always cell-autonomous (Morokuma et al., 2008; Pai et al., 2015a), in several studies 

proliferation appears to be controlled predominantly by a cell's own membrane potential 

(Arcangeli et al., 1993; Cone, 1974).

While the underlying mechanisms have not been completely elucidated, there is growing 

evidence that ion flow plays a role in regulating cell division (MacFarlane and Sontheimer, 

2000; Ouadid-Ahidouch and Ahidouch, 2008, 2013; Ouadid-Ahidouch et al., 2016; Putney 

and Barber, 2003; Valenzuela et al., 2000). More specifically, numerous studies have 

implicated K+ currents as playing a key role in mediating cell division and cell cycle 

progression (Deng et al., 2007; MacFarlane and Sontheimer, 2000; Rouzaire-Dubois et al., 

1993; Urrego et al., 2014). In the zebrafish, a mutation that reduces intracellular K+ 

concentration, and consequently hyperpolarizing cells, results in a dramatic increase in the 

fin and barbel size due to increased proliferation (Perathoner et al., 2014). Early 

observations that wide-spectrum potassium channel blockers inhibit proliferation in T-

lymphocytes (DeCoursey et al., 1984) provided some of the first evidence that K+ 

concentration could regulate cell cycle progression in mammalian cells. More recently, 

numerous studies examining a diverse array of cell types have demonstrated potassium 

channel activity is functionally linked to cell proliferation. For example, the voltage-gated 

potassium channel KV1.3 (KCNA3) has been implicated in the control of cell cycle in many 

cell types including: proliferating oligodendrocyte progenitors during G1/S transition 

(Chittajallu et al., 2002), microglia cells (Kotecha and Schlichter, 1999), and macrophages 

(Vicente et al., 2003).

The activity of chloride channels has also been shown to modulate cell proliferation. For 

instance, inhibition of volume-regulated Cl- channels (VRCCs) results in p27 accumulation 

and G1 cell cycle arrest in T-cell leukemia cells and human embryonic kidney (HEK) cells 

(Renaudo et al., 2007). Similarly, blocking the function of TMEM16A (a calcium-activated 

Cl- channel), arrests colorectal cancer cells in G1 (Sui et al., 2014). In addition, gliomas 

often express higher levels and activity of voltage dependent (CLC family) chloride 

channels, contributing to depolarized membranes (Olsen et al., 2003). A reduction of Cl- 

channel activity via exposure to chemical inhibitors or siRNA-mediated knockdown both 

reduces Cl- currents and inhibits proliferation of gliomas (Lui et al., 2010; Yang et al., 
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2006). The induction of proliferative states via altering membrane potential (Sundelacruz et 

al., 2013b) offers an important addition to regenerative biologists seeking to induce growth 

after injury.

Biological processes such as regeneration require a careful balance between cell 

proliferation and the elimination of cells through programmed cell death (PCD). Thus, in 

addition to regulating cell division, induction of PCD must also be controlled. Although 

counterintuitive, research in diverse model systems revealed that dying cells can secrete 

mitogens that directly stimulate stem or progenitor cell proliferation (Chera et al., 2009; Fan 

and Bergmann, 2008a; Gauron et al., 2013; Huh et al., 2004; Li et al., 2010; Perez-Garijo et 

al., 2004; Sakurai et al., 2008). Coined the “phoenix rising pathway” by Li et al., wound 

healing, cell proliferation, and formation of blastema cells, are regulated in part by dying 

cells (Li et al., 2010). Since the original observations over forty years ago, the process of 

apoptotic-induced compensatory proliferation has been found to be an evolutionarily 

conserved process (Fogarty and Bergmann, 2017). Importantly, not only can dying cells 

induce a mitotic response in neighboring cells, but studies in Drosophila, Xenopus, Hydra, 

mice, and planaria have demonstrated a role for apoptotic cells in repair and regeneration 

(Chera et al., 2009; Fan and Bergmann, 2008a, b; Hwang et al., 2004; Tseng et al., 2007).

Irrespective of the specific route cells employ to undergo programmed cell death, typically 

extrinsic and intrinsic pathways lead to similar biological events including: a reduction in 

cell volume, caspase activation, nuclear condensation, DNA fragmentation, and apoptotic 

body formation. Regardless of the apoptotic stimuli, a reduction in cell volume is a universal 

feature of programmed cell death that is evolutionarily conserved among species ranging 

from worms to mammals (Bortner and Cidlowski, 1998, 2007; Lang et al., 2007). This cell 

shrinkage (termed apoptotic volume decrease [AVD]) results from a significant loss of 

intracellular potassium, sodium, and chloride ions that are essential for the activation of 

caspases and nucleases (Bortner and Cidlowski, 2007). Numerous studies have demonstrated 

prevention of AVD inhibits the execution of programmed cell death in most cell types 

(Bortner and Cidlowski, 2002, 2004; Heimlich et al., 2004; Yu and Choi, 2000). Hence, in 

order to create a permissive environment for the apoptotic machinery to function, the 

underlying flux of ions in dying cells must be carefully regulated. One of the regulators of 

apoptosis appears to be resting potential, even of distant cells, as has been shown in the 

patterning of the Xenopus brain (Pai et al., 2015a) and the regeneration of the planarian head 

(Beane et al., 2013).

