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Abstract

Drug-induced liver injury (DILI) is a major cause of drug failures in both the preclinical and 

clinical phase. Consequently, improving prediction of DILI at an early stage of drug discovery will 
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reduce the potential failures in the subsequent drug development program. In this regard, high-

content screening (HCS) assays are considered as a promising strategy for the study of DILI; 

however, the predictive performance of HCS assays is frequently insufficient. In the present study, 

a new testing strategy was developed to improve DILI prediction by employing in vitro assays that 

was combined with the RO2 model (i.e., ‘rule-of-two’ defined by daily dose ≥100 mg/day & logP 

≥3). The RO2 model was derived from the observation that high daily doses and lipophilicity of an 

oral medication were associated with significant DILI risk in humans. In the developed testing 

strategy, the RO2 model was used for the rational selection of candidates for HCS assays, and only 

the negatives predicted by the RO2 model were further investigated by HCS. Subsequently, the 

effects of drug treatment on cell loss, nuclear size, DNA damage/fragmentation, apoptosis, 

lysosomal mass, mitochondrial membrane potential, and steatosis were studied in cultures of 

primary rat hepatocytes. Using a set of 70 drugs with clear evidence of clinically relevant DILI, 

the testing strategy improved the accuracies by 10 % and reduced the number of drugs requiring 

experimental assessment by approximately 20 %, as compared to the HCS assay alone. Moreover, 

the testing strategy was further validated by including published data (Cosgrove et al. in Toxicol 

Appl Pharmacol 237:317–330, 2009) on drug-cytokine-induced hepatotoxicity, which improved 

the accuracies by 7 %. Taken collectively, the proposed testing strategy can significantly improve 

the prediction of in vitro assays for detecting DILI liability in an early drug discovery phase.
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Introduction

Drug-induced liver injury (DILI) is a major cause for the termination of clinical 

development programs, partly due to the fact that routine animal toxicity testing is 

insufficiently powered to predict clinical hepatotoxicity (Kaplowitz 2005). A survey revealed 

that regulatory toxicology studies with two species (rodent and non-rodent) failed to identify 

risk of DILI in humans in approximately 45 % of cases, as seen in subsequent clinical trials 

(Olson et al. 2000). Therefore, there is unmet need to improve DILI prediction, and several 

collaborative efforts have been initiated to better understand causes of DILI and its 

prevention, and this includes the Liver Toxicity Knowledge Base (LTKB) launched by the 

US Food and Drug Administration (FDA)’s National Center for Toxicological Research 

(Chen et al. 2013c).

Notably, the significant advances of in silico and in vitro approaches hold promise for the 

development of an improved testing strategy that permits prediction of human hepatotoxicity 

more reliably and at the same time avoids unnecessary animal testing (Thomas and Will 

2012). In this regard, high-content screening (HCS) is a major breakthrough (Bleicher et al. 

2003) for its ability to monitor multiple cellular endpoints simultaneously in live cells as to 

allude to the possible pathogenesis of toxicity. HCS is a facile methodology and is not 

limited to the quantification of single endpoint such as cell death determined in cytotoxicity 

assays (Gomez-Lechon et al. 2010). It is considered as a promising methodology in the drug 
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discovery and early preclinical drug development phase. Several studies reported the utility 

of HCS for assessing the risk of liver liabilities caused by drugs or chemicals (O’Brien et al. 

2004; Xu et al. 2008; Khetani et al. 2013). For example, Xu et al. (2008) used primary 

human hepatocytes and determined an approximately 50 % sensitivity and 95 % specificity 

for over 300 drugs/chemicals. Notwithstanding, the reported sensitivities are relatively low 

and thus will inevitably increase the risk of drug failure in the subsequent development 

program. Some efforts such as extending the culture duration of hepatocytes were proposed 

(Khetani et al. 2013); however, the throughput of drug testing decreased while the cost of in 

vitro screening increased.

To improve its predictive performance, an integration of in silico approaches with HCS 

methodologies has been proposed (Iskar et al. 2011). Indeed, in silico models can assist in 

the prediction of safety of new drug candidates and allow the rapid screening of literately 

unlimited number of chemicals. Thus, several studies reported the utility of in silico models 

for the prediction of human hepatotoxicity (Ekins et al. 2010; Greene et al. 2010; Chen et al. 

2013b), and recently, Chen et al. reported for oral medications at high daily doses and 

lipophilicity a significant increased risk for clinical DILI as determined by the ‘rule-of-two’ 

(RO2, i.e., daily dose ≥100 mg/day & logP ≥ 3) (Chen et al. 2013a). While the RO2 model 

alone added value to the prediction of clinically relevant human hepatotoxicity (Kaplowitz 

2013), its performance was still insufficient due to the limited sensitivity caused by a high 

rate of false negatives.

In the present study, we investigated the combined use of the RO2 model and a HCS testing 

strategy aimed at better identifying liabilities for liver injury induced by drugs or chemicals. 

For this purpose, a primary rat hepatocyte-based HCS assay was studied by investigating the 

negatives predicted from the RO2 model, thereby refining the results obtained from in silico 

methods alone. Furthermore, we implemented published data on drug-induced cytokine 

release (Cosgrove et al. 2009) into our testing strategy to improve its predictive performance. 

Our study demonstrates that the proposed testing strategy improves the accuracies of 

detecting risk for DILI by approximately 10 % and at the same time contributes to the 

reduction of experimental cost by assisting in the rational selection of candidates for HCS 

and subsequent animal studies.

Materials and methods

Drugs and DILI classification

Drugs were purchased from Sigma Chemicals (St. Louis, MO) or the United States 

Pharmacopeia (http://www.usp.org/).

Two classification methods for DILI risk in humans with a concordance of approximately 

90 % have been reported (Chen et al. 2011). In one approach, drugs were classified by 

most-, less-, and no-DILI concern according to the DILI concern disclosed in the FDA-

approved drug labels (Chen et al. 2011). In another independent approach, drugs were 

categorized into four hepatotoxic groups (Greene et al. 2010): NE (no evidence for 

hepatotoxicity in any species), WE (weak evidence for human hepatotoxicity with <10 case 

reports, but generally considered not to present a risk for liver injury in humans), HH 
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(evidence for hepatotoxicity in humans), and AH (animal hepatotoxicity observed, not tested 

in humans). Using the two approaches in combination, a drug is defined as human 

hepatotoxicity positive, if it is classified as most-DILI-concern or HH, or as negative, if it is 

classified as no-DILI-concern or NE.

High-content screening assay based on primary rat hepatocytes

In cooperation with Cellumen Inc. (acquired by Cyprotex Inc. in 2010), the HCS assay 

measured the effects of drug treatment on cell loss, nuclear size, DNA damage, apoptosis, 

lysosomal mass, DNA fragmentation, mitochondrial membrane potential, and steatosis (as 

listed in Table 1) in primary rat hepatocytes by applying the cellular systems biology 

approach (CellCiphr® profile). Briefly, the primary hepatocytes isloated from male Sprague-

Dawley rats were plated as a monolayer with cell viability in the range of 80–95 %. The 

cells are treated on the day of isolation to maximize metabolic activity. Using a twofold 

dilution series, 10-point titrations for each compound were tested in the cell culture for up to 

48 h. After an initial screening of 200 compounds, we selected a total of 70 drugs with clear 

annotation based on FDA labels. The drugs were divided into two groups (test phases A and 

B). For test phase A, n = 38 drugs were studied at a maximum of 200 μM. In test phase B, n 
= 32 drugs were studied at a maximum concentration of 100 times Cmax (i.e., maximum 

human therapeutic serum concentration). The dose–response curves were constructed as 

twofold dilutions based on 10-point titrations at 1, 24, and 48 h.

The endpoints were captured in a time- and concentration-dependent fashion at 1, 24, and 48 

h after treatment of primary rat hepatocytes. The assay was performed in 384-well plates 

with extensive intra-plate and inter-plate quality controls (n = 10). An ArrayScan VTI HCS 

Reader in the high-resolution mode was used to capture the data after treatment, and the 

images collected from each well of the dose–response series were processed using Graph 

Pad Prism (Graph Pad Software Inc., La Jolla, CA). As an example in Fig. 1, a dose–

response series was obtained from the measurements to estimate the drug treatment effects. 

Furthermore, the dose–response curves were fitted using a standard 4-parameter logistic 

model. A set of quality control metrics, such as the correlation coefficient and fitting degree, 

was used to automatically accept or reject curves. These metrics were developed based on 

the quality of curve fitting and the likelihood that the curve accurately represents a dose–

response relationship. The reports were further manually reviewed after the automatic 

analysis. If the dose–response curve passed this quality control, the EC50 (i.e., concentration 

where 50 % of the measured endpoints has changed) was calculated from the curve to 

determine the drug-induced effect.