In addition to cell migration, proliferation, and apoptosis, distinctive cell types must be 

present for functional tissues and organs to regenerate. Early studies using tissue from Rana 
pipiens embryos, demonstrated that ventral ectoderm explants differentiate into different cell 

types by modulating the ion content of the extracellular medium (Barth and Barth, 1974a; 

Barth and Barth, 1974b). More recently, studies demonstrated that the combination of BMP 

signaling and Ca2+-mediated electric activity regulates the appropriate differentiation of the 

spinal neurons during embryogenesis (Sundelacruz et al., 2009; Swapna and Borodinsky, 

2012). Furthermore, bioelectric control of cell differentiation has recently been demonstrated 

in human cells, such as mesenchymal stem cells (Sundelacruz et al., 2008, 2013a). In 

addition to the role for bioelectric signaling during development, numerous studies have 
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shown altering Vmem can not only direct the differentiation of tissues during embryogenesis, 

but can also direct the fate of a wide range of regeneration-relevant stem cells, including 

neural, hepatic, mesenchymal, and cancer (Biagiotti et al., 2006; Wang et al., 2005; Wenisch 

et al., 2006). Studies in fish have identified a role for, and transcriptional targets of, gap 

junction-mediated signaling in control of skeletal and joint elements in zebrafish fin 

regeneration (Banerji et al., 2016; Ton and Iovine, 2012, 2013).

Due to their ability to self-renew via mitotic divisions, combined with the role ion channels 

play during cell cycle progression, it is not surprising that multiple functional channel 

currents have been observed in stem cell populations (Li and Deng, 2011; Liebau et al., 

2013; Moore, 2005). Another important characteristic of stem cells is their ability to 

differentiate into a diverse range of specialized cell types. Consequently, numerous studies 

have revealed a role for bioelectric signaling during the differentiation of precursor cells. For 

instance, not only do adipose-derived mesenchymal stem cells (AD-MSCs) express several 

voltage-gated ion channels (VGICs) channels (Bai et al., 2007), blocking the function of 

these channels inhibited the osteogenic differentiation of these stem cells (Zhang et al., 

2016). Moreover, both differentiation and proliferation are controlled by changes in Vmem in 

numerous cell types including: human mesenchymal stem cells (HMSCs) (Sundelacruz et 

al., 2009; Sundelacruz et al., 2008), cardiomyocytes (Genovese et al., 2008; Lan et al., 

2014a; Lan et al., 2014b; van Vliet et al., 2010), hepatocytes (Bautista et al., 2017), 

embryonic stem cells (Ng et al., 2010; Yamada et al., 2007), and neural stem cells (Aprea 

and Calegari, 2012; Lange et al., 2011). Combined, mounting evidence implicates 

transmembrane potential as a broadly-conserved mechanism used to direct the migration, 

proliferation, apoptosis, and differentiation of cells. Because of the development of new 

tools to manipulate membrane resting potential, Vmem control is an attractive target for 

manipulating cells in regenerative applications both in vitro and in vivo.

Tissue-level pre-patterns mediated by bioelectric control mechanisms

Although controlling an individual cell's behavior is important, in order to create a 

functional organ during development or replace a missing structure via regeneration, the 

behavior of groups of cells must be carefully regulated to produce properly patterned 

structures. Over the years, gradients of growth factors and other transcriptional activators 

have been implicated in mediating the differential gene activation observed during the 

formation of complex structures. However, gene regulatory networks must work in concert 

with physical sources of information to establish anatomical order on multiple scales, from 

organs to the entire body plan. While physical forces such as pressures and tensions 

(Mammoto and Ingber, 2010; Navis and Bagnat, 2015) are well-known to be important, it is 

becoming increasingly appreciated that spatio-temporal patterns of Vmem are also an 

important instructive feature of large-scale pattern regulation.

In the early 20th century, Yale University biologist Harold S. Burr and colleagues postulated 

that some of underlying patterning information that directed groups of cells stemmed from 

what he called electro-dynamic fields. Burr's early studies in 1930s and 1940s focused on 

carefully measuring and correlating voltage gradients with future developmental patterns in 

numerous organisms (Burr, 1944; Burr and Northrop, 1935b). He speculated these voltage 
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gradients were not only quantitatively predictive of future morphology, but also contained 

important patterning information. Similar to the electro-dynamic fields described by Burr 

eighty years ago, researchers examining amphibian development discovered an increase in 

the resting potential in the developing neural plate, that is absent from adjacent ectodermal 

cells (Blackshaw and Warner, 1976). Inhibition of this increase in resting potential resulted 

in abnormal morphology, with craniofacial structures the most severely malformed 

(Messenger and Warner, 1979). These initial observations were further characterized by Shi 

and Borgens who measured the gradients of extracellular electric fields found in amphibian 

embryos and speculated that these gradients provided positional information to the 

developing animal (Shi and Borgens, 1995). Experiments by Vandenberg and colleagues 

(2011) in the frog embryo revealed the existence of a bioelectric pre-pattern in the 

developing face that predicted the prospective location of eyes and other craniofacial 

structures (Figure 2A). When these bioelectric pre-patterns were perturbed experimentally, 

the prospective boundaries of craniofacial gene expression, and the subsequent gross 

morphology of craniofacial structures, were altered (Vandenberg and Morrie, 2011). More 

recent work has revealed this “bioelectric face” pattern to underlie the misregulation of 

craniofacial patterning genes observed in human syndromes with facial dysmorphias 

(Adams et al., 2016). Similar bioelectric patterns, recently characterized in the Xenopus 

brain (Pai et al., 2015b), are responsible for the balance of proliferation and apoptosis 

needed to produce a brain that is size-matched to the surrounding tissues, an important 

aspect of regenerative response.

While there are numerous examples of the existence of endogenous bioelectric gradients 

across anatomical distances, in order to direct the creation of complex structures the ion-

mediated information must be carefully regulated across populations of cells. In addition to 

receptor-mediated signal exchange, information can also be distributed via the direct cell-

cell exchange of small molecules passing through gap junctions. This extremely flexible 

system for communication allows for the rapid synchronization amongst cells in a tissue that 

can be regulated at multiple levels. Gap junctions have been shown to both regulate a cell's 

ability to sense extracellular electric fields, but also organize cells into functional domains 

(Caveney, 1985; Cooper, 1984; Cooper et al., 1989; Levin, 2007a; Warner, 1985). Thus, gap 

junctional communication provides the ability to facilitate the rapid flow of information in a 

multicellular organism, or in some cases, to isolate groups of cells and thus create 

boundaries between compartments (Pitts et al., 1988; Rela and Szczupak, 2004; Sutor and 

Hagerty, 2005). Importantly, cells linked by gap junctions can react as a single unit to stimuli 

such as the weak electric fields commonly found in developing and regenerating tissues 

(Cooper, 1984). In addition, gap junctions not only shape electrical properties of populations 

of cells, but they themselves are sensitive to changes in pH and transmembrane potential. 

These characteristics provide a way for groups of cells to use both positive- and negative-

feedback mechanisms to regulate level of activity and spatial organization of bioelectric 

properties within tissues in vivo.

Patterning and morphogenesis of tissues and organs: bioelectric inputs

Beyond the control of cell fate decisions, several studies demonstrated bioelectric cues can 

also alter the morphogenesis and position of whole organs, which can occur even when 
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differentiation remains unperturbed. For example, recently research investigating the role of 

a cation channel during early embryogenesis demonstrated that altering channel function 

during embryogenesis affected the expression of important genes directing organ position 

and morphogenesis, resulting to mispositioned hearts with abnormal morphology, but genes 

directing the differentiation of the cardiac precursor cells such as, Xbra, nkx2.5, Cardiac 

troponin-T were unaltered (Pitcairn et al., 2017). A role for bioelectric signaling during 

large-scale patterning has also been observed in mammals, revealed by the numerous 

channelopathies that cause dysmorphic features. For example, human patients with 

Andersen-Tawil Syndrome that carry mutations in another inwardly rectifying potassium 

channel, Kir2.1, have limb and craniofacial abnormalities including, mispositioned ears, 

dental defects, fusion of digits (syndactyly), shortening of the digits (brachydactyly), and 

malformed or cleft palate (Plaster et al., 2001; Yoon et al., 2006). The Kir2.1 knockout 

mouse also has many of these malformed and mispositioned structures further supporting 

the channel function is needed for the normal development of these tissues and organs 

(Dahal et al., 2012; Zaritsky et al., 2000). Recently studies in Drosophila melanogaster 
examining the role of a potassium channel Kir2.1 homolog, Irk2, reported reduction of Irk2 

ion channel resulted in the abnormal patterning of wings that was most likely caused by 

disrupting Dpp/BMP signaling (Dahal et al., 2012; Dahal et al., 2017).

The role of currents during appendage regeneration provides a more complex example of 

morphogenetic control of tissues and organs directed by bioelectric cues. Over half a century 

ago, Becker postulated that the bioelectric state of cells in regenerating organisms contained 

information that directed limb regeneration (Becker, 1961). Years later this theory was 

further probed by several investigators including Borgens and Lassalle who measured the 

bioelectric state in regenerating and non-regenerating organisms post limb amputation 

(Borgens, 1982, 1983; Lassalle, 1979, 1980). In both regenerating and non-regenerating 

animals examined immediately after injury, the wound surface was strongly negatively 

charged relative to surrounding tissue. Once the epithelium covered the wound, a switch to a 

positive charge was observed. However, only in regenerating organisms does the potential 

reverse a second time to return to a negative state. Since these currents persist over a 

prolonged period of time and can be detected weeks after the initial injury, it is unlikely that 

the resulting changes in electric fields are simply a byproduct of passive ion leaking from 

damaged cells. Importantly, functional experiments where these bioelectric gradients were 

altered via shunting, ion channel blockers, electrical isolation, or exogenous reversal of the 

gradient, inhibited regeneration and serve to provide further evidence that biophysical events 

are necessary components for regeneration (Borgens, 1982; Hotary and Robinson, 1992; 

Jenkins et al., 1996; Novak and Sironval, 1975). Combined, these experiments provided the 

groundwork that links bioelectric state during limb regeneration to critical information 

needed to direct normal anatomy of structures.