RO2 model for DILI prediction

A significant association with risk for DILI in humans was identified among 164 FDA-

approved oral medications of lipophilic drugs (logP ≥ 3) given at high daily doses (≥100 mg/

day) and was defined as the RO2 (Chen et al. 2013a). This rule was applied and verified 

using an independent set of 179 oral medications, drug pairs with similar chemical structures 

and molecular targets but different DILI potential, and in clinical case studies with complex 

co-medication regimes. The RO2 model yields 30–35 % sensitivities and 90–95 % 

specificities assessed by two large sets of drugs, respectively.
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Integrated testing strategy by combining the HCS assay and the RO2 model

A hierarchical testing strategy was developed by integrating the RO2 model with the HCS 

assay to improve predictive power. Considering the relatively low sensitivity and high false-

negative rate of the RO2 model, the HCS assay was applied to the negatives predicted from 

the RO2 model to further stratify candidate selection, thereby improving the sensitivity. The 

testing strategy is detailed in Fig. 2, and the prediction results of individual models are 

summarized in the Supplemental Table 1.

Drug-cytokine in vitro model for DILI prediction

Drug-induced cytokine release is associated with aggravated hepatotoxicity and is observed 

with a variety of drugs. Notably, in the study of Cosgrove et al. (2009), human hepatocyte 

cultures were treated with a mix of individual drugs and different cytokines. Approximately 

25 % sensitivity and 97 % specificity for DILI prediction were reported using a large 

compendium of drugs. The data from the in vitro assay of Cosgrove et al. (2009) were 

combined with the RO2 model using the proposed testing strategy for an improved 

prediction of DILI (Supplemental Table 2).

Data analysis

A harmless ratio defined as EC50/Cmax was employed to enhance the human relevance of the 

cellular responses observed in an HCS assay (Tolosa et al. 2012); a higher value represents a 

safer effect observed by an endpoint measured at a specific time point by the HCS assay. 

The threshold to define a positive test in an assay is of importance for appropriately 

assessing its predictive performance. The measurement of an assay at a concentration of 100 

times Cmax has been widely adopted to evaluate the outcome of an in vitro assay (Dykens et 

al. 2008; Porceddu et al. 2012). Thus, a test was defined as positive when its harmless ratio 

was <100, otherwise it was considered as negative. Subsequently, the readout of the HCS 

assay was assigned as positive when at least one of the selected cellular parameters was 

positive; this so-called logical OR method has been widely adopted for in vitro testing (Xu 

et al. 2008; Khetani et al. 2013).

Sensitivity, specificity, and accuracy were used to measure a model’s predictive 

performance. Sensitivity was defined as the fraction of the human hepatotoxicity positive 

drugs that were defined as positives by an assay (i.e., true predicted positives/hepatotoxicity 

positives), and specificity was defined as the fraction of the human hepatotoxicity negative 

drugs that were defined as negatives by an assay (i.e., true predicted negatives/hepatotoxicity 

negatives).

Results

The testing strategy consisted of the combined use of HCS and in silico modeling. Using 

primary rat hepatocytes, we determined the effects of drug treatment on cell loss, nuclear 

size, DNA damage, apoptosis, lysosomal mass, DNA fragmentation, mitochondrial 

membrane potential, and steatosis. Figure 1 depicts an image for assaying DNA damage 

while Fig. 2 elaborates on the integrated testing strategies. In all, the predictive 
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performances of the models were assessed by a total of 70 drugs annotated for their clinical 

relevance to cause liver injury and published data on inflammation-associated hepatotoxicity.

The HCS model based on primary rat hepatocytes

Initially, we assessed the responses of the endpoints measured by the HCS assay and their 

relevance for predicting clinical DILI. Drugs were grouped according to the section of drug 

labels for DILI concern, notably Box Warning, Warnings & Precautions, Adverse Reactions, 

and No Match. The percentages of the activated responses across the 8 cellular endpoints are 

illustrated in Fig. 3a. Apparently, more endpoints were responsive at the prolonged drug 

exposure, with steatosis, cell loss, and DNA damage as most frequent findings. Conversely, 

apoptosis, DNA fragmentation, nuclear size, lysosomal mass, and mitochondrial membrane 

potential were less frequently modulated. The average harmless ratios of the cellular 

endpoints decreased in the sequence of No Match > Adverse Reactions > Warnings & 

Precautions > Box Warning. Statistically significant correlations were identified between the 

measured harmless ratios and the risks for DILI (Fig. 3b). Specifically, both the Box 

Warning and the Warnings & Precautions drugs have significantly lower harmless ratios than 

those of the No Match drugs (P < 0.001), while the Adverse Reactions drugs do not have 

significantly different harmless ratios from the No Match drugs.