Going beyond the endogenous role for ion channel activity during regeneration, numerous 

studies have examined the sufficiency of bioelectric cues in inducing or augmenting 

regeneration (Sisken, 1992; Sisken et al., 1993). More recent experiments in the rodent limb 

have used marker analysis to confirm the augmentation of regenerative response induced via 

bioelectric stimulation (Leppik et al., 2015). To date, several labs have demonstrated the 

application of exogenous fields can induce the regeneration of appendages in less-
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regenerative organisms, including anuran amphibians (Borgens et al., 1977; Sharma and 

Niazi, 1990; Smith, 1967), chick (Sisken and Fowler, 1981), and even mammals (Becker, 

1972; Sisken et al., 1984; Smith, 1981). For example, the use of ionophores to induce 

depolarization has been shown to trigger leg regeneration in post-metamorphic (non-

regenerative) frogs (Tseng and Levin, 2013) (Figure 3A-B).

The tadpole tail of the frog Xenopus laevis is able to regenerate a complete tail (including 

muscle, spinal cord, epidermis, vasculature, and notochord), making it an excellent model 

system for investigating tissue repair and regeneration and potential therapeutics at post-

regenerative life stages (Tseng and Levin, 2008) (Figure 3C-F). Over the last decade 

researchers have identified multiple molecular mechanisms that regulate tail regeneration 

such as: Wnt-FGF, TGF-β, Notch, and BMP (Beck et al., 2003; Ho and Whitman, 2008; Lin 

and Slack, 2008; Slack et al., 2004). As with limb regeneration, in addition to the signaling 

molecules that mediate the regrowth of the amputated structure, tadpole tail regeneration is 

also regulated by biophysical factors. For example, the amount of current detected in 

amputated tadpole tails correlated with regenerative ability and the restoration of missing 

tissue was reduced manipulation when bioelectric cues were altered (Reid et al., 2009). 

Additionally, a combination of pharmacological and molecular-genetic approaches 

implicated the continuous pumping of H+ at wound site mediated by the V-ATPase hydrogen 

pump as an instructive factor mediating proliferation and pattern formation during tail 

regeneration (Adams et al., 2007a). Not only is this current required during normal 

regeneration, but during stages when tadpoles cannot regenerate ablated tail tissue, 

regeneration can also be artificially induced via expressing a yeast H+-ATPase (PMA-1) to 

manipulate H+ efflux (Adams et al., 2007a; Masuda and Montero-Lomeli, 2000). The 

expression and function of bioelectric machinery such as NaV1.2 channel revealed an 

important molecular marker that distinguishes true regeneration from wound healing. These 

initial observations were extended to demonstrate that a small molecule cocktail targeting 

sodium flux was sufficient to trigger complete tail regeneration even after a nonpermissive 

wound epithelium had formed (Tseng et al., 2010b) (Figure 3C-F). Furthermore, recent 

advances in optogenetics demonstrate this approach can be used to trigger regenerative 

response of a complex multi-tissue appendage (the Xenopus tail, including spinal cord) via 

light stimulation of appropriate bioelectric states (Adams et al., 2013).

Changes in membrane potential have also been implicated in eye development and 

patterning. For example, experiments conducted in X. laevis demonstrated that the cell fields 

that will eventually contribute to eye formation are demarcated by hyperpolarization long 

before any of the eye transcription factors are expressed. Altering the pattern of these 

hyperpolarized regions induced changes in eye-specific gene expression and defects in eye 

morphogenesis; more importantly, when other cells were artificially hyperpolarized in early 

Xenopus embryos, ectopic eye tissue was induced (Pai et al., 2012) (Figure 2B); this could 

even occur far from the anterior neural field (such as the gut), suggesting revision of 

standard views of competence restrictions in various tissues.
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Axial patterning

Axis determination is a critical component of creating complex structures during 

development and regeneration. Seminal experiments conducted by Marsh and Beams 

showed that simply applying external electric fields to the regenerating planarian fragments 

caused specific reversals of normal anterior-posterior polarity (Marsh and Beams, 1947, 

1952). In these experiments, when the anterior cut faced the negative cathode, regeneration 

proceeded normally. In sharp contrast, when the anterior cut was exposed to the positive 

anode, double-headed worms were created. This work drove the formulation of models of 

electrophoretic redistribution of morphogen signals (Lange and Steele, 1978). Further 

evidence that membrane voltage controls head-versus-tail identity during planarian 

regeneration was reported in more recent studies that took advantage of a chemical genetics 

approach to examine the effects of ion flux on axial patterning. In this study, researchers 

revealed H+/K+-ATPase-mediated depolarization of the regenerating worm blastema drives 

head formation, even at posterior-facing wounds (Beane et al., 2011) (Figure 4A). 

Subsequent work showed that modulation of bioelectric network connectivity can switch 

genetically wild-type planaria to a permanent 2-headed state (regenerating as bi-axial forms 

after repeated, additional cuts in pure water) (Oviedo et al., 2010). Recent evidence reveals 

that the endogenous body-wide bioelectric gradient is the determinant of head-tail identity in 

animals that can regenerate fragments with 2 heads despite the original worm's normal 

anatomy, histology, molecular marker expression, and stem cell distribution (Durant et al., 

2017) (Figure 4B). Remarkably, planaria can be converted between 1-head (normal 

phenotype) and 2-head (mispatterned) forms by transient, brief modulations of a bioelectric 

circuit that dictates radically different body plans in future rounds of regeneration in plain 

water; this model system this provides one of the best examples of the instructive role of 

bioelectrics in setting, and executing, the pattern memory that guides large-scale 

regeneration.

In addition to a role in anterior-posterior axis determination, bioelectric cues are also 

essential for patterning the left-right (L-R) axis in a wide range of organisms (Levin, 2005; 

Levin, 2012; Vandenberg and Levin, 2010, 2013). For example, in Xenopus the asymmetric 

localization of 4 electrogenic proteins, including the H+/K+-ATPase exchanger and V-

ATPase H+ pump, results in differential L-R voltage and pH gradients that help establish 

normal L-R patterning during embryogenesis (Adams et al., 2006a; Aw et al., 2010; Levin et 

al., 2002). Although the timing of activity varies, the role of bioelectric cues in L-R axis 

establishment has also been observed in invertebrates such as the sea squirt and sea urchin as 

well as in other vertebrates including zebrafish, chick, mouse, and even human patients 

(Fukumoto et al., 2005; Hibino et al., 2006; Kawakami et al., 2005; Levin et al., 2002; 

Miyachi, 2017; Shimeld and Levin, 2006; Vandenberg and Levin, 2010).

While the details of how voltage gradients couple to early events are somewhat divergent 

among phyla with different body plans, work in amphibians has provided the most detailed 

picture of one evolutionary strategy. In Xenopus, the bioelectric gradients formed in early 

embryogenesis provide the motive force for a charged molecule, serotonin, to pass through 

gap junctions and become localized on the right side of the embryo where it functions as an 

electrophoretic morphogen (Fukumoto et al., 2005; Vandenberg et al., 2014; Zhang and 
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Levin, 2009). Altering serotonin signaling or channel function results in the randomization 

of canonical L-R positioning proteins such as Nodal, Lefty, Pitx2 and situs ambiguous 
(heterotaxy). The L-R pathway provides a good illustration of the molecular mechanisms by 

which bioelectrics regulates global pattern, as all of the steps are known – from cytoskeletal 

machinery that regulates channel positioning (Lobikin et al., 2012), to the transduction of 

voltage gradient information from single cell chirality into body-wide asymmetric 

transcriptional cascades of canonical genes (McDowell et al., 2016a; McDowell et al., 

2016b). The latter process is executed by lateralized epigenetic silencing of left-sided genes 

such as Nodal by electrophoretic movement of morphogens (Carneiro et al., 2011), revealing 

a tight integration of bioelectrics and biochemical signaling to link the dynamics of single 

cells to the creation of complex structures. Given the importance of epigenetic 

transcriptional control during regeneration in amphibia, fish, and planaria (Anderson et al., 

2009a; Hamada et al., 2015; Robb and Sanchez Alvarado, 2014; Tseng et al., 2011a), it is 

likely that the interplay of bioelectrics and chromatin modification machinery will be 

increasingly characterized in regeneration, as it has been in development (Carneiro et al., 

2011) and tumorigenesis (Chernet and Levin, 2014).

Ion flux and control of the size of structures

During the regeneration of missing structures, in addition to proper patterning, the ability to 

regulate the final size of newly created structures is equally important. This is accomplished 

via the coordination of the number of each cell type required to make a tissue with the final 

dimensions of a regenerating structure. In the late 1940s Moment conducted a systematic 

study of earthworm regeneration to understand the mechanisms utilized to control growth 

and cell division (Moment, 1947; Moment, 1949a, b). He presented evidence that electrical 

events were correlated with posterior regeneration and postulated regenerating worms 

generated a critical inhibitory voltage which functioned as a limiting factory to regulate 

growth (Moment, 1949a). A few years later Kurtz and Schrank conducted additional 

experiments that served to further confirm the initial findings demonstrating changes in 

voltage accompany cessation of regenerative growth in earthworms (Kurtz and Schrank, 

1955). In zebrafish, a gain-of-function mutation in a potassium channel, K2P (encoded by 

the kcnk5b gene) resulted in allometric overgrowth of the fins (Perathoner et al., 2014), 

identifying and characterizing a new electrogenic control of appendage size.

Bioelectric cues in plants

The involvement of bioelectric signaling in regenerative processes is not just restricted to 

animals; it is also a mechanism used to direct cell behavior in plants. Some of the earliest 

studies in this field involved plants, addressing both the endogenous bioelectric correlates of 

plant morphogenesis (Burr and Sinnott, 1944; Rehm, 1938) and the effects of applied fields 

on plant growth (Berry et al., 1947; Rehm, 1939). Some of the pioneering studies by Lionel 

Jaffee and colleagues over forty years ago recognized that pollen tubules behave as electrical 

dipoles, with inward currents leaking the apical parts of the tube, and outward (positive) 

currents arising from the grain (Weisenseel and Jaffe, 1976; Weisenseel et al., 1975); this 

work gave rise to one of the first models of bioelectrical self-organization and polarity 

(Bentrup and Jaffe, 1968; Jaffe, 1968). Similar to pollen tubules, the outgrowth of root hairs 
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occurs in a polar fashion and is also guided by an external electrical field (Michard et al., 

2009b). The role of ion flux is not restricted to the normal growth of pollen tubules and root 

hairs but is also important for regenerative processes. For example, studies have shown that 

both alternating (Cogalniceanu et al., 1998) and continuous (Rathore and Goldsworthy, 

1985) weak electric current can increase the proficiency of in vitro regeneration in tobacco 

tissue cultures. Molecular studies have revealed the details of physiological gradients driving 

pollen tube extension and patterning (Certal et al., 2008; Michard et al., 2009a; Michard et 

al., 2008; Robinson and Messerli, 2002), including bi-directional feedback between the 

activity of ion transporters and the distribution of small signaling molecules such as auxin 

and GABA (Goldsworthy and Rathore, 1985; Ramesh et al., 2015; Schrank, 1951). More 

recently, studies using examining Arabidopsis root regeneration in vivo, demonstrated that 

the regeneration process of the root tip apical meristem could be perturbed by a brief 

exposure of the stump to an external electric field (Kral et al., 2016). Thus, electric fields are 

capable of directing cellular processes in a wide spectrum of tissue types as well as across 

diverse taxa.