In vitro assays using a single cellular parameter have shown approximately 5–10 % 

sensitivity and >90 % specificity for the prediction of human hepatotoxicity (Xu et al. 2004). 

In the present study, we selected the cellular parameters for the model development by a 

combination of the endpoint and measured time point unless their sensitivity was >5 % and 

specificity was 100 % when assessed by the 38 drugs (positive/negative = 22/17, Table 2).

The selected parameters were used to construct a predictive model using the logical OR 

operator, in which a drug was assigned as positive when any one of the nine selected 

parameters suggested it to be positive (i.e., its harmless ratio was <100). Consequently, 8 of 

the 22 DILI positive drugs and none of the 17 DILI negative drugs were assigned as the 

predicted positives, resulting in an overall 38 % (8/21) sensitivity and 100 % (17/17) 

specificity. The drugs assigned as positive were acitretin, amiodarone, chlorpromazine, 

cyclosporine, nefazodone, nomifensine, tamoxifen, and zafirlukast.

An additional 32 drugs were used to verify the predictive model based on the HCS assay. As 

indicated in Table 3, 11 of the 28 DILI positive drugs were predicted as positive while all of 

the other drugs were considered negative, resulting in 39 % (11/28) sensitivity and 100 % 

(4/4) specificity. The drugs positively predicted were acetaminophen, carbamazepine, 

carboplatin, chlorpropamide, clofibrate, cyclophosphamide, hydroxyurea, ifosfamide, 

sulindac, tolbutamide, and valproic acid.

The combined use of HCS with the RO2 model

The new testing strategy was applied to a set of 70 drugs (human hepatotoxicity positives/

negatives = 49/21). As shown in Table 4 and Supplemental Table 1, the integrated model 

(the RO2 model and the HCS assay) increased the sensitivity by 16 % as compared to the 

HCS model alone (55 vs. 39 %), with a minor sacrifice on specificity from 100–95 %. 

Importantly, the integrated approach improved the overall accuracy by 10 % and reduced the 
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drugs that would require HCS experimental tests by approximately 20 %, as compared to the 

findings of the HCS assay alone. In all, the accuracy of the integrated model was 67 % as 

compared to 57 % for the HCS assay alone, and the integrated model required only 56 HCS 

tests as compared to 70 tests when the HCS assay data were considered independently.

Inflammation-associated drug hepatotoxicity

The published data of Cosgrove et al. (2009) were used to further evaluate the developed 

testing strategy. As indicated in Table 5 and Supplemental Table 2, the RO2-cytokine-

integrated model increased sensitivity by 15 % and sacrificed 6 % of specificity as compared 

to the drug-cytokine in vitro assay alone. Notably, the integration of the RO2 model with the 

drug-cytokine assay increased prediction accuracy by 7 % when compared to the original 

published data of Cosgrove et al. (2009) (i.e., 62 vs. 55 %). Meanwhile, the integrated 

testing strategy required approximately 20 % less experimental testing as compared to the 

drug-cytokine in vitro assay alone (i.e., 71 vs. 87) with a negligible additional cost to 

calculate a drug’s lipophilicity. Consequently, an integrated testing strategy that involves the 

RO2 model is superior to predictions based on in vitro assays alone.

Discussion

Accurate prediction of adverse drug reactions at a reasonable cost is critical in preclinical 

safety testing (Schnackenberg et al. 2009; Will and Schroeter 2012). Thus, in vitro and in 

silico tests are expected to play a major role in twenty-first century toxicity testing 

(Andersen and Krewski 2009; Chen et al. 2012). Because animal studies are costly and 

frequently fail in predicting clinically relevant toxicities, the US FDA, as well as other 

regulatory authorities, have emphasized the importance of in vitro and in silico models to 

reduce unnecessary animal testing in an effort toward efficient replacement, reduction, and 

refinement of animal tests in regulatory science (Hamburg 2011). In vitro cytotoxicity assays 

are poorly predictive of human hepatotoxicity (Xu et al. 2008). Consequently, monitoring 

multiple and mechanistically relevant endpoints in HCS assays improves predictive 

performance (Khetani et al. 2013). Unfortunately, the use of human hepatocyte cell cultures 

to screen multiple endpoints for prolonged periods of time proved to be difficult (i.e., limited 

viability of cryopreserved human hepatocytes and the cost of pluripotent stem cell derived 

liver cells) (Khetani et al. 2013).