Molecular mechanisms

Although initial observations that bioelectric cues play a role in the formation and patterning 

of complex structures span decades of research, it is only more recently that molecular 

mechanisms responsible for sensing, interpreting, and translating weak bioelectric signaling 

into changes and gene expression have been elucidated. Not surprisingly, bioelectric cues are 

found both upstream and downstream of traditionally studied genetic and biochemical 

elements (Figure 1). Though still only examined in a small handful of contexts, the study of 

bioelectrics is revealing a robust conservation of mechanisms. For example, galvanotactic 

guidance of cell migration occurs in fungi (Gow and Morris, 1995) as it does in mammalian 

cells during wound healing (Nakajima et al., 2015) and retinal patterning (Yamashita, 2013). 

Bioelectric gradients establish polarity in single yeast cells (Haupt et al., 2014; Minc and 

Chang, 2010) as in whole metazoan axes (Aw and Levin, 2009). The same voltage 

regulators, like the plasma membrane V-ATPase proton pump, are involved broadly from 

stem cell regulation in eye patterning (Nuckels et al., 2009) to the determination of axial 

polarity in L-R asymmetry (Adams et al., 2006b) and the induction of tail regeneration 

(Adams et al., 2007b). Even the downstream targets of voltage change appear to be well-

conserved from amphibia to man, as revealed by recent microarray studies comparing 

transcriptional responses to Vmem change in frog, axolotl regeneration, and human 

mesenchymal stem cells (Pai et al., 2016).

How do changes in the resting potential at the plasma membrane regulate downstream gene 

expression? To date many studies have described mechanisms for transduction of ion flows 

and voltage gradients into second-messenger cascades that mediate changes in gene 

expression including: activation of calcium influx via voltage gated calcium channels 

(Deisseroth et al., 2004; Sasaki et al., 2000), conformational changes in integrin signaling 

(Arcangeli and Becchetti, 2006; Olivotto et al., 1996), voltage regulated phosphatase activity 

(Murata et al., 2005; Okamura and Dixon, 2011), clustering of RAS proteins (Zhou et al., 

2015), and regulation of small morphogens' movement in and out of cells via voltage-

regulated transporters (Blackiston et al., 2011a; Fukumoto et al., 2005).
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Since calcium is one of the most widely used second messengers in cell biology and 

participates in numerous cell functions, it is not surprising that Ca2+ influx (via voltage-

sensitive Ca2+ channels) has been linked to the regulation of downstream events modulating 

pattern formation (Barbado et al., 2009; Calabrese, 2014). Of particular interest is calcium's 

ability to control gene function, providing a link between membrane potential and gene 

expression. Unlike many other second messengers, it cannot be metabolized; while present 

in relatively high concentrations in the extracellular space, its presence inside cells is tightly 

regulated. Thus, the ability to control intracellular Ca2+ concentration and location is critical 

for regulating a wide variety of cell functions. Not only can Ca2+ control rapid-signaling 

processes like electrical excitability and neurotransmitter release, but it can also control 

cellular events that occur more gradually. Ca2+ often recruits intracellular signaling 

pathways (e.g., calmodulin, calcineurin, calpains) that persist longer in cells than the Ca2+, 

to control cellular events that develop over a large time scale (Jaffe, 1995, 1999; Slusarski 

and Pelegri, 2007). Many studies have examined the role of voltage-dependent calcium 

channels in mediating gene expression in response to membrane depolarization. Some of the 

initial evidence that activity of voltage-gated calcium channels can direct gene regulation 

comes from studies demonstrating chronic depolarization of PC12 cells induced an increase 

in c-fos expression levels (Morgan and Curran, 1986). More recently, in experiments where 

Ca2+ signaling is inhibited via the addition of ryanodine, a reduction in the number of 

muscle progenitor cells and activated satellite cells was observed in the regenerating tadpole 

muscle tissue (Tu and Borodinsky, 2014). Another study examining the specification of 

commissural interneurons in the tadpole spinal cord, provided evidence for an interaction 

Ca2+-dependent electrical activity and of Smad-mediated BMP signaling (Swapna and 

Borodinsky, 2012).

Other Vmem-transducing processes include adhesive receptor signaling mechanisms 

(Arcangeli and Becchetti, 2006; Liu et al., 2005; Meyers et al., 2004; Nesti et al., 2002). In 

fact, research dating back to the early nineties provided evidence that integrin-mediated cell 

adhesion to the extracellular matrix is often coupled with ion activation via a physical 

association between integrin receptors and channel proteins. This interaction can 

subsequently regulate cell behavior such as: cell migration, proliferation, apoptosis and 

differentiation (Becchetti et al., 1992; Schwartz, 1993). A good example of this interaction is 

observed in PC12 cells whose shift to a neuronal phenotype is induced by the physical 

interaction of voltage-gated Ca2+ channels and neural cell adhesion molecules/N-cadherins 

(Doherty et al., 1991). Over the last several decades, numerous studies have demonstrated 

adhesive receptors (especially integrins) physically and functionally associated with several 

classes of ion channels (Arcangeli and Becchetti, 2006).

The recent discovery that voltage-sensitive phosphatases (VSPs) can hydrolyze 

phosphoinositides upon depolarization of membrane potential provides a novel mechanism 

of how electrical activity can directly alter biochemical signaling. VSPs contain two 

functional modules: a voltage sensitive domain (VSD) and a phosphatase enzyme region 

(Murata et al., 2005; Murata and Okamura, 2007). The voltage sensitive domain regulates 

the enzymatic activity of VSP to dephosphorylate target molecules (either 

phosphatidylinositol 3,4,5-trisphosphate or phosphatidylinositol 4,5-bisphosphate). 

Interestingly, the cytoplasmic region of VSP has considerable sequence homology to a 
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tumor suppressor enzyme, PTEN (phosphatase and tensin homolog), suggesting VSP has 

enzyme activity similar to PTEN, a protein that regulates the activity of many genes via 

canonical mechanisms (Iwasaki et al., 2008). Thus, although additional research is needed 

better understand this class of proteins, VSPs constitute a novel mechanism for coupling 

intracellular gene regulatory networks to electrical activity at the plasma membrane. A 

comprehensive and elegant study implicated bioelectric control, mediated by PTEN 

machinery, of wound healing in the mammalian eye (Zhao et al., 2006).

Over the years, numerous studies have demonstrated the function of intracellular 

transporters of signaling molecules (e.g., serotonin) can be altered by changes in 

bioelectrical activity. This voltage-controlled movement of second messengers, such as 

neurotransmitters, facilities the binding of intracellular receptors and transcription of target 

genes. For example, in early frog embryos bioelectrical gradients drive serotonin movement 

through gap junction-connected cell paths (by simple electrophoresis) and by modulating the 

SERT voltage-gated transporter (Fukumoto et al., 2005; Fukumoto and Levin, 2003; Levin 

et al., 2006). A very similar scheme involving electrogenic regulation of serotonin 

movement is observed in determining the amount of innervation from tissue transplants 

(Blackiston et al., 2011b; Blackiston et al., 2017), a finding that could be leveraged for 

advances in regenerative medicine.

There are several lines of evidence that suggest the epigenetic regulation of chromatin state 

is critical for pattern formation and regeneration. For example, in contrast to young tadpole 

limbs, the froglet limb no longer expresses important patterning genes like Sonic Hedgehog 
(shh) and reduced ability regeneration missing structures (Yakushiji et al., 2007). Sequence 

analysis of the limb enhancer region in young and old animals revealed that tadpole limbs 

were hypomethylated whereas froglet limbs were hypermethylated (Yakushiji et al., 2007). 

In addition, in zebrafish mutants carrying a loss-of-function allele of Dnmt-1 (DNA 

methyltransferase 1) are less able to regenerate ablated pancreatic cells (Anderson et al., 

2009b). Because butyrate is an inhibitor of HDAC1, the movement of butyrate through an 

ion-dependent transporter SLC5A8 can also trigger epigenetic responses leading to 

tumorigenesis and altered regenerative ability (Chernet and Levin, 2013; Chernet et al., 

2014; Davie, 2003; Gupta et al., 2006; Tong et al., 2004; Tseng et al., 2011b; Tseng and 

Levin, 2012). Hence, changes in membrane voltage can result in the acetylation of 

chromatin and modified rates of transcription.

Recent transcriptomic and proteomic analyses of regeneration have revealed prominent 

bioelectric components within the regenerative response (Chang et al., 2017; Rabinowitz et 

al., 2017), and linked them functionally to other physiological signals such as reactive 

oxygen species (ROS) (Ferreira et al., 2016). Likewise, modern optical imaging of in vivo 
physiology is beginning to provide a comprehensive multi-dimensional picture of the 

biophysics of amphibian tail regeneration (Ozkucur et al., 2010).

Conclusions and next steps

Endogenous bioelectrical states serve as instructive signals in patterning at multiple levels of 

organization, from single cells to the whole body plan. Vmem gradients specify information 
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such as: initiating modules for complex self-limiting organogenesis (Adams et al., 2007b; 

Pai et al., 2015b), setting axial polarity (Beane et al., 2011; Durant et al., 2017; Levin, 2006; 

Oviedo et al., 2010; Stern and MacKenzie, 1983), serving as prepatterns for the layout of 

large regions (Adams et al., 2016; Pai et al., 2015a; Vandenberg et al., 2011), and even 

determining the shape and size of structures (Emmons-Bell et al., 2015; Perathoner et al., 

2014). Despite the progress that has been made thus far, the field still faces a number of 

major questions. These include a more in depth understanding of the mechanisms by which 

cells compare bioelectric state across distances, elucidation of how bioelectric cues interface 

with chemical gradients and physical forces, and development of quantitative models of 

bioelectric circuits that are able to store patterning information needed to create complex 

structures. The ability of bioelectric signaling to direct cell behavior has been described in 

the literature for over a century, yet only recently are we gaining sufficient insight about 

mechanisms and global dynamics to enable biomedicine to unlock this valuable information. 