In the present study, an improved testing strategy was developed by combining the RO2 

model with experimental data derived from primary rat hepatocytes HCS assays. 

Specifically, when the HCS assays were performed with only the negatives predicted by the 

RO2 model alone, drug safety prediction was significantly improved. The new testing 

strategy can also be applied to other in vitro assays as demonstrated by the published drug-

cytokine data (Cosgrove et al. 2009). The testing strategy developed in this study is superior 

to that of the HCS assay alone, with improved prediction power at reduced cost. Specifically, 

the accuracy increased by approximately 10 %, and the number of drugs requiring 

experimental tests was reduced by approximately 20 % at a negligible additional cost to 

calculate a drug’s lipophilicity, as compared to the HCS assay alone. An improvement has 

been achieved by integrating the RO2 model, and data on cytokine induced hepatotoxicity.
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HCS assays are a promising testing strategy for screening multiple toxicity endpoints in the 

drug discovery phase; however, the low sensitivity associated with HCS raises concern about 

selecting false negatives for future testing. Some technologies have been employed to 

improve the sensitivity of the assay. For instance, Khetani et al. (2013) employed a long-

term drug dosing strategy based on a functionally stable model of primary human 

hepatocytes, which improved sensitivity but increased costs due to additional testing and 

decreased throughput. An important advantage of the new testing strategy proposed in this 

study is its improvement of predictive performance at a reduced screening cost.

Although in silico models provide a rapid return of results and do not require chemical 

substances (Muster et al. 2008), these models alone are insufficient for a reliable prediction 

of clinically relevant human hepatotoxicity. Liu et al. identified 13 side effects that 

collectively provided an indication for DILI and that were further translated via an in silico 

approach to develop a DILI prediction system (Liu et al. 2011). Recently, we developed a 

quantitative structure–activity relationship model with a Decision Forest classifier using the 

Mold2 chemical descriptors and reported prediction accuracies of 62–68 % as assessed by 

three independent validation datasets (Chen et al. 2013b).

Bioinformatics approaches to integrate heterogeneous data have significantly impacted 

views on how to handle complex biological problems (Shi et al. 2010; Iskar et al. 2011). 

Obviously, a single model derived from in silico or in vitro testing alone is insufficient for 

the prediction of a complicated endpoint like DILI; meanwhile, an appropriate integration 

can improve the predictive performance, mostly because models based on different systems 

capture a greater diversity of information (Chen et al. 2014) (Rusyn et al. 2012). For 

example, only 6 of 27 (22 %) positives predicted by the RO2 or HCS assay were common in 

this study, suggesting that these two models are complementary. Similar observations were 

found when the RO2 models were integrated with the cytokines assay, and DILI positive 

drugs that can cause hypersensitivity reactions, including fenofibrate, mebendazole, 

verapamil, and indinavir were predicted by the RO2 model, but not by the HCS assay. On 

the other hand, the HCS assay successfully distinguished drugs that caused lesions in liver, 

such as cyclophosphamide, ifosfamide, and carboplatin, which are not detected by the use of 

the RO2 model.

Recently, the integration of an in silico model and in vitro assays was reported (Zhu et al. 

2013) utilizing a hybrid approach to combine the in vitro assays and chemical descriptors. 

However, the hybrid model did not significantly improve the prediction as compared to the 

in vitro assay alone. Specifically, the correct classification rate of the in vitro assay alone 

was 77 % while those of the hybrid approaches ranged from 68 to 73 % (Zhu et al. 2013). 

Similar observations were reported by Low et al. (Low et al. 2011), who found that the 

correct classification rate of the models based on toxicogenomic descriptors alone was 76 %, 

while those of the hybrid models combining chemical and toxicogenomic descriptors were 

in the range of 68–77 %. A drawback from the aforementioned hybrid approach might exist 

in directly pooling heterogeneous data sources for modeling purposes, as different data 

sources have different data structures that often require different modeling strategies to 

maximize the information. Thus, adaptors would need to be developed for data integration 

without infringing on data integrity (Chen et al. 2014).
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The performance of HCS assays could be further improved by incorporating other liver 

relevant endpoints, such as reactive oxygen species, glutathione depletion, and inhibition of 

bile salt export pumps (Stepan et al. 2011; Thompson et al. 2012). These mechanistic 

endpoints are expected to supplement the prelethal endpoints employed in this study. 