It is crucial to point out that continued advances in the control of regenerative patterning will 

require not only increase reductive detail on subcellular molecular pathways, but also 

integrative work to understand how large-scale pattern is established (and how growth is 

limited once appropriate anatomy has been restored) by large-scale bioelectrical circuits. 

Moving forward, researchers need to extend our knowledge about gene regulatory networks 

and signaling cascades to include information generated at the level of bioelectricity.
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Highlights

• Endogenous ion flows are important regulators of cell behavior.

• Creating complex structures requires the integration of molecular inputs and 

biophysical cues.

• Bioelectrical states play a key role in the robust restoration of normal pattern 

after injury.

• Bioelectric cues serve as instructive signals in patterning at multiple levels of 

organization.
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Figure 1. Bioelectrical signaling drives pattern formation at the level of the cell, tissue, and 
organism
(A) Changes in transmembrane voltage are transduced (B) by a set of membrane 

mechanisms (voltage-powered transporters of serotonin and butyrate, voltage-gated calcium 

channels, voltage-regulated phosphatases, and others) into second-messenger cascades that 

regulate gene expression, thus directing cell behavior (C) such as, migration, proliferation, 

cell death, differentiation, gene expression, and shape changes. (D) In turn, these changes in 

cell behavior enable the creation of complex structures. Abbreviations: 5-HT, 5-

hydroxytryptamine, also known as serotonin; HDAC, histone deacetylase; MAD3, Max-

interacting transcriptional repressor; Akt, serine/threonine-specific protein kinase; GJC, gap 

junction communication; NCX, Na+/Ca2+ exchanger; VGCC, voltage-gated calcium 

channel; Cx, connexin; MAP kinase, mitogen-activated protein kinase. Lightning bolts 

represent changes in resting membrane potential. Panels A and B modified with permission 

(Levin, 2007b).
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Figure 2. Bioelectric cues can specify pre-pattern information needed to create complex 
structures and direct the reprogramming of complete organs via non– cell-autonomous 
patterning signals
(A) Spatial distributions of resting potential gradients reveal the existence of complex 

prepatterns in vivo. Imaging with a voltage-sensitive fluorescent dye in the Xenopus nascent 

face reveals the borders of patterning compartments and organ locations prior to the 

induction of face-specific patterning transcripts. Anterior/face, red arrow denotes position of 

future right eye field. Modified with permission from (Vandenberg and Morrie, 2011). (B) 

Manipulation of these endogenous patterns by misexpression of ion channels can result in 

organ-level reprogramming. For example, targeted Vmem change, via misexpression of ion 

channels in the frog embryo, induces the formation of ectopic structures such as complete 

eyes, even in regions normally not competent to form eyes such as the gut (red arrow). 

Modified with permission from (Pai et al., 2012).
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Figure 3. Large-scale bioelectric patterns are instructive for shape
(A-B) Limb regeneration does not normally occur in post-metamorphic froglets. After only 

24 hours of exposure, an ionophore cocktail designed to specifically alter the bioelectric 

state of the blastema triggers growth of an entire limb (green arrowheads indicate the 

appearance of distal elements such as toes and toenails). Used with permission from (Tseng 

and Levin, 2013). (C-D) During the refractory period in Xenopus, tail regeneration does not 

occur. (E-F) A one-hour exposure of the animal to an ionophore cocktail induces sodium 

influx into the bud, which triggers the regeneration of an entire new tail. This example 

illustrates how a simple signal can trigger a complex, self-limiting downstream 

morphogenetic cascade appropriate in orientation, scaling, and location within the host 

organism. Exploiting such endogenous “master-regulator” triggers may be a powerful 

strategy for regenerative medicine, to restore complex organs long before we have the 

knowledge to micromanage its creation from specific cell types. Yellow arrows indicate 

location of amputation. Abbreviations: hpa, hours post amputation; dpa, days post 

amputation. Modified with permission from (Tseng et al., 2010a).
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Figure 4. Large-scale bioelectric patterns direct the morphology of regenerated structures
(A) Understanding of the bioelectric circuit that controls anterior–posterior specification in a 

fragment of regenerating planaria can be used to design drug cocktails that alter the 

regenerating anatomical structures produced by adult stem cells. Using this information, the 

desired target morphology can be created including inducing the posterior-facing blastema to 

build a secondary head in planaria. Modified with permission from (Beane et al., 2011). (B) 

Pattern memory encoded in bioelectric circuits can be altered by manipulating bioelectric 

cues. Planarian head-tail polarity is regulated in part by an endogenous voltage gradient. 

When cut fragments are briefly exposed to reagents to alter the topology of bioelectric cues 

(e.g., gap junction targeting drugs or RNAi targeting innexins), their regeneration results in 

the creation of two headed animals. Remarkably, weeks later, when these same animals are 

re-cut in plain water over multiple rounds of regeneration, the two-headed worm phenotype 

persists. Recent work (Durant et al., 2017) shows that these two-headed forms can be re-set 

back to a permanent one-head state by a manipulation of the H+/K+-ATPase component of 

the circuit, and reveals how epigenetic long-term pattern memory that can be stored in 

bioelectric circuits.
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