Notably, drug-cytokine hepatotoxicity synergies were observed when drug-cytokine mixes 

were administrated to primary human hepatocytes (Cosgrove et al. 2009). Consequently, a 

cytokine-based in vitro model was developed with promising performance to predict 

inflammation-associated hepatotoxicity using a large set of drugs. In this study, we have 

demonstrated the successful integration of such data into the RO2 model to improve DILI 

prediction.

The outcome of the cellular endpoints in the HCS assay was demonstrated to significantly 

correlate with the risk for human DILI, especially when Cmax was taken into account. This 

concept has been widely accepted as a standard practice for in vitro assays used for clinical 

DILI prediction (Dykens et al. 2008; Xu et al. 2008; Khetani et al. 2013). While a drug’s 

Cmax is commonly determined in human safety and efficacy studies, such information is not 

available at the preclinical developmental stage; nonetheless, it might be predicted as 

reported elsewhere (Poulin et al. 2011). For example, a physiologically based 

pharmacokinetic modeling approach was demonstrated to predict Cmax using in silico and in 

vitro data with reasonable accuracy (67 % of drugs fall in an average-fold error of < 

twofold) (Jones et al. 2006).

Several caveats need to be considered in this study. First, only marketed drugs, which have 

acceptable safety margins and have received marketing approval, were investigated. Second, 

a threshold of 100 for the harmless ratio (i.e., EC50/Cmax) was set to detect positives in the 

HCS assay. Although this threshold has been widely applied in the industry (Dykens et al. 

2008; Khetani et al. 2013) with a reasonable clinical rationale (Xu et al. 2008), it is an 

exaggerated concentration, which may suggest that rat hepatocyte cell culture is not sensitive 

enough to predict human DILI at clinically relevant doses. Furthermore, the Cmax data used 

in the present study were retrieved from human studies, while the HCS assays were designed 

for preclinical study where the Cmax data for the drug candidates are unknown. A recent 

publication (Jones et al. 2006) indicated that the Cmax may be predicted based on preclinical 

data with reasonable accuracy; however, the results from a recent study initialized by 

Pharmaceutical Research and Manufacturers of America (PhRMA) indicated that the 

pharmacokinetic models still suffer from a general underestimation of drug exposure (Poulin 

et al. 2011). Therefore, the utility of the predicted Cmax for the in vitro assay-based models 

requires further evaluation.

In conclusion, an improved testing strategy was developed to demonstrate that the in vitro 

assays combined with the RO2 model provided a means with a reasonable performance to 

predict a drug’s potential to cause liver injury in humans. The integrated method represents a 

modest improvement with about a 10 % increase in accuracy, and its further assessment in a 

larger pool of approved drugs is warranted. Once validated, the proposed testing strategy 

will be useful to prioritize drug candidates in the early drug discovery phase to reduce 

unnecessary animal testing.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An illustration of a high-content screening assay and its measurement of DNA damage. The 

left side displays the images from the HCS assay, including the treatment with zafirlukast 

and the DMSO control. The right side shows 10 half-sequence doses and their dose–

response curve. The EC50 of DNA damage was calculated from this dose–response curve
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Fig. 2. 
Flowchart of the new testing strategy integrating the in vitro assays with the RO2 model. 

Specifically, the in vitro assay was applied to the negatives predicted from the RO2 model to 

further stratify candidate selection and thereby improve the sensitivity. The drugs predicted 

to be positive by the RO2 model are not considered for further experimental test. The 

numbers of drugs requiring experimental tests are listed in Tables 4 and 5
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Fig. 3. 
Overview of the measured cellular endpoints of the HCS assay. a The distribution of 

measured cellular endpoints. b The distribution of harmless ratio grouped by drug label 

sections, including Box Warning, Warnings and Precautions, Adverse Reactions, and No 

Match. Two-sided t-tests were applied to compare the harmless ratios of Box Warning, 

Warnings and Precautions, or Adverse Reactions groups versus the No Match group, and the 

derived p values were marked
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Table 1

The eight cellular endpoints measured in the high-content screening assay based on primary rat hepatocytes

Endpoint Description

Cell loss Fraction cell loss relative to negative control wells

Nuclear size Equivalent diameter of the nucleus in microns

DNA damage Activation of GADD153

Apoptosis Release of cytochrome C from mitochondria

Lysosomal mass Lysosomal signal per cell

DNA fragmentation Nuclear texture

Mitochondrial membrane potential Mitochondrial spot intensity

Steatosis Accumulation of fat globules
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